1
|
Tomii H, Kikuma T, Kajiura H, Sano K, Matsumura H, Ito Y, Kajihara Y, Takeda Y. Expression, purification, and enzymatic characterization of human UDP-glucose:glycoprotein glucosyltransferase-selenoprotein F complex from Sf9 insect cells. Protein Expr Purif 2025; 231:106719. [PMID: 40250575 DOI: 10.1016/j.pep.2025.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Appropriate functioning of the glycoprotein quality control system in the endoplasmic reticulum is crucial for maintaining cellular homeostasis. UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) is a key component of this system, serving as a "folding sensor" by recognizing the partially folded state of cognate glycoproteins and reglucosylating their deglucosylated N-glycans. Notably, UGGT1 is known to form heterodimers with Selenoprotein F (SelenoF), although the mechanism underlying the complex formation remains unclear. To date, there have been no reports of large-scale expression systems for recombinant human UGGT1, and the formation of the human UGGT1-SelenoF complex has not been demonstrated in vitro. To address this, we used an insect cell-based expression system for heterologous expression of human UGGT1 and SelenoF, achieving high purity and efficiency superior to that of Escherichia coli expression systems. Importantly, the two proteins, prepared independently, were observed to form complexes in vitro. The establishment of a system for large-scale production of human UGGT1 and UGGT1-SelenoF complexes paves the way for future studies investigating their structural characteristics and dynamic behavior.
Collapse
Affiliation(s)
- Hirotaka Tomii
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takashi Kikuma
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, 565-0871, Japan
| | - Kanae Sano
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiroyoshi Matsumura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yoichi Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| |
Collapse
|
2
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Modenutti CP, Blanco Capurro JI, Ibba R, Alonzi DS, Song MN, Vasiljević S, Kumar A, Chandran AV, Tax G, Marti L, Hill JC, Lia A, Hensen M, Waksman T, Rushton J, Rubichi S, Santino A, Martí MA, Zitzmann N, Roversi P. Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase. Structure 2021; 29:357-370.e9. [PMID: 33352114 PMCID: PMC8024514 DOI: 10.1016/j.str.2020.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-ΔTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name "Parodi limit" the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70-80 Å. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a "one-size-fits-all adjustable spanner" UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain.
Collapse
Affiliation(s)
- Carlos P Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Muroni 23A, 07100 Sassari, SS, Italy
| | - Dominic S Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mauro N Song
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anu V Chandran
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK
| | - Lucia Marti
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK; Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Thomas Waksman
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Rushton
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simone Rubichi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina.
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK.
| |
Collapse
|
4
|
Izumi M, Araki H, Tominaga M, Okamoto R, Kajihara Y. Chemical Synthesis of Ubiquitinated High-Mannose-Type N-Glycoprotein CCL1 in Different Folding States. J Org Chem 2020; 85:16024-16034. [PMID: 32985191 DOI: 10.1021/acs.joc.0c01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Degradation of misfolded glycoproteins by the ubiquitin-proteasome system (UPS) is a very important process for protein homeostasis. To demonstrate the accessibility toward a ubiquitinated glycoprotein probe for the study of glycoprotein degradation by UPS, we synthesized ubiquitinated glycoprotein CC motif chemokine 1 (CCL1) bearing a high-mannose-type N-glycan, starting from six peptide segments. A native isopeptide linkage was constructed using δ-thiolysine (thioLys)-mediated chemical ligation. CCL1 glycopeptide with a high-mannose-type N-glycan as well as a δ-thioLys residue was synthesized chemically. The chemical ligation between δ-thioLys-containing glycopeptide and ubiquitin-α-thioester successfully yielded a ubiquitinated glycopeptide with a native isopeptide bond after desulfurization, even in the presence of a large N-glycan. In vitro folding experiments under reduced and redox conditions gave the desired two types of ubiquitinated glycosylated CCL1s, consisting of unfolded CCL1 and folded ubiquitin, and the folded form of both CCL1 as well as ubiquitin. We achieved the chemical synthesis of a complex protein molecule that contains not only the two major post-translational modifications, ubiquitination and glycosylation, but also controlled folding states of ubiquitin and CCL1. These chemical probes could have useful applications in the study of complex ubiquitin biology and glycobiology.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi, Kochi 780-8520, Japan
| | - Hiroyuki Araki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mamiko Tominaga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Kiuchi T, Izumi M, Mukogawa Y, Shimada A, Okamoto R, Seko A, Sakono M, Takeda Y, Ito Y, Kajihara Y. Monitoring of Glycoprotein Quality Control System with a Series of Chemically Synthesized Homogeneous Native and Misfolded Glycoproteins. J Am Chem Soc 2018; 140:17499-17507. [DOI: 10.1021/jacs.8b08653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tatsuto Kiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Arisa Shimada
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Seko
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masafumi Sakono
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Yan B, Ye L, Xu W, Liu L. Recent advances in racemic protein crystallography. Bioorg Med Chem 2017; 25:4953-4965. [DOI: 10.1016/j.bmc.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
7
|
Izumi M, Kuruma R, Okamoto R, Seko A, Ito Y, Kajihara Y. Substrate Recognition of Glycoprotein Folding Sensor UGGT Analyzed by Site-Specifically 15N-Labeled Glycopeptide and Small Glycopeptide Library Prepared by Parallel Native Chemical Ligation. J Am Chem Soc 2017; 139:11421-11426. [DOI: 10.1021/jacs.7b03277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Masayuki Izumi
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rie Kuruma
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Seko
- ERATO
Ito glycotrilogy project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- ERATO
Ito glycotrilogy project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic
Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Kajihara
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO
Ito glycotrilogy project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Chemical synthesis of histone H2A with methylation at Gln104. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|