1
|
Golabiazar R, Yusif SY, Qadir CN, Abduljabar RS, Othman KI, Omar FB. Photocatalytic evaluation of synthesized MnO 2/Fe 3O 4 NCs by Q. infectoria extract for removal Ni(II) and phenol: Study phytochemical, kinetics, thermodynamics, and antibioactivity. Int J Biol Macromol 2023; 253:127400. [PMID: 37848108 DOI: 10.1016/j.ijbiomac.2023.127400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In the present study, the plant extract of the Quercus infectoria galls was used as a reducing, capping, and stabilizer agent for green synthesized MnO2 nanoparticles (NPs) and MnO2/Fe3O4 nanocomposites (NCs) due to its reduction ability from polyphenol and antioxidant content. The green synthesized nanomaterials have been characterized by various techniques such as FTIR, UV-vis, XRD, SEM, EDS, and TEM. The average size of about 7.4 and 6.88 nm was estimated for the NCs crystals of SEM images and XRD analysis by the Scherrer and Williamson-Hall methods. The green synthesized MnO2/Fe3O4 NCs (dosage: 0.1 g) have shown high photocatalytic activity for the removal of Ni(II) in acidic and basic solutions under visible irradiation (220 V lamp). The removal efficiency for the Ni(II) solution (3.6 × 10-3 M) at pH = 3 was increased to pH = 12 from 56 % to 98 %. The oxidase-like activity of MnO2/Fe3O4 NCs at different dosages (0.05, 0.1, and 0.15 g) for the removal and colorimetric of phenol (1 g/40 mL) in the presence 4-AAp (1 g) was seen after only 28, 13, and 5 s, respectively. The kinetic evaluation results showed the pseudo-second-order kinetics model closely matched the adsorption capacity theoretical values qe,cal (578.03, 854.70, 892.85, and 917.43 mg.g-1) and experimental values qe,exp (521.84, 839.74, 887.86, and 913.22 mg.g-1) at different initial pH solution (3-12) for Ni(II) removal. In addition, the investigation of isotherm models revealed that the Langmuir model (R2 = 0.9955) explains a better estimate for a monolayer and favorable removal of Ni(II) ions onto NCs. Also, the low Temkin constant, BT < 0 (0.0200 kJ.mol-1), and positive ∆H° value (0.103 kJ.mol-1.K-1) illustrated that Ni(II) removal is physical sorption and endothermic process. However, the obtained thermodynamic results showed the negative values ΔG° with the increase in temperature (303-318 K) toward a spontaneous removal process of Ni(II). Finally, the plant antioxidant (200 to 3200 μg/mL) and antimicrobial activities (0.001 to 0.1 g/mL) for plant extract, MnO2 NPs, and MnO2/Fe3O4 NCs were evaluated against Gram-positive and Gram-negative bacteria species.
Collapse
Affiliation(s)
- Roonak Golabiazar
- Department of Chemistry, Faculty of Science, Soran University, Kurdistan Regional Government, Soran, Iraq.
| | - Safia Yasin Yusif
- Department of Chemistry, Faculty of Science, Soran University, Kurdistan Regional Government, Soran, Iraq
| | - Chnin Najat Qadir
- Department of Chemistry, Faculty of Science, Soran University, Kurdistan Regional Government, Soran, Iraq
| | - Rihan S Abduljabar
- Department of Phytochemistry, SRC, Soran University, Kurdistan Regional Government, Soran, Iraq; Department of Pharmacy, Rawandz Private Technical Institute, Kurdistan Regional Government, Soran, Iraq
| | - Karwan Ismael Othman
- Department of Biology, Faculty of Science, Soran University, Kurdistan Regional Government, Soran, Iraq
| | - Faeza Burhan Omar
- Department of Biology, Faculty of Science, Soran University, Kurdistan Regional Government, Soran, Iraq
| |
Collapse
|
2
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Roy S, Darabdhara J, Ahmaruzzaman M. ZnO-based Cu metal-organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95673-95691. [PMID: 37556061 DOI: 10.1007/s11356-023-29105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Although metal-organic frameworks (MOFs) are a viable choice for photocatalysts with large surface area and tunable pore structure, the rapid recombination of excited photogenerated charges results in low activity towards photodegradation. Aiming at improving the photocatalytic activities of MOFs, different strategies to incorporate MOF with light-harvesting semiconductors have been developed. In this research, we report an effective photocatalyst designed by incorporating Cu-MOF with ZnO for the photocatalytic degradation of Rose Bengal exhibiting excellent degradation efficiency of 97.4% in 45 min under natural sunlight with catalyst dosage of 320 mg/L. The optical, morphology and surface characteristics of the prepared nanocomposite were studied using scanning electron microscopy (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric (TGA) analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet diffused reflectance spectroscopy (UV-DRS) techniques. Further studies showed that the degradation followed first-order kinetics with a rate constant of 0.077869 min-1. The degradation mechanism was investigated by photoluminescence (PL) study, XPS, zeta potential and quenching experiment in presence of different scavengers. Meanwhile, the fabricated composite displayed good recovery and reuse properties up to 5 cycles as revealed by XRD analysis proving itself a potential MOF-based photocatalyst towards environmental remediation process.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Mohammed Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Delarmelina M, Dlamini MW, Pattisson S, Davies PR, Hutchings GJ, Catlow CRA. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Phys Chem Chem Phys 2023; 25:4161-4176. [PMID: 36655703 DOI: 10.1039/d2cp03140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigate the effect of chlorides on the photocatalytic degradation of phenol by titania polymorphs (anatase and rutile). We demonstrate how solubilised chlorides can affect the hydroxyl radical formation on both polymorphs with an overall effect on their photodegradative activity. Initially, the photocatalytic activity of anatase and rutile for phenol degradation is investigated in both standard water and brines. With anatase, a significant reduction of the phenol conversion rate is observed (from a pseudo-first-order rate constant k = 5.3 × 10-3 min-1 to k = 3.5 × 10-3 min-1). In contrast, the presence of solubilised chlorides results in enhancement of rutile activity under the same reaction conditions (from 2.3 × 10-3 min-1 to 4.8 × 10-3 min-1). Periodic DFT methods are extensively employed and we show that after the generation of charge separation in the modelled titania systems, adsorbed chlorides are the preferential site for partial hole localisation, although small energy differences are computed between partially localised hole densities over adsorbed chloride or hydroxyl. Moreover, chlorides can reduce or inhibit the ability of r-TiO2 (110) and a-TiO2 (101) systems to localise polarons in the slab structure. These results indicate that both mechanisms - hole scavenging and the inhibition of hole localisation - can be the origin of the effect of chlorides on photocatalytic activity of both titania polymorphs. These results provide fundamental insight into the photocatalytic properties of titania polymorphs and elucidate the effect of adsorbed anions over radical formation and oxidative decomposition of organic pollutants.
Collapse
Affiliation(s)
- Maicon Delarmelina
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK
| | - Mbongiseni W Dlamini
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Samuel Pattisson
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Philip R Davies
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - C Richard A Catlow
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, UK
| |
Collapse
|
5
|
Singh KB, Gautam N, Updhyay DD, Pandey G. Sonication-assisted synthesis of Ag@AgCl and Ag@AgCl-GO and their photocatalytic performances. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3593. [PMID: 36296782 PMCID: PMC9612339 DOI: 10.3390/nano12203593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis. Nanoscale catalytic materials are known to surpass their conventional macro-sized counterparts in performance and precision, owing it to their ultra-high surface activities and unique size-dependent quantum properties. In water treatment, nanocatalysts can offer significant promise for novel and ecofriendly pollutant degradation technologies that can be tailored for customer-specific needs. In particular, nano-palladium catalysts have shown promise in degrading larger molecules, making them attractive for mitigating emerging contaminants. However, the applicability of nanomaterials, including nanocatalysts, in practical deployable and ecofriendly devices, is severely limited due to their easy proliferation into the service environment, which raises concerns of toxicity, material retrieval, reusability, and related cost and safety issues. To overcome this limitation, matrix-supported hybrid nanostructures, where nanocatalysts are integrated with other solids for stability and durability, can be employed. The interaction between the support and nanocatalysts becomes important in these materials and needs to be well investigated to better understand their physical, chemical, and catalytic behavior. This review paper presents an overview of recent studies on matrix-supported Pd-nanocatalysts and highlights some of the novel emerging concepts. The focus is on suitable approaches to integrate nanocatalysts in water treatment applications to mitigate emerging contaminants including halogenated molecules. The state-of-the-art supports for palladium nanocatalysts that can be deployed in water treatment systems are reviewed. In addition, research opportunities are emphasized to design robust, reusable, and ecofriendly nanocatalyst architecture.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
| | | | - Sharmila M. Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
- Department of Mechanical Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
7
|
Shaheen S, Khan RRM, Ahmad A, Luque R, Pervaiz M, Saeed Z, Adnan A. Investigation on the role of graphene-based composites for in photocatalytic degradation of phenol-based compounds in wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73718-73740. [PMID: 36087178 DOI: 10.1007/s11356-022-21975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The ineptitude of conventional water management systems to eradicate noxious compounds leads to the development of advanced treatment systems. The disclosure of graphene-based photocatalytic degradation for the eradication of phenolic compounds has become the "apple of the eye" for many researchers. This review article describes the advanced research progress during the period of 2008-2021 in graphene-based nanocomposites and discusses their different synthesis methods. We will also talk about the applications of nanocomposite in water splitting, dye degradation, solar fuel generations, and organic transformations. Multicomponent heterojunction structure, co-catalyst cohering, and noble metal coupling have been inspected to enhance the photocatalytic performance of graphene-based composite by increasing charge separation and stability. The photocatalytic system's remarkable stability has been described in terms of facile recyclability. The adsorption ability of phenolic compounds has been addressed in the form of Langmuir and Freundlich adsorption isotherm with various factors (pH, concentration, the intensity of light, the effect of catalyst, the effect of time, etc.). The purpose of this review is to survey mechanisms and processes that enlist graphene-based composite in terms of efficacy and dose of catalyst required to attain 99% degradation. Nanoparticles may cause toxicity and a pretext for their toxicity has been mentioned. Finally, it is anticipated that this article could allocate consequential knowledge to fabricating graphene-based composites that are in crucial demand of being discussed in future research.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | | | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), Moscow, 6 Miklukho Maklaya str., 117198, Russian Federation
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore, Pakistan
| |
Collapse
|
8
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
9
|
Shi M, Zhang K, Zhuang Q, Zhang C, Lin X, Xie A, Dong W. Sulfonated tetraphenylethylene polymers with negative charges for high-capacity removal of organic dyes from waste water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Khavar AHC, Mahjoub AR, Khazaee Z. MoCu Bimetallic Nanoalloy-Modified Copper Molybdenum Oxide with Strong SPR Properties; a 2D-0D System for Enhanced Degradation of Antibiotics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bhunia SK, UshaVipinachandran V, Rajendran S. Degradation of emergent pollutants using visible light-triggered photocatalysts. NANOSTRUCTURED MATERIALS FOR VISIBLE LIGHT PHOTOCATALYSIS 2022:433-465. [DOI: 10.1016/b978-0-12-823018-3.00004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
12
|
Zhang D, Li X, Xie X, Zheng W, Li A, Liu Y, Liu X, Zhang R, Deng C, Cheng J, Yang H, Gong M. Exploring the Biological Effect of Biosynthesized Au-Pd Core-Shell Nanoparticles through an Untargeted Metabolomics Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59633-59648. [PMID: 34881570 DOI: 10.1021/acsami.1c14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biosynthesis of Au-Pd core-shell nanoparticles (NPs) with wild-type Escherichia coli (Au-Pd/E. coli) is an excellent newly established, environmentally friendly synthetic method for the fabrication of nanomaterials compared to traditional chemosynthesis. However, there is insufficient detailed bioinformation on the compatibility, metabolic process, and mechanism of this approach. Metabolomics approaches have provided an excellent alternative to numerous bioinformatics approaches for shedding light on the biological response of an organism exposed to external stimuli at the molecular level. In this study, two different doses (8 and 80 μg/mL) of Au-Pd/E. coli were applied to treat human umbilical vein endothelial cells (HUVECs). Gas chromatography/mass spectrometry coupled with bioinformatics was used to analyze the changes in the HUVEC metabolome after treatment. The results indicated the occurrence of nonsignificant acute cytotoxicity based on cell proliferation and apoptosis analysis, while high concentrations (80 μg/mL) of Au-Pd/E. coli induced dramatic changes in energy metabolism, revealing a notable inhibition of the tricarboxylic acid (TCA) cycle along with the enhancement of glycolysis, the pentose phosphate pathway, fatty acid biosynthesis, and lipid accumulation, which was correlated with mitochondrial dysfunction. The metabolomics results obtained for this novel Au-Pd/E. coli-cell system could broaden our knowledge of the biological effect of Au-Pd/E. coli and possibly reveal material modifications and technological innovations.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Rui Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
13
|
Pandiyaraj V, Murmu A, Pandy SK, Sevanan M, Arjunan S. Metal nanoparticles and its application on phenolic and heavy metal pollutants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The perpetual exposure of several manmade materials and their activities such as urbanization, industrialization, transportation, mining, construction, petroleum refining, manufacturing, preservatives, disinfectants etc., release various pollutants like organic, inorganic, and heavy metals which pollute the air, water, and soil. This poses various environmental issues which are relevant to the ecosystem and human wellbeing that intensify the implementation of new expedient treatment technologies. Likewise, phenolic and heavy metal pollutants find their way into the environment. These phenolic and heavy metals are toxic to the liver, heart and carcinogenic. Therefore, the removal of these kinds of pollutants from the environment is a highly challenging issue. As conventional treatment technologies have consequent drawbacks, new interests have been developed to remediate and remove pollutants from the ecosystem using metal nanoparticles (MPNs). To date, many researchers all over the world have been investigating novel approaches to enhance various remediation application technologies. One such approach that the researchers are constantly showing interest in is the use of nanomaterials with potential applications towards the environment. In this regard, MPNs like Copper (Cu), Nickel (Ni), Palladium (Pd), Gold (Au), Silver (Ag), Platinum (Pt), Titanium (Ti), and other nano metals are serving as a suitable agent to eliminate emerging contaminants in various fields, particularly in the removal of phenolic and heavy metal pollutants. This chapter discusses the mechanism and application of various MPNs in eliminating various phenolic and heavy metal pollutants from the environment.
Collapse
Affiliation(s)
- Vaanmathy Pandiyaraj
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Ankita Murmu
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Saravana Kumari Pandy
- Department of Microbiology , Rathnavel Subramaniam College of Arts and Science , Coimbatore , India
| | - Murugan Sevanan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Shanamitha Arjunan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| |
Collapse
|
14
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
15
|
Kalita GD, Sarmah PP, Kalita G, Das P. Bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell). NANOSCALE ADVANCES 2021; 3:5399-5416. [PMID: 36132629 PMCID: PMC9417894 DOI: 10.1039/d1na00489a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/08/2021] [Indexed: 05/05/2023]
Abstract
A facile ligand-assisted approach of synthesizing bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure is presented. Maneuvering the addition sequence of metal salts, both Aucore-Pdshell (Au@Pd-SiO2) and Pdcore-Aushell (Pd@Au-SiO2) nanoparticles were synthesized. The structures and compositions of the core-shell materials were confirmed by probe-corrected HRTEM, TEM-EDX mapping, EDS line scanning, XPS, PXRD, BET, FE-SEM-EDX and ICP analysis. The synergistic potentials of the core-shell materials were evaluated for two important reactions viz. hydrogenation of nitroarenes to anilines and hydration of nitriles to amides. In fact, in both the reactions, the Au-Pd materials exhibited superior performance over monometallic Au or Pd counterparts. Notably, among the two bimetallic materials, the one with Pdcore-Aushell structure displayed superior activity over the Aucore-Pdshell structure which could be attributed to the higher stability and uniform Au-Pd bimetallic interfaces in the former compared to the latter. Apart from enhanced synergism, high chemoselectivity in hydrogenation, wide functional group tolerance, high recyclability, etc. are other advantages of our system. A kinetic study has also been performed for the nitrile hydration reaction which demonstrates first order kinetics. Evaluation of rate constants along with a brief investigation on the Hammett parameters has also been presented.
Collapse
Affiliation(s)
| | - Podma P Sarmah
- Department of Chemistry, Dibrugarh University Dibrugarh Assam 786004 India
| | - Golap Kalita
- Department of Physical Science and Engineering, Nagoya Institute of Technology (NiTech) Nagoya Aichi Japan-466-8555
| | - Pankaj Das
- Department of Chemistry, Dibrugarh University Dibrugarh Assam 786004 India
| |
Collapse
|
16
|
Sahoo L, Mondal S, Nayana CB, Gautam UK. Facile d-band tailoring in Sub-10 nm Pd cubes by in-situ grafting on nitrogen-doped graphene for highly efficient organic transformations. J Colloid Interface Sci 2021; 590:175-185. [PMID: 33548601 DOI: 10.1016/j.jcis.2020.12.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
We demonstrate for the first time the in-situ synthesis of Pd nanocubes (PdNC) on nitrogen-doped reduced graphene oxide (NRGO) for facile organic transformations wherein the cubic morphology of Pd can only be realized by precision-controlled acid additions in the tune of 0.02 pH variations in the reaction medium. Due to the intimate contact arising from atom-by-atom addition of Pd on NRGO, the composite has exhibited a pronounced catalyst to support charge transfer effect, shift in the d-band center, and lowering of charge-transfer resistance when compared with PdNC-NRGO ex-situ composites prepared by mixing of the preformed components of PdNC and NRGO or PdNCs alone. The activities of these catalysts were tested for the Suzuki coupling and nitroarene reduction reactions using water as an industry-friendly solvent. In both, the in-situ deposited sample exhibited substantially higher catalytic activity as well as stability when compared with an ex-situ sample or pure PdNCs. We show that a very high turnover frequency of ~31300 h-1 and ~900 h-1 are achievable by using the in-situ deposited PdNC-NRGO composite for Suzuki coupling reactions and nitroarene reduction respectively, better than the state-of-the-art catalysts developed recently, in addition to high recyclability.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - C B Nayana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
17
|
Zhao R, Li Y, Ji J, Wang Q, Li G, Wu T, Zhang B. Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
de O Pereira ML, de Souza Paiva R, Vasconcelos TL, Oliveira AG, Oliveira Salles M, Toma HE, Grasseschi D. Photoinduced electron transfer dynamics of AuNPs and Au@PdNPs supported on graphene oxide probed by dark-field hyperspectral microscopy. Dalton Trans 2020; 49:16296-16304. [PMID: 32412563 DOI: 10.1039/d0dt01018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The time scale for interfacial photoinduced electron transfer (PeT) in plasmonic nanoparticles is not well established and the details are still under debate. This has renewed the interest in studying the electron transfer effect from both experimental and theoretical points of view. We present a quantitative analysis of PeT in single spherical gold (Au) and gold@palladium core@shell (Au@Pd) nanoparticles supported on reduced graphene oxide (RGO) using dark-field hyperspectral microscopy (DFHM) and electrochemical impedance spectroscopy (EIS). By studying the plasmon bandwidth in the scattering spectra of single particles and by correlating it to the plasmon damping processes we showed that PeT occurs from the AuNPs to RGO in a 10 fs time scale with a quantum efficiency of 35%. The introduction of a Pd shell on the AuNPs decreases the PeT time, with transfer occurring in as little as 1.7 fs with quantum yield higher than 74%. Furthermore, EIS showed a smaller resistance for PeT on RGO/Au@PdNPs under green light illumination. Our results can improve the understanding of the chemical interface damping process due to PeT in plasmonic nanomaterials and can enable the design of more efficient plasmon enhanced photocatalysts.
Collapse
Affiliation(s)
- Maria Luiza de O Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brasil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Grasseschi D, Silva WC, Souza Paiva RD, Starke LD, do Nascimento AS. Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Khan M, Shaik MR, Adil SF, Kuniyil M, Ashraf M, Frerichs H, Sarif MA, Siddiqui MRH, Al-Warthan A, Labis JP, Islam MS, Tremel W, Tahir MN. Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci Rep 2020; 10:11728. [PMID: 32678111 PMCID: PMC7366662 DOI: 10.1038/s41598-020-68124-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd (HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal planes of HRG through π-π interactions, leaving amino groups outwards (similar like self-assembled monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and dispersibility. The surface functionalization was confirmed using, ultraviolet-visible (UV-Vis), Fourier transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG and crystallinity were confirmed using high-resolution transmission electron microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-Py-Pd nanocomposite was monitored using gas chromatography (GC).
Collapse
Affiliation(s)
- Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 5048, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Hajo Frerichs
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Massih Ahmad Sarif
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 5048, Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Mansingh S, Das KK, Behera A, Subudhi S, Sultana S, Parida K. Bandgap engineering via boron and sulphur doped carbon modified anatase TiO 2: a visible light stimulated photocatalyst for photo-fixation of N 2 and TCH degradation. NANOSCALE ADVANCES 2020; 2:2004-2017. [PMID: 36132535 PMCID: PMC9419573 DOI: 10.1039/d0na00183j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 06/12/2023]
Abstract
The present research reports the synthesis of two-dimensional (2D) sheet/flake-like nanostructures of crystalline carbon modified TiO2 (CT), B-TiO2 (B-CT), and S-TiO2 (S-CT) using a facile one-pot synthesis method. The crystallinity and phase purity (anatase) of the prepared nano-photocatalyst were characterised using X-ray diffraction, selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) analysis. Furthermore, the morphological details and elemental content of the sample were studied via scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. Additionally, the optoelectronic features of all of the prepared specimens were measured via UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), impedance and Mott-Schottky studies. After successful characterisation, their photocatalytic performance was tested towards dinitrogen photo-fixation and tetracycline hydrochloride (TCH) degradation under visible light illumination. Moreover, the effective charge separation and greater availability of the active surface area led to the robust photocatalytic activity of the fabricated B-CT compared to the CT and S-CT samples, which correlates well with the PL, impedance and surface area analysis. B-CT displays the highest photocatalytic activity, i.e. 32.38 μmol L-1 (conversion efficiency = 0.076%) of ammonia production, and 95% tetracycline hydrochloride (10 ppm) degradation. Here, we have effectively designed a novel and productive pathway towards the enhancement of the photocatalytic performance of visible photon active TiO2-based materials for energy and environmental sustainability.
Collapse
Affiliation(s)
- Sriram Mansingh
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Kundan Kumar Das
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Arjun Behera
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Satyabrata Subudhi
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Sabiha Sultana
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751 030 Odisha India +91-674-2581637 +91-674-2379425
| |
Collapse
|
22
|
Mansingh S, Kandi D, Das KK, Parida K. A Mechanistic Approach on Oxygen Vacancy-Engineered CeO 2 Nanosheets Concocts over an Oyster Shell Manifesting Robust Photocatalytic Activity toward Water Oxidation. ACS OMEGA 2020; 5:9789-9805. [PMID: 32391466 PMCID: PMC7203704 DOI: 10.1021/acsomega.9b04420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
Lethargic kinetics is the foremost bottleneck of the photocatalytic water oxidation reaction. Hence, in this respect, the CeO2 coral reef made up of nanosheets is studied focusing on the oxygen vacancy that affects the water oxidation reaction. First, CeO2 was prepared in an oyster shell/crucible with the presence/absence of urea by a simple calcination technique to tune the oxygen vacancy. More oxygen vacancy was detected in CeO2 prepared from urea and oyster shell, which is evidenced from Raman and PL analyses. Further, the oyster shell-treated sample was found to be of nanosheet type with numerous pores as observed via TEM analysis. The theoretical approach was adopted to expose the role of oxygen vacancies and the fate of scavenging agents in the water oxidation mechanism. It was observed that an oxygen vacancy plays a vital role in minimizing the activation energy hump and opposes the reverse reaction. The apparent conversion efficiency of 7.1% is calculated for the oxygen evolution reaction. Oxygen vacancy, quantum confinement effect, and charge separation efficiency are mainly responsible for the better photocatalyzed water oxidation reaction and hydroxyl radical production. This investigation will help in providing valuable information toward designing cost-effective oxygen vacancy-oriented nanosheet systems and the importance of vacancy in the water-splitting reaction.
Collapse
|
23
|
Kokkinos P, Mantzavinos D, Venieri D. Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules 2020; 25:molecules25092016. [PMID: 32357416 PMCID: PMC7248945 DOI: 10.3390/molecules25092016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal–organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.
Collapse
Affiliation(s)
- Petros Kokkinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
- Correspondence: ; Tel.: +30-6972025932
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| |
Collapse
|
24
|
Mansingh S, Sultana S, Acharya R, Ghosh MK, Parida KM. Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr(VI) Detoxification. Inorg Chem 2020; 59:3856-3873. [DOI: 10.1021/acs.inorgchem.9b03526] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sriram Mansingh
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Sabiha Sultana
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Rashmi Acharya
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - M. K. Ghosh
- Advanced Materials Technology Department and Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India
| | - K. M. Parida
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| |
Collapse
|
25
|
Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107806] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Metallic WSe2: Sn nanosheets assembled on graphene by a modified hydrothermal process for hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-C3N4 for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium. J Colloid Interface Sci 2020; 560:519-535. [DOI: 10.1016/j.jcis.2019.09.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
|
28
|
Mahnaz F, Mostafa-Al-Momin M, Rubel M, Ferdous M, Azam MS. Mussel-inspired immobilization of Au on bare and graphene-wrapped Ni nanoparticles toward highly efficient and easily recyclable catalysts. RSC Adv 2019; 9:30358-30369. [PMID: 35530224 PMCID: PMC9072119 DOI: 10.1039/c9ra05736f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
Bimetallic nanocatalysts have been gaining huge research attention in the heterogeneous catalysis community recently owing to their tunable properties and multifunctional characteristics. In this work, we fabricated a bimetallic core-shell nanocomposite catalyst by employing a mussel-inspired strategy for immobilizing gold nanoparticles (AuNP) on the surface of nickel nanoparticles (NiNP). NiNPs obtained from the reduction of Ni(ii) were first coated with polydopamine to provide the anchoring sites towards the robust immobilization of AuNPs. The as-synthesized nanocomposite (Ni-PD-Au) exhibited outstanding catalytic activity while reducing methylene blue (MB) and 4-nitrophenol (4-NP) yielding rate constants 13.11 min-1 and 4.21 min-1, respectively, outperforming the catalytic efficiency of its monometallic counterparts and other similar reported catalysts by large margins. The superior catalytic efficiency of the Ni-PD-Au was attributed to the well-known synergistic effect, which was experimentally investigated and compared with prior reports. Similar bio-inspired immobilization of AuNPs was also applied on graphene-wrapped NiNPs (Ni-G) instead of bare NiNPs to synthesize another composite catalyst (Ni-G-PD-Au), which yet again exhibited synergistic catalytic activity. A comparative study between the two nanocomposites suggested that Ni-PD-Au excelled in catalytic activity but Ni-G-PD-Au provided noteworthy stability showing ∼100% efficiency over 17 repeated cycles. However, along with excellent synergistic performance, both nanocomposites demonstrated high magnetization and thermal stability up to 350 °C ascertaining their easy separation and sustainability for high-temperature applications, respectively.
Collapse
Affiliation(s)
- Fatima Mahnaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Mohammad Mostafa-Al-Momin
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Rubel
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Ferdous
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Shafiul Azam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| |
Collapse
|
29
|
Kim KD, Wang Z, Tao Y, Ling H, Yuan Y, Zhou C, Liu Z, Gaborieau M, Huang J, Yu A. The Comparative Effect of Particle Size and Support Acidity on Hydrogenation of Aromatic Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyung Duk Kim
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yongwen Tao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Huajuan Ling
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yuan Yuan
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Cuifeng Zhou
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zongwen Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Marianne Gaborieau
- Molecular Medicine Research Group School of Science and Health Australian Centre for Research of Separation Science (ACROSS) Western Sydney University Parramatta NSW 2150 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Aibing Yu
- Laboratory for Simulation and Modelling of Particulate Systems Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
30
|
Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Darabdhara G, Das MR. Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:365-377. [PMID: 30690389 DOI: 10.1016/j.jhazmat.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
We report the colorimetric detection and photocatalytic degradation of toxic phenolic compounds using Au@Ni loaded reduced graphene oxide (rGO) nanostructures. Core-shell nanoparticles of Au and Ni are successfully designed on rGO with size <8 nm by a solvothermal route which demonstrate excellent enzyme mimic behaviour towards the oxidation of 3,3',5,5' tetramethylbenzidine (TMB), a peroxidase substrate and towards colorimetric detection of phenols with detection limit as low as 1.68 μM, wide detection range of 1-300 μM and admirable selectivity. Additionally, the Au@Ni/rGO nanocomposite exhibits excellent photo responsive behaviour towards degradation of phenol, 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) under natural sunlight irradiation with more than 87% degradation. The superiority of the bimetallic nanocomposite is established by comparing its activity to its monometallic counterparts. The sustainability of the nanocomposite is assessed through the reusability in the photocatalytic reaction upto six consecutive cycles without significant loss in activity. This is the first study where nanomaterials are used for both detection and degradation of environmental pollutants with positive and encouraging results.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, India.
| |
Collapse
|
32
|
Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release 2019; 299:1-20. [DOI: 10.1016/j.jconrel.2019.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
33
|
Bhoi YP, Majhi D, Das K, Mishra BG. Visible‐Light‐Assisted Photocatalytic Degradation of Phenolic Compounds Using Bi
2
S
3
/Bi
2
W
2
O
9
Heterostructure Materials as Photocatalyst. ChemistrySelect 2019. [DOI: 10.1002/slct.201900450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yagna P. Bhoi
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Dibyananda Majhi
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Krishnendu Das
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Braja G. Mishra
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| |
Collapse
|
34
|
Liu J, Ma Q, Huang Z, Liu G, Zhang H. Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800696. [PMID: 30256461 DOI: 10.1002/adma.201800696] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The fast industrialization process has led to global challenges in the energy crisis and environmental pollution, which might be solved with clean and renewable energy. Highly efficient electrochemical systems for clean-energy collection require high-performance electrocatalysts, including Au, Pt, Pd, Ru, etc. Graphene, a single-layer 2D carbon nanosheet, possesses many intriguing properties, and has attracted tremendous research attention. Specifically, graphene and graphene derivatives have been utilized as templates for the synthesis of various noble-metal nanocomposites, showing excellent performance in electrocatalytic-energy-conversion applications, such as the hydrogen evolution reaction and CO2 reduction. Herein, the recent progress in graphene-based noble-metal nanocomposites is summarized, focusing on their synthetic methods and electrocatalytic applications. Furthermore, some personal insights on the challenges and possible future work in this research field are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiqi Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guigao Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
35
|
Structurally controlled layered Ni3C/graphene hybrids using cyano-bridged coordination polymers. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
36
|
Das KK, Patnaik S, Nanda B, Pradhan AC, Parida K. ZnFe2O4‐Decorated Mesoporous Al2O3Modified MCM‐41: A Solar‐Light‐Active Photocatalyst for the Effective Removal of Phenol and Cr (VI) from Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201803209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kundan Kumar Das
- Centre for Nano Science and Nano TechnologyInstitute of Technical Education and Research, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha India 751030
| | - Sulagna Patnaik
- Centre for Nano Science and Nano TechnologyInstitute of Technical Education and Research, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha India 751030
| | - Binita Nanda
- Centre for Nano Science and Nano TechnologyInstitute of Technical Education and Research, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha India 751030
| | - Amaresh Chandra Pradhan
- Centre for Nano Science and Nano TechnologyInstitute of Technical Education and Research, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha India 751030
| | - Kulamani Parida
- Centre for Nano Science and Nano TechnologyInstitute of Technical Education and Research, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha India 751030
| |
Collapse
|
37
|
Fathalipour S, Ataei B, Janati F. Aqueous suspension of biocompatible reduced graphene oxide- Au NPs composite as an effective recyclable catalyst in a Betti reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:356-366. [PMID: 30678921 DOI: 10.1016/j.msec.2018.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/19/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
Abstract
Synthesis of noble metal nanoparticles (NPs) on modified graphene oxide with biocompatible polymers has attracted significant due to their unique properties and various applications. In this research, covalent-modified graphene oxide (MGO) with diacid terminated poly (ethylene glycol) (PEG) was used as a substrate and stabilizing of Au (ш). The reduction of MGO-Au (ш) complex with hydrazine monohydrate under reflux condition obtained biocompatible reduced MGO (rMGO)-Au NPs. Diacid terminated PEG obtained from the reaction of PEG with succinic anhydride in the presence of N,N- dicyclohexylcarbodiimide (DCC) and 4-methylamino pyridine (DMAP) was attached to GO sheets to prevent from the aggregation of rMGO sheets and Au NPs. The resulting aqueous suspension was characterized through UV-vis, FT-IR, Raman, XRD, DLS-zeta potential, SEM, EDX and TEM. Furthermore, nanocomposite showed good catalytic behavior in Betti reaction- synthesis of 1-(α-aminoalkyl)-2-naphthols. The favorable properties of colloidal nanocomposite were attributed to the stable and well distribution Au NPs on rMGO.
Collapse
Affiliation(s)
- Soghra Fathalipour
- Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran.
| | - Bahareh Ataei
- Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran
| | - Fatemeh Janati
- Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran
| |
Collapse
|
38
|
Yue X, Miao X, Shen X, Ji Z, Zhou H, Sun Y, Xu K, Zhu G, Kong L, Chen Q, Li N, He X. Flower-like silver bismuthate supported on nitrogen-doped carbon dots modified graphene oxide sheets with excellent degradation activity for organic pollutants. J Colloid Interface Sci 2019; 540:167-176. [PMID: 30639664 DOI: 10.1016/j.jcis.2019.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
In this study, a new ternary AgBiO3/GO/NCDs composite (GO = graphene oxide, NCDs = nitrogen-doped carbon dots) has been successfully prepared through in-situ growth of flower-like AgBiO3 on GO/NCDs complex support. The AgBiO3/GO/NCDs composite exhibits significantly enhanced degradation activities towards organic pollutants of rhodamine B, phenol and tetracycline. Especially, the refractory tetracycline (20 mg L-1) can be completely removed within 6.0 min with a dosage of 30 mg of AgBiO3/GO/NCDs under the assistance of peroxymonosulfate (PMS, 0.2 mM). It is revealed that GO in the composite can facilitate the quick and efficient electron transfer and improve the generation of reactive oxygen species during the degradation process, while the NCDs may play double roles as both the electron-acceptor and the reactive site. Besides, the electrons can be captured by PMS to produce plenty of sulfate radicals (SO4-) with very strong oxidation ability. All these factors collaboratively promote the degradation efficiency of AgBiO3/GO/NCDs towards organic pollutants. The excellent degradation activities of AgBiO3/GO/NCDs endow it with potential application in wastewater purification.
Collapse
Affiliation(s)
- Xiaoyang Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xuli Miao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hu Zhou
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Yiming Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Keqiang Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lirong Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quanrun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Na Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaomei He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
39
|
Aditya T, Jana J, Panda S, Pal A, Pal T. Benzophenone assisted UV-activated synthesis of unique Pd-nanodendrite embedded reduced graphene oxide nanocomposite: a catalyst for C–C coupling reaction and fuel cell. RSC Adv 2019; 9:21329-21343. [PMID: 35521347 PMCID: PMC9066186 DOI: 10.1039/c9ra02431j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
In this work we report the use of benzophenone (BP) for the synthesis of a palladium (Pd) embedded on reduced graphene oxide (rGO) nanocomposite (Pd/rGO) using a simple aqueous solution and UV irradiation. The simple and facile evolution of thermodynamically unstable branched Pd(0) nanodendrites was achieved by BP photoactivation, circumventing the growth of more stable nanomorphologies. The synthesis of Pd(0)-embedded rGO nanosheets (PRGO-nd) was made possible by the simultaneous reduction of both the GO scaffold and PdCl2 by introducing BP into the photoactivation reaction. The nanocomposites obtained in the absence of BP were common triangular and twinned Pd(0) structures which were also implanted on the rGO scaffold (PRGO-nt). The disparity in morphologies presumably occurs due to the difference in the kinetics of the reduction of Pd2+ to Pd0 in the presence and absence of the BP photoinitiator. It was observed that the PRGO-nd was composed of dense arrays of multiple Pd branches around nucleation site which exhibited (111) facet, whereas PRGO-nt showed a mixture of (100) and (111) facets. On comparing the catalytic efficiencies of the as-synthesized nanocatalysts, we observed a superiority in efficiency of the thermodynamically unstable PRGO-nd nanocomposite. This is due to the evolved active facets of the dendritic Pd(0) morphology with its higher surface area, as testified by Brunauer–Emmett–Teller (BET) analysis. Since both PRGO-nd and PRGO-nt contain particles of similar size, the dents and grooves in the structure are the cause of the increase in the effective surface area in the case of nanodendrites. The unique dendritic morphology of the PRGO-nd nanostructures makes them a promising material for superior catalysis, due to their high surface area, and the high density of surface atoms at their edges, corners, and stepped regions. We investigated the efficiency of the as-prepared PRGO-nd catalyst in the Suzuki–Miyaura coupling reaction and showed its proficiency in a 2 h reaction at 60 °C using 2 mol% catalyst containing 0.06 mol% active Pd. Moreover, the electrochemical efficiency for the catalytic hydrogen evolution reaction (HER) was demonstrated, in which PRGO-nd provided a decreased overpotential of 68 mV for a current density of 10 mA cm−2, a small Tafel slope of 57 mV dec−1 and commendable stability during chronoamperometric testing for 5 h. Benzophenone photoinitiator aided synthesis of Pd-nanodendrite embedded rGO nanocatalyst possessing superior potential in C–C coupling reaction and fuel cell application.![]()
Collapse
Affiliation(s)
- Teresa Aditya
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Jayasmita Jana
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sonali Panda
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Anjali Pal
- Department of Civil Engineering
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Tarasankar Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
40
|
Poornima Parvathi V, Parimaladevi R, Sathe V, Umadevi M. Application of G-SERS for the efficient detection of toxic dye contaminants in textile effluents using gold/graphene oxide substrates. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Sahoo M, Mansingh S, Subudhi S, Mohapatra P, Parida K. A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01085h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A plasmonic AuPd bimetal-decorated GO/LDH nano-photocatalyst displays encouraging Suzuki coupling performance under visible light illumination.
Collapse
Affiliation(s)
- Mitarani Sahoo
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751 030
- India
| | - Sriram Mansingh
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751 030
- India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751 030
- India
| | - Priyabrat Mohapatra
- Department of Chemistry
- C.V.Raman College of Engineering, Bidyanagar
- Bhubaneswar-752 054
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan (Deemed to be University)
- Bhubaneswar-751 030
- India
| |
Collapse
|
42
|
Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis. Catalysts 2018. [DOI: 10.3390/catal8120634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hetero-nanomaterials constructed by plasmonic metals and functional semiconductors show enormous potential in photocatalytic applications, such as in hydrogen production, CO2 reduction, and treatment of pollutants. Their photocatalytic performances can be better regulated through adjusting structure, composition, and components’ arrangement. Therefore, the reasonable design and synthesis of metal/semiconductor hetero-nanostructures is of vital significance. In this mini-review, we laconically summarize the recent progress in efficiently establishing metal/semiconductor nanomaterials for improved photocatalysis. The defined photocatalysts mainly include traditional binary hybrids, ternary multi-metals/semiconductor, and metal/multi-semiconductors heterojunctions. The underlying physical mechanism for the enhanced photocatalysis of the established photocatalysts is highlighted. In the end, a brief summary and possible future perspectives for further development in this field are demonstrated.
Collapse
|
43
|
Minati L, Aguey-Zinsou KF, Micheli V, Speranza G. Palladium nanoparticle functionalized graphene xerogel for catalytic dye reduction. Dalton Trans 2018; 47:14573-14579. [PMID: 30259035 DOI: 10.1039/c8dt02839g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report a method to synthesize a palladium-functionalized porous graphene xerogel structure. A graphene xerogel nanocomposite with a three-dimensional microstructure was obtained by chemical reduction of an aqueous dispersion of graphene oxide at mild temperature. After the graphene hydrogel has been placed in a K2PdCl4 solution, the spontaneous redox reaction between the reduced graphene and Pd2+ takes place, leading to the formation of nanohybrid materials consisting of a graphene porous matrix decorated with Pd nanoparticles. The final porosity of the material was tuned through drying the graphene hydrogel by solvent evaporation. The palladium functionalized porous graphene xerogels were successfully used for the catalytic reduction of Rhodamine 6G.
Collapse
Affiliation(s)
- L Minati
- IBF-CNR, Via alla Cascata 56/C, 38123 Trento, Italy.
| | | | | | | |
Collapse
|
44
|
Liu H, Zhang ZG, He HW, Wang XX, Zhang J, Zhang QQ, Tong YF, Liu HL, Ramakrishna S, Yan SY, Long YZ. One-Step Synthesis Heterostructured g-C₃N₄/TiO₂ Composite for Rapid Degradation of Pollutants in Utilizing Visible Light. NANOMATERIALS 2018; 8:nano8100842. [PMID: 30332837 PMCID: PMC6215260 DOI: 10.3390/nano8100842] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022]
Abstract
To meet the urgent need of society for advanced photocatalytic materials, novel visible light driven heterostructured composite was constructed based on graphitic carbon nitride (g-C3N4) and fibrous TiO2. The g-C3N4/TiO2 (CNT) composite was prepared through electrospinning technology and followed calcination process. The state of the g-C3N4 and fibrous TiO2 was tightly coupled. The photocatalytic performance was measured by degrading the Rhodamine B. Compared to commercial TiO2 (P25®) and electrospun TiO2 nanofibers, the photocatalytic performance of CNT composite was higher than them. The formation of CNT heterostructures and the enlarged specific surface area enhanced the photocatalytic performance, suppressing the recombination rate of photogenerated carriers while broadening the absorption range of light spectrum. Our studies have demonstrated that heterostructured CNT composite with an appropriate proportion can rational use of visible light and can significantly promote the photogenerated charges transferred at the contact interface between g-C3N4 and TiO2.
Collapse
Affiliation(s)
- Hui Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zhi-Guang Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
- College of Science & Information, Qingdao Agricultural University, Qingdao 266109, China.
| | - Hong-Wei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Qian-Qian Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Yan-Fu Tong
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Hong-Ling Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore.
| | - Shi-Ying Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Nayak S, Parida KM. Dynamics of Charge-Transfer Behavior in a Plasmon-Induced Quasi-Type-II p-n/n-n Dual Heterojunction in Ag@Ag 3PO 4/g-C 3N 4/NiFe LDH Nanocomposites for Photocatalytic Cr(VI) Reduction and Phenol Oxidation. ACS OMEGA 2018; 3:7324-7343. [PMID: 31458892 PMCID: PMC6644866 DOI: 10.1021/acsomega.8b00847] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
In this work, a series of heterostructure Ag@Ag3PO4/g-C3N4/NiFe layered double hydroxide (LDH) nanocomposites were prepared by a combination of an electrostatic self-assembly and in situ photoreduction method. In this method, positively charged p-type Ag3PO4 was electrostatically bonded to the self-assembled negatively charged surface of the n-n-type g-C3N4/NiFe (CNLDH) LDH hybrid material with partial reduction of Ag+ to metallic Ag nanoparticles (NPs) by the photogenerated electrons and available surface -OH groups of LDH under visible light irradiation. The presence of Ag3PO4 as a p-type semiconductor, the surface plasmon resonance (SPR) effect of metallic Ag NPs, and oxygen vacancies as Ov-type defects in NiFe LDH could greatly achieve the quasi-type-II p-n/n-n dual heterojunctions, which was revealed by the shifted conduction band and valence band potentials in Mott-Schottky (M-S) analysis. Among all the optimized heterostructures, CNLDHAgP4 could achieve the highest photocatalytic Cr(VI) reduction rate of 97% and phenol oxidation rate of 90% in 2 h. The heterostructure CNLDHAgP4 photocatalyst possesses a unique morphology consisting of cubic phases of both Ag NPs and Ag3PO4, which adhered to the thin and curvy layers of the CNLDH hybrid for smooth electronic and ionic charge transport. Furthermore, the intimate Schottky barriers formed at the interface of quasi-type-II p-n/n-n dual heterojunctions were verified by the photoluminescence, linear sweep voltammetry, M-S, electrochemical impedance study, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy studies. The SPR effect of Ag NPs and oxygen vacancies as Ov-type defect in NiFe LDH can effectively accelerate the threshold of charge separation and be the main reason for the enhanced activity achieved by the as-fabricated heterostructure photocatalyst.
Collapse
Affiliation(s)
| | - K. M. Parida
- E-mail: , . Phone: +91-674-2351777. Fax: +91-674-2350642
| |
Collapse
|
46
|
Facile one pot synthesis of bimetallic Pd-Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of anti-hypotensive drug. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Khan ME, Khan MM, Cho MH. Recent progress of metal-graphene nanostructures in photocatalysis. NANOSCALE 2018; 10:9427-9440. [PMID: 29762624 DOI: 10.1039/c8nr03500h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metal-graphene nanostructures (NSs) as photocatalysts, prepared using simple and scalable synthesis methods, are gaining heightened attention as novel materials for water treatment and environmental remediation applications. Graphene, the unique few layers sheet-like arrangement of sp2 hybridized carbon atoms, has an inimitable two-dimensional (2D) structure. The material is highly conductive, has high electron mobility and an extremely high surface area, and can be produced on a large scale at low cost. Accordingly, it has been considered as an essential base component for producing various metal-based NSs. In particular, metal-graphene NSs as photocatalysts have attracted considerable attention because of their special surface plasmon resonance (SPR) effect that can improve their performance for the removal of toxic dyes and other pollutants. This review summarizes the recent and advanced progress for the easy fabrication and design of graphene-based NSs as photocatalysts, as a novel tool, using a range of approaches, including green and biogenic approaches.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea.
| | | | | |
Collapse
|
48
|
Zhang K, Zhang N, Zhang L, Wang H, Shi H, Liu Q. Label-free impedimetric sensing platform for microRNA-21 based on ZrO 2-reduced graphene oxide nanohybrids coupled with catalytic hairpin assembly amplification. RSC Adv 2018; 8:16146-16151. [PMID: 35542230 PMCID: PMC9080249 DOI: 10.1039/c8ra02453g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Herein, a sensitive electrochemical impedance sensor was constructed based on ZrO2-reduced graphene oxide (RGO)-modified electrode coupled with the catalytic hairpin assembly signal amplification strategy. Electrochemical impedance spectroscopy (EIS) was used to detect microRNA (miRNA) using the change in electron transfer resistance (ΔR et) originated from nucleic acid hybridization on the electrode surface. MiRNA-21 was used as a model to verify this strategy. The results indicated that ΔR et exhibited a good linear relationship with the concentration of miRNA-21 in the range from 1.0 × 10-14 mol L-1 to 1.0 × 10-10 mol L-1 with a detection limit of 4.3 × 10-15 mol L-1 (S/N = 3). Additionally, this sensor exhibited good selectivity, and it could be applied to detect miRNA-21 in human serum samples and measure the expression levels of miRNA-21 in human breast cancer cell lines (MCF-7); thus, this sensor has great potential in cancer diagnosis.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Na Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Hongyan Wang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Hongwei Shi
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Qiao Liu
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| |
Collapse
|
49
|
Darabdhara G, Das MR. Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water. CHEMOSPHERE 2018; 197:817-829. [PMID: 29407845 DOI: 10.1016/j.chemosphere.2018.01.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 05/09/2023]
Abstract
Novel and sustainable bimetallic nanoparticles of Au-Pd on 2D graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) sheets was designed adopting an eco-friendly chemical route to obtain Au-Pd/g-C3N4 and Au-Pd/rGO, respectively. Elimination of hazardous pollutants, particularly phenol from water is urgent for environment remediation due to its significant carcinogenicity. Considering this aspect, the Au-Pd/g-C3N4 and Au-Pd/rGO nanocomposites are used as photocatalyst towards degradation of toxic phenol, 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) under natural sunlight and UV light irradiation. Au-Pd/g-C3N4 nanocomposite exhibited higher activity then Au/g-C3N4, Pd/g-C3N4 and Au-Pd/rGO nanocomposites with more than 95% degradation in 180 min under sunlight. The obtained degradation efficiency of our materials is better than many other reported photocatalysts. Incorporation of nitrogen atoms in the carbon skeleton of g-C3N4 provides much better properties to Au-Pd/g-C3N4 nanocomposite than carbon based Au-Pd/rGO leading to its higher degradation efficiency. Due to the presence of these nitrogen atoms and some defects, g-C3N4 possesses appealing electrical, chemical and functional properties. Photoluminescence results further revealed the efficient charge separation and delayed recombination of photo-induced electron-hole pairs in the Au-Pd/g-C3N4 nanocomposite. Generation of reactive oxygen species during photocatalysis is well explained through photoluminescence study and the sustainability of these photocatalyst was ascertained through reusability study up to eight and five consecutive cycles for Au-Pd/g-C3N4 and Au-Pd/rGO nanocomposites, respectively without substantial loss in its activity. Characterization of the photocatalysts after reaction signified the stability of the nanocomposites and added advantage to our developed photocatalytic system.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, India.
| |
Collapse
|
50
|
Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Mikrochim Acta 2018; 185:198. [PMID: 29594751 DOI: 10.1007/s00604-018-2734-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
Abstract
Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.
Collapse
|