1
|
Denner TC, Heise NV, Al-Harrasi A, Csuk R. Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II. Molecules 2024; 29:3015. [PMID: 38998967 PMCID: PMC11243685 DOI: 10.3390/molecules29133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| |
Collapse
|
2
|
Liu MG, Liu N, Xu WH, Wang L. Tandem reaction strategy of the Passerini/Wittig reaction based on the in situ capture of isocyanides: One-pot synthesis of heterocycles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Wu Y, Zha M, Yin S, Yang H, Boutet J, Huet R, Wang C, Sun B. Novel Method for l-Methionine Production Catalyzed by the Aminotransferase ARO8 from Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6116-6122. [PMID: 29806462 DOI: 10.1021/acs.jafc.8b01451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aminotransferase ARO8 was proved to play an efficient role in conversion of l-methionine into methionol via the Ehrlich pathway in Saccharomyces cerevisiae in our previous work. In this work, the reversible transamination activity of ARO8 for conversion of α-keto-γ-(methylthio) butyric acid (KMBA) into l-methionine was confirmed in vitro. ARO8 was cloned from S. cerevisiae S288c and overexpressed in Escherichia coli BL21. A 2-fold higher aminotransferase activity was detected in the recombinant strain ARO8-BL21, and ARO8 was detected in the supernatant of ARO8-BL21 lysate with IPTG induction by SDS-PAGE analysis. The recombinant ARO8 was then purified and used for transforming KMBA into l-methionine. An approximately 100% conversion rate of KMBA into l-methionine was achieved by optimized enzymatic reaction catalyzed by ARO8. This work fulfilled l-methionine biosynthesis catalyzed by the aminotransferase ARO8 using glutamate and KMBA, which provided a novel method for l-methionine production by enzymatic catalysis with the potential application prospect in industry.
Collapse
Affiliation(s)
- Yiping Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Musu Zha
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Sheng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Huaqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Julien Boutet
- Adisseo France SAS, Antony Parc 2 , 10 Place du Général de Gaulle , F-92160 Antony , France
- Bluestar Adisseo Nanjing Co., LTD , 389 Changfenghe Road, Nanjing Chemical Industry Park , Jiangsu Province , Nanjing 210047 , China
| | - Robert Huet
- Adisseo France SAS, Antony Parc 2 , 10 Place du Général de Gaulle , F-92160 Antony , France
- Bluestar Adisseo Nanjing Co., LTD , 389 Changfenghe Road, Nanjing Chemical Industry Park , Jiangsu Province , Nanjing 210047 , China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|