1
|
Boztepe T, Karp F, Cabrera S, Aleman J, Lamas DG, Huck-Iriart C, Islan GA, León IE. An oral delivery approach for riboflavin-targeted platinum(II)-loaded lipid nanoparticles into alginate-gelatin matrices against 2D and 3D colorectal carcinoma models. J Inorg Biochem 2025; 269:112900. [PMID: 40158497 DOI: 10.1016/j.jinorgbio.2025.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
This study investigated the use of riboflavin-targeted Nanostructured Lipid Carriers (R-NLCs) to deliver a platinum-based anticancer drug [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) to colorectal cancer cells. Three different R-8-QO-Pt-NLC formulations were prepared via hot-homogenization by ultrasonication method. The physicochemical characterizations of NLCs were analyzed by small- and wide-angle X-ray scattering (SAXS/WAXS) and fourier transformed infrared spectroscopy (FTIR). The cytotoxic effects and IC50 values of R-8-QO-Pt-NLC formulations were compared with those of the free 8-QO-Pt. Cellular uptake and apoptosis were evaluated towards HCT 116 cells in monolayer (2D). The liquid overlay technique was used to generate 3D multicellular tumor spheroids, MCTS. The anticancer and antimetastatic activities of the free 8-QO-Pt and R-8-QO-Pt-NLCs were determined in MCTS. The results revealed that R-8-QO-Pt-NLC exhibited greater cytotoxicity and lower IC50 values than free 8-QO-Pt in both 2D and 3D cell cultures. Furthermore, results showed that the volumes of the spheroids were reduced in response to increasing concentrations of R-8-QO-Pt-NLC, showing higher inhibition of cell migration in colorectal cancer spheroids at concentrations of 10.0, 15.0, and 25.0 μM than free 8-QO-Pt. To provide protection against gastric acid conditions, an additional drug delivery system based on alginate (Alg) and gelatin (Gel) beads for R-8-QO-Pt-NLC oral administration was developed. While free and R-NLC encapsulated 8-QO-Pt were practically inactivated at pH 1.2 and 37 °C, it was revealed that the Alg-Gel beads retain 5.7 times the initial activity of the R-8-QO-Pt-NLC. The findings of this research indicate that R-8-QO-Pt-NLC embedded in Alg-Gel beads are promising hydrogels for targeted colorectal delivery systems.
Collapse
Affiliation(s)
- Tugce Boztepe
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
| | - Federico Karp
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Aleman
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego G Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, (1650) San Martín, Buenos Aires, Argentina
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, (1650) San Martín, Buenos Aires, Argentina; ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Germán A Islan
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina; Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd., 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
2
|
Zhao T, Mei D, Ma J, Liu N, Zhang Q, Yang Z, Correia I. Anti-tumor and cellular mechanisms of Hf IVtetra-(8-hydroxyquinolinato) complexes. J Inorg Biochem 2025; 270:112945. [PMID: 40373563 DOI: 10.1016/j.jinorgbio.2025.112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Three 8-hydroxyquinoline-stabilized hafnium complexes, [HfIV(oxinate)4], were synthesized with good aqueous stability and solubility by reacting HfIVCl4 with 8-hydroxyquinoline (HL1), 2-methyl-8-hydroxyquinoline (HL2) and 5-chloro-8-hydroxyquinoline (HL3) in THF, achieving high yields. Among the synthesized complexes, [HfIV(L1)4] and [HfIV(L3)4] exhibited potent inhibitory activity against human liver (Hep G2), cervical (HeLa S3) and lung (PC9) cancer cell lines, while showing low toxicity against non-tumorigenic murine epithelial AML12 cells. Notably, [HfIV(L1)4] demonstrated the most potent activity, with an IC50 value of 0.8 ± 0.3 μM against Hep G2 cells, which is 17 times lower than that of cisplatin (IC50 = 13.8 ± 1.3 μM). Mechanistic cell studies revealed that [HfIV(L1)4] could effectively inhibit cell migration, induce reactive oxygen species generation and cause mitochondrial membrane potential disruption. Furthermore, [HfIV(L1)4] blocked the cell cycle progression at the G2/M phase and led almost exclusively to early apoptosis in Hep G2 cells. Western blot analysis revealed that in Hep G2 cells [HfIV(L1)4] could upregulate the expression of caspase-3 and Bax proteins while downregulating the expression of the anti-apoptotic Bcl-2 protein, highlighting the apoptotic pathway as a key mechanism of action. Comparisons are made with previously reported [ZrIV(L1)4], which shows higher cytotoxicity, cellular uptake, reactive oxygen species generation, mitochondrial damage and stronger inhibition of antioxidant enzymes' activity. However, [HfIV(L1)4] induces primarily early apoptosis, which is advantageous. Overall, these rare earth complexes, particularly [HfIV(L1)4] and [ZrIV(L1)4], demonstrate promising potential as novel anticancer agents with significant efficacy against human liver cancer cells and favourable selectivity profiles for further therapeutic development.
Collapse
Affiliation(s)
- Tiankun Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal..
| | - Dongyu Mei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jing Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Nan Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qi Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhongduo Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal..
| |
Collapse
|
3
|
Kovács H, Jakusch T, May NV, Tóth S, Szakács G, Enyedy ÉA. Complex formation of ML324, the histone demethylase inhibitor, with essential metal ions: Relationship between solution chemistry and anticancer activity. J Inorg Biochem 2024; 255:112540. [PMID: 38552361 DOI: 10.1016/j.jinorgbio.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
N-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and 1H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry. The solid phase structure of ML324 analysed by X-ray crystallography is also provided. Based on the solution equilibrium data, ML324 is present in solution in H2L+ form with a protonated dimethylammonium moiety at pH 7.4, and this (N,O) donor bearing ligand forms mono and bis complexes with all the studied metal ions and the tris-ligand species is also observed with Fe(III). At pH 7.4 the metal binding ability of ML324 follows the order: Fe(II) < Zn(II) < Cu(II) < Fe(III). Complexation with iron resulted in a negative redox potential (E'1/2 = -145 mV vs. NHE), further suggesting that the ligand has a preference for Fe(III) over Fe(II). ML324 was tested for its anticancer activity in chemosensitive and resistant human cancer cells overexpressing the efflux pump P-glycoprotein. ML324 exerted similar activity in all tested cells (IC50 = 1.9-3.6 μM). Co-incubation and complexation of the compound with Cu(II) and Zn(II) had no impact on the cytotoxicity of ML324, whereas Fe(III) decreased the toxicity in a concentration-dependent manner, and this effect was more pronounced in the multidrug resistant cells.
Collapse
Affiliation(s)
- Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Tamás Jakusch
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Drug Resistance Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar Tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar Tudósok krt. 2, H-1117 Budapest, Hungary; Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
| |
Collapse
|
4
|
Yang Y, Du LQ, Huang Y, Liang CJ, Qin QP, Liang H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J Inorg Biochem 2023; 241:112152. [PMID: 36736244 DOI: 10.1016/j.jinorgbio.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
For the first time, two new mononuclear platinum(II) coordination compounds, [Pt(L1)(DMSO)Cl] (PtL1) and [Pt(L2)(DMSO)Cl] (PtL2) with the 5-(ethoxymethyl)-8-hydroxyquinoline hydrochloride (H-L1) and 5-bromo-8-hydroxyquinoline (H-L2) have been synthesized and characterized. The cytotoxic activity of PtL1 and PtL2 were screened in both healthy HL-7702 cell line and cancer cell lines, human lung adenocarcinoma A549 cancer cells and cisplatin-resistant lung adenocarcinoma A549/DDP cancer cells (A549R), and were compared to that of the H-L1, H-L2, H-L3 ligands and 8-hydroxyquinoline (H-L3) platinum(II) complex [Pt(L3)(DMSO)Cl] (PtL3). MTT results showed that PtL1 bearing one deprotonated L1 ligand against A549R was more potent by 8.8-48.6 fold than that of PtL2 and PtL3 complexes but was more selective toward healthy HL-7702 cells. In addition, PtL1 and PtL3 overcomes tumour drug resistance by significantly inducing mitophagy and causing the change of the related proteins expression, which leads to cell apoptosis. Moreover, the inhibitory effect of PtL1 on A549 xenograft tumour was 68.2%, which was much higher than that of cisplatin (cisPt, ca. 50.0%), without significantly changing nude mice weight in comparison with the untreated group. This study helps to explore the potential of the platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds for the new Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
5
|
Zhou SH, Liao WH, Yang Y, Li W, Wu YY, Wu TT, Deng SH, Zhou J, Li Z, Zhao QH, Xu JY, Chen C, Xie MJ. (8-Hydroxyquinoline) Gallium(III) Complex with High Antineoplastic Efficacy for Treating Colon Cancer via Multiple Mechanisms. ACS OMEGA 2023; 8:6945-6958. [PMID: 36844596 PMCID: PMC9948165 DOI: 10.1021/acsomega.2c07742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A series of (8-hydroxyquinoline) gallium(III) complexes (CP-1-4) was synthesized and characterized by single X-ray crystallography and density functional theory (DFT) calculation. The cytotoxicity of the four gallium complexes toward a human nonsmall cell lung cancer cell line (A549), human colon cancer cell line (HCT116), and human normal hepatocyte cell line (LO2) was evaluated using MTT assays. CP-4 exhibited excellent cytotoxicity against HCT116 cancer cells (IC50 = 1.2 ± 0.3 μM) and lower toxicity than cisplatin and oxaliplatin. We also evaluated the anticancer mechanism studies in cell uptake, reactive oxygen species analysis, cell cycle, wound-healing, and Western blotting assays. The results showed that CP-4 affected the expression of DNA-related proteins, which led to the apoptosis of cancer cells. Moreover, molecular docking tests of CP-4 were performed to predict other binding sites and to confirm its higher binding force to disulfide isomerase (PDI) proteins. The emissive properties of CP-4 suggest that this complex can be used for colon cancer diagnosis and treatment, as well as in vivo imaging. These results also provide a foundation for the development of gallium complexes as potent anticancer agents.
Collapse
Affiliation(s)
- Si-Han Zhou
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Wen-Hui Liao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Yun Yang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Wei Li
- Key
Laboratory of Animal Models and Human Disease Mechanisms of the Chinese
Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yuan-yuan Wu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Tian-Tian Wu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Shi-Hui Deng
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Jie Zhou
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Zhe Li
- Department
of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling
Development of Clinical Therapeutics and Diagnostics (Theranostics),
School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Qi-Hua Zhao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| | - Jing-Yuan Xu
- Department
of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling
Development of Clinical Therapeutics and Diagnostics (Theranostics),
School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ceshi Chen
- The
Third Affiliated Hospital, Kunming Medical
University, Kunming 650118, China
| | - Ming-Jin Xie
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, Yunnan, China
| |
Collapse
|
6
|
Insights of metal 8-hydroxylquinolinol complexes as the potential anticancer drugs. J Inorg Biochem 2023; 238:112051. [PMID: 36327497 DOI: 10.1016/j.jinorgbio.2022.112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
8-Hydroxyquinoline and its derivatives, which belong to a well-known class of quinoline based drugs with varied biological activities, have been extensively explored for the treatments of cancer, Alzheimer's disease, neurodegenerative diseases and other life-threatening diseases. In virtue of the existence of bicyclic heterocyclic scaffold, their bidentate chelators can further bind to metal ions via O- and N-donors from 8-hydroxylquinolinol skeletons to yield a variety of metal 8-hydroxylquinolinol complexes appealing as the anticancer drugs with low toxicity, due to their better biological effects and higher anticancer activities than free 8-hydroxylquinolinol ligands and cis-diammine-dichloro-platinum. The present review summarizes the recent developments in the syntheses, crystal structures, and anticancer activities of metal 8-hydroxylquinolinol complexes, attempting to discover a correlation between their structures and anticancer activities, and to provide an evidence for their potential application perspectives. It means to offer the helpful and meaningful guidance for the researchers in the future syntheses of new and highly efficient anticancer metal 8-hydroxylquinolinol complexes based drugs.
Collapse
|
7
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wang ZF, Wei QC, Li JX, Zhou Z, Zhang S. A new class of nickel(II) oxyquinoline-bipyridine complexes as potent anticancer agents induces apoptosis and autophagy in A549/DDP tumor cells through mitophagy pathways. Dalton Trans 2022; 51:7154-7163. [DOI: 10.1039/d2dt00669c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of nickel(II) oxyquinoline-bipyridine complexes, namely, [Ni(La1)2(Lb6)] (Ni1), [Ni(La1)2(Lb2)] CH3OH (Ni2), [Ni(La7)2(Lb11)]2H2O (Ni3), [Ni(La1)2(Lb9)] (Ni4), [Ni(La1)2(Lb8)] (Ni5), [Ni(La2)2(Lb1)] (Ni6), [Ni(La2)2(Lb6)]CH3OH (Ni7), [Ni(La2)2(Lb11)]CH3OH (Ni8), [Ni(La2)2(Lb3)] (Ni9), [Ni(La2)2(Lb2)]CH3OH (Ni10), [Ni(La2)2(Lb5)]CH3OH...
Collapse
|
9
|
Mo X, Chen K, Chen Z, Chu B, Liu D, Liang Y, Xiong J, Yang Y, Cai J, Liang F. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorg Chem 2021; 60:16128-16139. [PMID: 34647723 DOI: 10.1021/acs.inorgchem.1c01763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reactions of cis-Pt(DMSO)2Cl2 and tropolone (HL) with 8-hydroxyquinoline (HQ) or 2-methyl-8-hydroxyquinoline (HMQ) gave [Pt(Q)(L)] (1) and [Pt(MQ)(L)] (2), which present mononuclear structures with their Pt(II) ions four-coordinated in square planar geometries. Their in vitro biological properties were evaluated by MTT assay, which showed a remarkable cytotoxic activity on the cancer cell lines. 1 shows higher cytotoxic activities on tumor cells such as T24, HeLa, A549, and NCI-H460 than complex 2 and cisplatin, with IC50 values <16 μM. Among them, an IC50 value of 3.6 ± 0.63 μM was found for complex 1 against T24 cells. It presented a tuning cytotoxic activity by substitution groups on 8-hydroxyquinoline skeleton. In our case, the substitution groups of -H are much superior to -CH3 against tumor cells. It revealed that both complexes can induce cell apoptosis by decreasing the potential of a mitochondrial membrane, enhancing reactive oxygen species and increasing Ca2+ levels of T24 cells. The T24 cell cycle can be arrested at G2 and G1 phases by complexes 1 and 2, respectively, with an upregulation for P21 and P27 expression levels and a down-regulation for cyclin A, CDK1, Cdc25A, and cyclin B expression levels. Furthermore, complex 1 exhibits satisfactory in vivo antitumor activity as revealed by the tumor inhibitory rate and the tumor weight change as well as by the cute toxicity assay and renal pathological examinations, which is close to cisplatin and much better than complex 2. All of these suggest that 1 might be a potential candidate for developing into a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianwen Xiong
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Yubing Yang
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - JinYuan Cai
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P.R. China
| |
Collapse
|
10
|
Pivarcsik T, Dömötör O, Mészáros JP, May NV, Spengler G, Csuvik O, Szatmári I, Enyedy ÉA. 8-Hydroxyquinoline-Amino Acid Hybrids and Their Half-Sandwich Rh and Ru Complexes: Synthesis, Anticancer Activities, Solution Chemistry and Interaction with Biomolecules. Int J Mol Sci 2021; 22:ijms222011281. [PMID: 34681939 PMCID: PMC8570331 DOI: 10.3390/ijms222011281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis U. 6, H-6725 Szeged, Hungary
| | - Oszkár Csuvik
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
11
|
Aljazzar SO. Synthesis and spectral characterizations of vanadyl(ii) and chromium(iii) mixed ligand complexes containing metformin drug and glycine amino acid. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Metformin is one of the most effective drugs for the treatment of type II diabetes. Two new mixed ligand complexes of vanadyl(ii) and chromium(iii) ions with the general formula [VOL1L2]SO4 and [CrL1L2(Cl)2]Cl, respectively, where L1 is the metformin and L2 is the glycine amino acid, have been synthesized in MeOH solvent with 1:1:1 stoichiometry and characterized by several spectroscopic techniques. The spectroscopic data suggested that the [VOL1L2]SO4 complex possesses a square pyramidal geometry, where the [CrL1L2(Cl)2]Cl complex possesses an octahedral geometry. The L1 ligand coordinated to the VO(ii) and Cr(iii) ions via the N atoms of the imino (‒C═NH) groups, where the L2 ligand coordinated via the O atom of the carboxylate group (COO) and the N atom of the amino group (NH2). The interaction of ligands L1 and L2 with the metal ions leads to complexes that have organized nanoscale structures with a main diameter of ∼14 nm for the [CrL1L2(Cl)2]Cl complex and ∼40 nm for the [VOL1L2]SO4 complex.
Collapse
Affiliation(s)
- Samar O. Aljazzar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| |
Collapse
|
12
|
Refat MS, Bakare SB, Altalhi T, Hassan RF. Au(III), Ta(V), Nb(V), Se(IV) and Te(IV) ions interaction with aurin tricarboxylic acid triammonium salt in methanolic solvent at neutral system: Focusing on the structures, morphology, thermal stability, and biology of the complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Kordestani N, Amiri Rudbari H, Fernandes AR, Raposo LR, Luz A, Baptista PV, Bruno G, Scopelliti R, Fateminia Z, Micale N, Tumanov N, Wouters J, Abbasi Kajani A, Bordbar AK. Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Trans 2021; 50:3990-4007. [PMID: 33650599 DOI: 10.1039/d0dt03962d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To investigate the effect of different halogen substituents and leaving groups and the flexibility of ligands on the anticancer activity of copper complexes, sixteen copper(ii) complexes with eight different tridentate Schiff-base ligands containing pyridine and 3,5-halogen-substituted phenol moieties were synthesized and characterized by spectroscopic methods. Four of these complexes were also characterized by X-ray crystallography. The cytotoxicity of the complexes was determined in three different tumor cell lines (i.e. the A2780 ovarian, HCT116 colorectal and MCF7 breast cancer cell line) and in a normal primary fibroblast cell line. Complexes were demonstrated to induce a higher loss of cell viability in the ovarian carcinoma cell line (A2780) with respect to the other two tumor cell lines, and therefore the biological mechanisms underlying this loss of viability were further investigated. Complexes with ligand L1 (containing a 2-pycolylamine-type motif) were more cytotoxic than complexes with L2 (containing a 2-(2-pyridyl)ethylamine-type motif). The loss of cell viability in A2780 tumor cells was observed in the order Cu(Cl2-L1)NO3 > Cu(Cl2-L1)Cl > Cu(Br2-L1)Cl > Cu(BrCl-L1)Cl. All complexes were able to induce reactive oxygen species (ROS) that could be related to the loss of cell viability. Complexes Cu(BrCl-L1)Cl and Cu(Cl2-L1)NO3 were able to promote A2780 cell apoptosis and autophagy and for complex Cu(BrCl-L1)Cl the increase in apoptosis was due to the intrinsic pathway. Cu(Cl2-L1)Cl and Cu(Br2-L1)Cl complexes lead to cellular detachment allowing to correlate with the results of loss of cell viability. Despite the ability of the Cu(BrCl-L1)Cl complex to induce programmed cell death in A2780 cells, its therapeutic window turned out to be low making the Cu(Cl2-L1)NO3 complex the most promising candidate for additional biological applications.
Collapse
Affiliation(s)
- Nazanin Kordestani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|
15
|
Low-dimensional compounds containing bioactive ligands. Part XIII: Square planar anti-cancer Pd(II) complexes with halogenderivatives of 8-quinolinol and dimethylamine. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Choroba K, Raposo LR, Palion-Gazda J, Malicka E, Erfurt K, Machura B, Fernandes AR. In vitro antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline-based ligands – the substituent effect. Dalton Trans 2020; 49:6596-6606. [DOI: 10.1039/d0dt01017k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive study demonstrating the antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline (quinH) ligands, including the parent and –CH3 (Me), –NO2, –Cl and –I substituted ligands, on HCT116 and A2780 cancer cell lines.
Collapse
Affiliation(s)
| | - Luis R. Raposo
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| | | | - Ewa Malicka
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Barbara Machura
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Alexandra R. Fernandes
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| |
Collapse
|
17
|
Qin LQ, Zou BQ, Qin QP, Wang ZF, Yang L, Tan MX, Liang CJ, Liang H. Highly cytotoxic, cyclometalated iridium(iii)-5-fluoro-8-quinolinol complexes as cancer cell mitochondriotropic agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj00465k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ir-3 and Ir-4 kill HeLa cells and trigger caspase-mediated mitochondrial dysfunction apoptosis pathways.
Collapse
Affiliation(s)
- Li-Qin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University, 15 Yucai Road
- Guilin 541004
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Lin Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- 1303 Jiaoyudong Road
- Yulin 537000
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University, 15 Yucai Road
- Guilin 541004
- P. R. China
| |
Collapse
|
18
|
Shao TM, Wei ZZ, Luo XL, Qin QP, Tan MX, Zeng JJ, Liang CJ, Liang H. High cytotoxic and apoptotic effects of platinum( ii) complexes bearing the 4-acridinol ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04753h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Acridinol platinum(ii) complex PtA induces SK-OV-3/DDP cell apoptosis that is mediated by the mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Tai-Ming Shao
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Xiao-Ling Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jia-Jing Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
19
|
Zhang YL, Deng CX, Zhou WF, Zhou LY, Cao QQ, Shen WY, Liang H, Chen ZF. Synthesis and in vitro antitumor activity evaluation of copper(II) complexes with 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline derivatives. J Inorg Biochem 2019; 201:110820. [DOI: 10.1016/j.jinorgbio.2019.110820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
|
20
|
Insights into the complexation of glucose-6-phosphate (G6P) with V(III), Ru(III), Au(III), and Se(IV) ions in binary solvent system. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Two novel platinum(II) complexes with sorafenib and regorafenib: Synthesis, structural characterization, and evaluation of in vitro antitumor activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. High in vitro and in vivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4'-dimethyl-2,2'-bipyridyl chelating ligands. Eur J Med Chem 2019; 169:103-110. [PMID: 30870791 DOI: 10.1016/j.ejmech.2019.02.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 01/09/2023]
Abstract
Three novel Ln(III) complexes, namely, [Pm(dmbpy)(ClQ)2NO3] (1), [Yb(dmbpy)(ClQ)2NO3] (2), and [Lu(dmbpy)(ClQ)2NO3] (3), with mixed 5,7-dichloro-2-methyl-8-quinolinol (H-ClQ) and 4,4'-dimethyl-2,2'-bipyridyl (dmbpy) chelating ligands were first synthesized. The cytotoxic activity of Ln(III) complexes 1-3, H-ClQ, and dmbpy against a panel of human normal and cancer cell lines, namely, human non-small cell lung cancer cells (NCI-H460), human cervical adenocarcinoma cancer cells, human ovarian cancer cells, and human normal hepatocyte cells, were evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The three novel Ln(III) complexes showed a high in vitro antitumor activity toward the NCI-H460 with IC50 of 1.00 ± 0.25 nM for 1, 5.13 ± 0.44 μM for 2, and 11.87 ± 0.79 μM for 3, respectively. In addition, Ln(III) complexes 1 and 2 exerted their in vitro antitumor activity/mechanism mainly via the mitochondrial death pathway and caused a G2/M phase arrest in the following order: 1 > 2. An NCI-H460 tumor xenograft mouse model was used to evaluate the Pm(III) complex 1in vivo antitumor activity. Pm(III) complex 1 showed a high in vivo antitumor activity, and the tumor growth inhibition rate (IR) was 56.0% (p < 0.05). In summary, our study on Pm(III) complex 1 revealed promising results in in vitro and in vivo antitumor activity assays.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| |
Collapse
|
23
|
Zou HH, Meng T, Chen Q, Zhang YQ, Wang HL, Li B, Wang K, Chen ZL, Liang F. Bifunctional Mononuclear Dysprosium Complexes: Single-Ion Magnet Behaviors and Antitumor Activities. Inorg Chem 2019; 58:2286-2298. [DOI: 10.1021/acs.inorgchem.8b02250] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Qi Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People’s Republic of China
| | - Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Wolong Road 1638, Nanyang 473061, People’s Republic of China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| | - Zi-Lu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| |
Collapse
|
24
|
Liu RX, Wu YS, Liu YC, Luo RY, Yang LD, Tang MT, Chen ZF, Liang H. New anthrahydrazone derivatives and their cisplatin-like complexes: synthesis, antitumor activity and structure–activity relationship. NEW J CHEM 2019. [DOI: 10.1039/c9nj02965f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two new cisplatin-like platinum(ii) complexes of new anthrahydrazones showed significant in vitro antitumor efficacies, which were totally different from that of cisplatin.
Collapse
Affiliation(s)
- Rui-Xue Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Ying-Shu Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Ru-Yi Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Li-Dong Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Meng-Ting Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
25
|
Qin QP, Wang SL, Tan MX, Luo DM, Wang ZF, Wei QM, Wu XY, Zou BQ, Liu YC. 3-(1H-benzoimidazol-2-yl)-chromen-2-ylideneamine platinum(II) and ruthenium(II) complexes exert their high in vitro antitumor activity by inducing S-phase arrest and disrupting mitochondrial functions in SK-OV-3/DDP tumor cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Mo X, Chen Z, Chu B, Liu D, Liang Y, Liang F. Structure and anticancer activities of four Cu(ii) complexes bearing tropolone. Metallomics 2019; 11:1952-1964. [DOI: 10.1039/c9mt00165d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The title Cu(ii) complexes of tropolone induce the apoptosis of MGC80-3 through a caspase-dependent mitochondrion pathway and can also induce autophagy.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
27
|
Qin QP, Wang SL, Tan MX, Liu YC, Meng T, Zou BQ, Liang H. Synthesis of two platinum(II) complexes with 2-methyl-8-quinolinol derivatives as ligands and study of their antitumor activities. Eur J Med Chem 2019; 161:334-342. [DOI: 10.1016/j.ejmech.2018.10.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/01/2018] [Accepted: 10/20/2018] [Indexed: 01/31/2023]
|
28
|
Qin QP, Wang ZF, Tan MX, Huang XL, Zou HH, Zou BQ, Shi BB, Zhang SH. Complexes of lanthanides(iii) with mixed 2,2′-bipyridyl and 5,7-dibromo-8-quinolinoline chelating ligands as a new class of promising anti-cancer agents. Metallomics 2019; 11:1005-1015. [DOI: 10.1039/c9mt00037b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MeOMBrQ-Ho induced HeLa cell apoptosis was mediated by inhibition of telomerase activity and dysfunction of mitochondria. Remarkably, MeOMBrQ-Ho obviously inhibited HeLa xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Xiao-Ling Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- Gulin 541001
- P. R. China
| | - Bei-Bei Shi
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| |
Collapse
|
29
|
Chi NTT, Thong PV, Mai TTC, Van Meervelt L. Mixed natural arylolefin-quinoline platinum(II) complexes: synthesis, structural characterization and in vitro cytotoxicity studies. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1732-1743. [PMID: 30516159 DOI: 10.1107/s2053229618015978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/11/2018] [Indexed: 11/10/2022]
Abstract
Five new platinum(II) complexes bearing a eugenol and a quinoline derivative, namely [η2-4-allyl-2-methoxy-1-(propoxycarbonylmethoxy)benzene]-trans-dichlorido(quinoline-κN)platinum(II), [PtCl2(C15H20O4)(C9H7N)], (2), {η2-4-allyl-2-methoxy-1-[(propan-2-yloxy)carbonylmethoxy]benzene}-trans-dichlorido(quinoline-κN)platinum(II), [PtCl2(C15H19O4)(C9H7N)], (3), [η2-4-allyl-2-methoxy-1-(propoxycarbonylmethoxy)benzene]chlorido(quinolin-8-olato-κ2N,O)platinum(II), [Pt(C9H6NO)Cl(C15H20O4)], (4), {η2-4-allyl-2-methoxy-1-[(propan-2-yloxy)carbonylmethoxy]benzene}chlorido(quinolin-8-olato-κ2N,O)platinum(II), [Pt(C9H6NO)Cl(C15H20O4)], (5), and [η2-4-allyl-2-methoxy-1-(propoxycarbonylmethoxy)benzene]chlorido(quinolin-2-carboxylato-κ2N,O)platinum(II), [Pt(C10H6NO2)Cl(C15H20O4)], (6), have been synthesized and fully characterized spectroscopically. A single-crystal X-ray diffraction study was carried out for complexes (2) and (4)-(6). PrEug [or 4-allyl-2-methoxy-1-(propoxycarbonylmethoxy)benzene] in (2), (4) and (6), and iPrEug (the propan-2-yloxy analogue of PrEug) in (3) and (5) coordinate with PtII at the ethylenic double bond of the allyl group. In (2)-(6), the donor N atom of the amine group occupies a trans position with respect to the double bond. A comparison of the IC50 values of 0.38-29.23 µM for (2)-(6) with cisplatin, as well as other platinum(II) complexes, indicates an excellent in vitro cytotoxicity against the KB, LU, Hep-G2 and MCF-7 cancer cell lines, with the highest cytotoxic effect (IC50 = 0.38-1.99 µM) being for complexes (4) and (5) bearing a quinolin-8-olate ligand.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Chi
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Pham Van Thong
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Truong Thi Cam Mai
- Department of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
30
|
Qin QP, Zou BQ, Hu FL, Huang GB, Wang SL, Gu YQ, Tan MX. Platinum(ii) complexes with rutaecarpine and tryptanthrin derivatives induce apoptosis by inhibiting telomerase activity and disrupting mitochondrial function. MEDCHEMCOMM 2018; 9:1639-1648. [PMID: 30429969 PMCID: PMC6195000 DOI: 10.1039/c8md00247a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Four new platinum(ii) complexes, [Pt(Rut)(DMSO)Cl2] (Rut-Pt), [Pt(Try)(DMSO)Cl2] (Try-Pt), [Pt(ITry)(DMSO)Cl2] (ITry-Pt) and [Pt(BrTry)(DMSO)Cl2] (BrTry-Pt), with rutaecarpine (Rut), tryptanthrin (Try), 8-iodine-tryptanthrin (ITry) and 8-bromo-tryptanthrin (BrTry) as ligands were synthesized and fully characterized. In these complexes, the platinum(ii) adopts a four-coordinated square planar geometry. The inhibitory activity evaluated by the MTT assay showed that BrTry-Pt (IC50 = of 0.21 ± 0.25 μM) could inhibit the growth of T-24 tumor cells (human bladder cancer cell line) more so than the other three complexes. In addition, all of these Pt complexes exhibited low toxicity against non-cancerous HL-7702 cells. BrTry-Pt induced cell cycle arrest in the S phase, leading to the down-regulation of cyclin A and CDK2 proteins. BrTry-Pt acts as a telomerase inhibitor targeting the c-myc promoter. In addition, BrTry-Pt also caused mitochondrial dysfunction. Importantly, the in vitro anticancer activity of BrTry-Pt was higher than those of Rut-Pt, Try-Pt and ITry-Pt, and it was more selective for T-24 cells than for non-cancerous HL-7702 cells.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , 530006 , P. R. China
| | - Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yun-Qiong Gu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| |
Collapse
|
31
|
Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur J Med Chem 2018; 158:106-122. [PMID: 30205260 DOI: 10.1016/j.ejmech.2018.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
In this work, we designed and synthesized tacrine platinum(II) complexes [PtClL(DMSO)]⋅CH3OH (Pt1), [PtClL(DMP)] (Pt2), [PtClL(DPPTH)] (Pt3), [PtClL(PTH)] (Pt4), [PtClL(PIPTH)] (Pt5), [PtClL(PM)] (Pt6) and [PtClL(en)] (Pt7) with 4,4'-dimethyl-2,2'-bipyridine (DMP), 4,7-diphenyl-1,10-phenanthroline (DPPTH), 1,10-phenanthroline (PTH), 2-(1-pyrenecarboxaldehyde) imidazo [4,5-f]-[1,10] phenanthroline (PIPTH), 2-picolylamine (PM) and 1,2-ethylenediamine (en) as telomerase inhibitors and p53 activators. Biological evaluations demonstrated that Pt1Pt7 exhibited cytotoxic activity against the tested NCIH460, Hep-G2, SK-OV-3, SK-OV-3/DDP and MGC80-3 cancer cell lines, with Pt5 displaying the highest cytotoxicity. Pt5 exhibited an IC50 value of 0.13 ± 0.16 μM against SK-OV-3/DDP cancer cells and significantly reduced tumor growth in a Hep-G2 xenograft mouse model (tumor growth inhibition (TGI) = 40.8%, p < 0.05) at a dose of 15.0 mg/kg. Interestingly, Pt1Pt7 displayed low cytotoxicity against normal HL-7702 cells. Mechanistic studies revealed that these compounds caused cell cycle arrest at the G2/M and S phases, and regulated the expression of CDK2, cyclin A, p21, p53 and p27. Further mechanistic studies showed that Pt5 induced SK-OV3/DDP cell apoptosis via dysfunction of mitochondria, inhibition of the telomerase activity by directly targeting the c-myc promoter, and activation of the p53 signaling pathway. Taken together, Pt5 has the potential to be further developed as a new antitumor drug.
Collapse
|
32
|
Havrylyuk D, Howerton BS, Nease L, Parkin S, Heidary DK, Glazer EC. Structure-activity relationships of anticancer ruthenium(II) complexes with substituted hydroxyquinolines. Eur J Med Chem 2018; 156:790-799. [DOI: 10.1016/j.ejmech.2018.04.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
|
33
|
Qin QP, Meng T, Tan MX, Liu YC, Wang SL, Zou BQ, Liang H. Synthesis, characterization and biological evaluation of six highly cytotoxic ruthenium(ii) complexes with 4'-substituted-2,2':6',2''-terpyridine. MEDCHEMCOMM 2018; 9:525-533. [PMID: 30108943 PMCID: PMC6072480 DOI: 10.1039/c7md00532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Herein, six ruthenium(ii) terpyridine complexes, i.e. [RuCl2(4-EtN-Phtpy)(DMSO)] (Ru1), [RuCl2(4-MeO-Phtpy)(DMSO)] (Ru2), [RuCl2(2-MeO-Phtpy)(DMSO)] (Ru3), [RuCl2(3-MeO-Phtpy)(DMSO)] (Ru4), [RuCl2(1-Bip-Phtpy)(DMSO)] (Ru5), and [RuCl2(1-Pyr-Phtpy)(DMSO)] (Ru6) with 4'-(4-diethylaminophenyl)-2,2':6',2''-terpyridine (4-EtN-Phtpy), 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (4-MeO-Phtpy), 4'-(2-methoxyphenyl)-2,2':6',2''-terpyridine (2-MeO-Phtpy), 4'-(3-methoxyphenyl)-2,2':6',2''-terpyridine (3-MeO-Phtpy), 4'-(1-biphenylene)-2,2':6',2''-terpyridine (1-Bip-Phtpy), and 4'-(1-pyrene)-2,2':6',2''-terpyridine (1-Pyr-Phtpy), respectively, were synthesized and fully characterized. The MTT assay demonstrates that the in vitro anticancer activity of Ru1 is higher than that of Ru2-Ru6 and more selective for Hep-G2 cells than for normal HL-7702 cells. In addition, various biological assays show that Ru1 and Ru6, especially the Ru1 complex, are telomerase inhibitors targeting c-myc G4 DNA and also cause apoptosis of Hep-G2 cells. With the same Ru center, the in vitro antitumor activity and cellular uptake ability of the 4-EtN-Phtpy and 1-Bip-Phtpy ligands follow the order 4-EtN-Phtpy > 1-Bip-Phtpy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ting Meng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Shu-Long Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China .
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| |
Collapse
|
34
|
Lunagariya MV, Thakor KP, Varma RR, Waghela BN, Pathak C, Patel MN. Synthesis, characterization and biological application of 5-quinoline 1,3,5-trisubstituted pyrazole based platinum(ii) complexes. MEDCHEMCOMM 2018; 9:282-298. [PMID: 30108922 PMCID: PMC6083784 DOI: 10.1039/c7md00472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023]
Abstract
Square planar mononuclear platinum(ii) complexes were synthesized in the presence of neutral bidentate heterocyclic (5-quinoline 1,3,5-tri-substituted pyrazole scaffold) ligands and K2PtCl4 salt. The synthesized compounds were characterized by micro-elemental analysis, FT-IR, UV-vis, 1H NMR, 13C NMR, TGA, mass spectrometry and molar conductivity. Their biological activities were investigated by in vitro brine shrimp lethality bioassay, in vitro antimicrobial study against five different pathogens, in vivo cellular level cytotoxicity against Schizosaccharomyces pombe cells, and in vitro anti-proliferation assay. The binding constant Ksv, Kb, Ka values of the complexes were determined by DNA interaction studies. The gel electrophoresis assay was carried out to examine the effect of the complexes on the DNA nuclease of pUC19 plasmid DNA. The docking energies of the ligands (L1-L5 ) and complexes (I-V) were observed in the range of -265.14 to -284.33 kJ mol-1. The synthesized Pt(ii) complexes (I-V) were screened against the MCF-7 (human breast adenocarcinoma) and HCT-116 (human colon carcinoma) cancer cell lines.
Collapse
Affiliation(s)
- Miral V Lunagariya
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar-388 120 , Gujarat , India . ; Tel: (+912692) 226856 218
| | - Khyati P Thakor
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar-388 120 , Gujarat , India . ; Tel: (+912692) 226856 218
| | - Reena R Varma
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar-388 120 , Gujarat , India . ; Tel: (+912692) 226856 218
| | - Bhargav N Waghela
- Department of Cell Biology , School of Biological Sciences and Biotechnology , Indian Institute of Advanced Research , Koba Institutional Area , Gandhinagar-382007 , Gujarat , India . Tel: +91 79 30514245
| | - Chandramani Pathak
- Department of Cell Biology , School of Biological Sciences and Biotechnology , Indian Institute of Advanced Research , Koba Institutional Area , Gandhinagar-382007 , Gujarat , India . Tel: +91 79 30514245
| | - Mohan N Patel
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar-388 120 , Gujarat , India . ; Tel: (+912692) 226856 218
| |
Collapse
|
35
|
Wei ZZ, Qin QP, Meng T, Deng CX, Liang H, Chen ZF. 5-Bromo-oxoisoaporphine platinum(II) complexes exhibit tumor cell cytotoxcicity via inhibition of telomerase activity and disruption of c-myc G-quadruplex DNA and mitochondrial functions. Eur J Med Chem 2018; 145:360-369. [DOI: 10.1016/j.ejmech.2017.12.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
|
36
|
Qin QP, Wang SL, Tan MX, Wang ZF, Huang XL, Wei QM, Shi BB, Zou BQ, Liang H. Synthesis and antitumor mechanisms of two novel platinum(ii) complexes with 3-(2′-benzimidazolyl)-7-methoxycoumarin. Metallomics 2018; 10:1160-1169. [DOI: 10.1039/c8mt00125a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pt2 is a novel telomerase inhibitor binding to c-myc promoter elements, which arrests the cell cycle at the G2/M phase and induces apoptosis and causes mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Xiao-Ling Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qing-Min Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bei-Bei Shi
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
37
|
Živković MD, Kljun J, Ilic-Tomic T, Pavic A, Veselinović A, Manojlović DD, Nikodinovic-Runic J, Turel I. A new class of platinum(ii) complexes with the phosphine ligand pta which show potent anticancer activity. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00299h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of 16 Pt(ii) complexes with 8-hydroxyquinolines and sulfoxide/phosphine ligands were synthetized, characterized and evaluated for cytotoxic and embryotoxic activity.
Collapse
Affiliation(s)
- M. D. Živković
- University of Kragujevac
- Faculty of Medical Sciences
- Department of Pharmacy Svetozara Markovića 69
- 34000 Kragujevac
- Serbia
| | - J. Kljun
- University of Ljubljana
- Department of Chemistry and Biochemistry
- Faculty of Chemistry and Chemical Technology
- SI-1000 Ljubljana
- Slovenia
| | - T. Ilic-Tomic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - A. Pavic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - A. Veselinović
- University of Niš
- Department of Chemistry Faculty of Medicine
- 18000 Niš
- Serbia
| | - D. D. Manojlović
- University of Belgrade
- Department of Analytical Chemistry
- Faculty of Chemistry
- 11000 Belgrade
- Serbia
| | - J. Nikodinovic-Runic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - I. Turel
- University of Ljubljana
- Department of Chemistry and Biochemistry
- Faculty of Chemistry and Chemical Technology
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
38
|
Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 2018; 144:144-152. [DOI: 10.1016/j.biochi.2017.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023]
|
39
|
Zou BQ, Qin QP, Bai YX, Cao QQ, Zhang Y, Liu YC, Chen ZF, Liang H. Synthesis and antitumor mechanism of a new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol as ligands. MEDCHEMCOMM 2017; 8:633-639. [PMID: 30108780 PMCID: PMC6072324 DOI: 10.1039/c6md00644b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
Abstract
A new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol (HClMQ) as ligands, i.e., [Fe(ClMQ)2Cl] (1), was synthesized and evaluated for its anticancer activity. Compared to the HClMQ ligand, complex 1 showed a higher cytotoxicity towards a series of tumor cell lines, including Hep-G2, BEL-7404, NCI-H460, A549, and T-24, with IC50 values in the range of 5.04-14.35 μM. Notably, the Hep-G2 cell line was the most sensitive to complex 1. Mechanistic studies indicated that complex 1 is a telomerase inhibitor targeting c-myc G-quadruplex DNA and can trigger cell apoptosis via inducing cell cycle arrest and DNA damage.
Collapse
Affiliation(s)
- Bi-Qun Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Yu-Xia Bai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Ye Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
- College of Pharmacy , Guilin Medical University , North Ring 2rd Road 109 , Guilin 541004 , P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| |
Collapse
|
40
|
Oxoisoaporphine as Potent Telomerase Inhibitor. Molecules 2016; 21:molecules21111534. [PMID: 27854257 PMCID: PMC6274343 DOI: 10.3390/molecules21111534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 11/17/2022] Open
Abstract
Two compounds previously isolated from traditional Chinese medicine, Menispermum dauricum (DC), 6-hydroxyl-oxoisoaporphine (H-La), and 4,6-di(2-pyridinyl)benzo[h]isoindolo[4,5,6-de]quinolin-8(5H)-one (H-Lb), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.43 and -9.76 kcal/mol for H-La and H-Lb, respectively. Compared with H-La, the ligand H-Lb more strongly inhibited telomerase activity in the SK-OV-3 cells model.
Collapse
|