1
|
Chen X, Zhou XY. Site-Specific Dehydrogenative Hydroxyfluoroalkylation of Indoles with Hexafluoroisopropanol. J Org Chem 2024; 89:17860-17865. [PMID: 39577005 DOI: 10.1021/acs.joc.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
An efficient and convenient method for the synthesis of C3-hydroxytrifluoroalkylated indoles and pyrroles was described in this paper. The copper-catalyst-free site-specific cross-dehydrogenative coupling reaction of various indoles and pyrroles with hexafluoroisopropanol proceeded smoothly by using MnO2 as oxidant to furnish a hydroxytrifluoroalkylated electron-rich N-heterocycle in satisfactory to excellent yields. Various groups, including the synthetically useful functional groups Cl, NO2, and CN, were tolerated well. The mechanistic study revealed that a radical pathway accommodated the formation of a hexafluoroacetone intermediate.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| |
Collapse
|
2
|
Gholami F, Yousefnejad F, Larijani B, Mahdavi M. Vinyl azides in organic synthesis: an overview. RSC Adv 2023; 13:990-1018. [PMID: 36686934 PMCID: PMC9811501 DOI: 10.1039/d2ra06726a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Among organic azides, vinyl azides have attracted significant attention, because of their unique properties in organic synthesis, which led to reports of many types of research on this versatile conjugated azide in recent years. This magical precursor can also be converted into intermediates such as iminyl radicals, 2H-azirines, iminyl metal complexes, nitrilium ions, and iminyl ions, making this compound useful in heterocycle synthesis.
Collapse
Affiliation(s)
- Fateme Gholami
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Paveliev SA, Segida OO, Mulina OM, Krylov IB, Terent’ev AO. Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Org Lett 2022; 24:8942-8947. [DOI: 10.1021/acs.orglett.2c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stanislav A. Paveliev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Oleg O. Segida
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Olga M. Mulina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor B. Krylov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Kshirsagar N, Sonawane R, Pathan S, Kamble G, Pal Singh G. A Review on Synthetic Approaches of Phenanthridine. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210218211424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The phenanthridine family is widely found in medicinal chemistry and material science because
of the biological activity and its presence in a variety of significant natural products and synthetic
dye stuffs. The phenanthridine has many clinical applications, for e.g., being used as an anticancer agent,
possessing antibacterial, antiprotozoal, pharmaceutical, and optoelectronic properties. Many methods
have been reported for the synthesis of phenanthridine and phenanthridine alkaloids, such as Pd catalyzed
C-C bond formation, a reaction involving C-H activation, radical, microwave-assisted, transition
metal-catalyzed, one-pot cascade, benzyne mediated, photochemical, hypervalent iodine promoted methods,
etc. Here, we have summarized the literature data from 2014 to the present concerning novel or
improved synthetic approaches.
Collapse
Affiliation(s)
| | | | - Sultan Pathan
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| | - Ganesh Kamble
- Department of Chemistry, Osaka University, ISIR 8-1 Mihogaoka, Ibaraki,
Osaka 567-0047, Japan
| | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Zhan Y, Dai C, Zhu Z, Liu P, Sun P. Electrochemical Decarboxylative Cyclization of α‐Amino‐Oxy Acids to Access Phenanthridine Derivatives. Chem Asian J 2022; 17:e202101388. [DOI: 10.1002/asia.202101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanling Zhan
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Changhui Dai
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Zitong Zhu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Ping Liu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Peipei Sun
- Nanjing Normal University Chemistry Ninghai Road 210097 Nanjing CHINA
| |
Collapse
|
6
|
Cai C, Zou D. Recent Progress in Benzylic C(sp 3)—H Functionalization of Toluene and Its Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Li JZ, Mei L, Yu XC, Wang LT, Cai XE, Li T, Wei WT. C-centered radical-initiated cyclization by directed C(sp 3)–H oxidative functionalization. Org Chem Front 2022. [DOI: 10.1039/d2qo01128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C(sp3)–H functionalization is attracting constant attention. This review emphasizes C-centered radicals initiated cyclization strategies by directed C(sp3)–H oxidative functionalization since 2012.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lan Mei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
8
|
Yi R, Li J, Wang D, Wei W. Radical Cascade Cyclization Involving C(sp 3)—H Functionalization of Unactivated Cycloalkanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp 3)-H Functionalization. J Am Chem Soc 2021; 144:339-348. [PMID: 34935377 DOI: 10.1021/jacs.1c10053] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed remote benzylic C-H functionalization strategy enabling 1,2-difunctionalization of alkenes with 2-methylbenzeneamides and nucleophiles, including alcohols, indoles, pyrroles, and the intrinsic amino groups, is reported, which is characterized by its redox-neutral conditions, exquisite site-selectivity, broad substrate scope, and wide utilizations of late-stage modifying bioactive molecules. This reaction proceeds through nitrogen-centered radical generation, hydrogen atom transfer, benzylic radical addition across the alkenes, single-electron oxidation, and carbocation electrophilic course cascades. While using external nucleophiles manipulates three-component alkene alkylalkoxylation and alkyl-heteroarylation with 2-methylbenzeneamides to access dialkyl ethers, 3-alkylindoles, and 3-alkylpyrroles, omitting the external nucleophiles results in two-component alkylamidation ([5+2] annulation) of alkenes with 2-methylbenzeneamides to benzo-[f][1,2]thiazepine 1,1-dioxides.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
10
|
Yuan JW, Mou CX, Zhang Y, Hu WY, Yang LR, Xiao YM, Mao P, Zhang SR, Qu LB. Transition-metal catalyzed oxidative spirocyclization of N-aryl alkynamides with methylarenes under microwave irradiation. Org Biomol Chem 2021; 19:10348-10358. [PMID: 34812461 DOI: 10.1039/d1ob01970h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical synthetic route to construct a variety of 3-benzyl spiro[4,5]trienones was developed via transition-metal Cu/Ag-catalyzed oxidative ipso-annulation of activated alkynes with unactivated toluenes using TBPB as an oxidant under microwave irradiation. This method allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in a single reaction through a sequence of C-H oxidative coupling, ipso-carbocyclization and dearomatization. The advantages of this protocol are its operational simplicity and broad substrate scope, and the ability to afford the desired products in moderate to good yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Chen-Xu Mou
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Liang Q, Lin L, Li G, Kong X, Xu B. Synthesis of Phenanthridine and Quinoxaline Derivatives
via
Copper‐Catalyzed
Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qi Liang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Long Lin
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology No. 666 Liaohe Road Changzhou Jiangsu 213032 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|
12
|
Xu Y, Yu C, Zhang X, Fan X. Selective Synthesis of Dihydrophenanthridine and Phenanthridine Derivatives from the Cascade Reactions of o-Arylanilines with Alkynoates through C-H/N-H/C-C Bond Cleavage. J Org Chem 2021; 86:5805-5819. [PMID: 33793223 DOI: 10.1021/acs.joc.1c00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, an unprecedented selective synthesis of dihydrophenanthridine and phenanthridine derivatives through the cascade reactions of 2-arylanilines with alkynoates is presented. Mechanistic studies showed that the formation of the dihydrophenanthridine scaffold involves an initial C(sp2)-H alkenylation of 2-arylaniline with alkynoate followed by an intramolecular aza-Michael addition. When this reaction is carried out at elevated temperature, the in situ formed substituted dihydrophenanthridine readily undergoes a retro-Mannich-type reaction to give the corresponding phenanthridine through C-C bond cleavage. Compared with literature methods, this novel protocol has advantages such as easily obtainable substrates with a free amino group, pharmaceutically privileged products, cheap catalysts, and conveniently controllable selectivity.
Collapse
Affiliation(s)
- Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Luo M, Ren X, Shen R, Qi C, Zhang Y, Wang H. K
2
S
2
O
8
‐Mediated Oxysulfonylation of Vinyl Azides with Sodium Sulfinates to Access β‐Keto Sulfones in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mengqiang Luo
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Xiaorong Ren
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Runpu Shen
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Yaohong Zhang
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Hai Wang
- School of life science Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| |
Collapse
|
14
|
Talukdar V, Vijayan A, Kumar Katari N, Radhakrishnan KV, Das P. Recent Trends in the Synthesis and Mechanistic Implications of Phenanthridines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| | - Ajesh Vijayan
- Department of Chemistry CHRIST (Deemed to be University) Hosur road Bengaluru 560029 India
| | | | - K. V. Radhakrishnan
- CSIR – National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695019 India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| |
Collapse
|
15
|
Lin L, Liang Q, Kong X, Chen Q, Xu B. Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. J Org Chem 2020; 85:15708-15716. [PMID: 33226809 DOI: 10.1021/acs.joc.0c02213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal- and oxidant-free electrochemical strategy for radical fluoroalkylation of vinyl azides was developed. The reaction was carried out under mild conditions by using inexpensive and bench-stable RfSO2Na (Rf = CF3, CF2H) as fluorination reagents. Depending on the starting material, both the electrochemical radical cyclization and dearomatization products could be obtained. This method provides a green and safe approach to synthesize fluorinated nitrogen heterocycles.
Collapse
Affiliation(s)
- Long Lin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Liang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Paveliev SA, Alimkhanova LS, Sergeeva AV, Terent'ev AO. Cerium(IV) ammonium nitrate promoted synthesis of O-phthalimide oximes from vinyl azides and N-hydroxyphthalimide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
18
|
Affiliation(s)
- Moriah Locklear
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| | - Patrick H. Dussault
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| |
Collapse
|
19
|
Chen J, Li M, Zhang J, Sun W, Jiang Y. Copper-Catalyzed Functionalization of Aza-Aromatic Rings with Fluoroalcohols via Direct C(sp2)–H/C(sp3)–H Coupling Reactions. Org Lett 2020; 22:3033-3038. [DOI: 10.1021/acs.orglett.0c00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinli Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Matsushita Y, Ochi R, Tanaka Y, Koike T, Akita M. Energy transfer-driven regioselective synthesis of functionalized phenanthridines by visible-light Ir photocatalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00271b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A photocatalytic strategy for selective synthesis of 2-substituted phenanthridines from N-iminylpyridinium salts has been developed.
Collapse
Affiliation(s)
- Yuki Matsushita
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Rika Ochi
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Takashi Koike
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| |
Collapse
|
21
|
Bismuth-catalyzed methylation and alkylation of quinone derivatives with tert-butyl peroxybenzoate as an oxidant. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Tang YQ, Yang JC, Wang L, Fan M, Guo LN. Ni-Catalyzed Redox-Neutral Ring-Opening/Radical Addition/Ring-Closing Cascade of Cycloketone Oxime Esters and Vinyl Azides. Org Lett 2019; 21:5178-5182. [DOI: 10.1021/acs.orglett.9b01773] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Qi Tang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mingjin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
23
|
Liang D, Huo B, Dong Y, Wang Y, Dong Y, Wang B, Ma Y. Copper-Catalyzed Alkylarylation of Unactivated Alkenes: Synthesis of 3-Alkyl Indolines from N-Allyl Anilines and Alkanes. Chem Asian J 2019; 14:1932-1936. [PMID: 31046195 DOI: 10.1002/asia.201900176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Indexed: 01/14/2023]
Abstract
A rare example of C(sp3 )-H functionalization of simple alkanes with unactivated alkenes is presented. In the presence of a copper salt and di-tert-butyl peroxide (DTBP), N-allyl anilines underwent exo-selective alkylation/cyclization cascade with unactivated alkenic bonds as radical acceptors and simple alkanes as radical precursors, providing a direct access to 3-alkyl indolines. The present protocol features simple operation, broad substrate scope and great exo selectivity.
Collapse
Affiliation(s)
- Deqiang Liang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Bojie Huo
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Yongrui Dong
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Yan Wang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong Province, 250014, China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming, Yunnan Province, 650214, China
| | - Yinhai Ma
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, Yunnan Province, 650214, China
| |
Collapse
|
24
|
Huang W, Li X, Song X, Luo Q, Li Y, Dong Y, Liang D, Wang B. Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. J Org Chem 2019; 84:6072-6083. [PMID: 31021621 DOI: 10.1021/acs.joc.9b00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented benzylic C-H functionalization of methyl arenes across unactivated alkenes is presented. In the presence of MnCl2·4H2O and di- tert-butyl peroxide, N-allyl anilines underwent benzylation/cyclization cascade to give benzylated indolines, which are a previously unmet synthetic goal. This protocol features simple operation, broad substrate scope, and great exo selectivity.
Collapse
Affiliation(s)
- Wenzhong Huang
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xiulan Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Xuemei Song
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Qing Luo
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Yanping Li
- Department of Chemistry , Kunming University , Kunming 650214 , China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Deqiang Liang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| | - Baoling Wang
- Department of Chemistry , Kunming University , Kunming 650214 , China.,Yunnan Engineering Technology Research Center for Plastic Films , Kunming 650214 , China
| |
Collapse
|
25
|
Shen MH, Liang XC, Li C, Wu H, Qu HY, Wang FM, Xu HD. Rhodium promoted intramolecular [4 + 2] cycloaddition of 2-azidodiene with alkyne: A transition metal catalysis approach to challenging fused bicyclic vinyl azide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Yin W, Wang X. Recent advances in iminyl radical-mediated catalytic cyclizations and ring-opening reactions. NEW J CHEM 2019. [DOI: 10.1039/c8nj06165c] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iminyl radicals have emerged as versatile synthons for N-heterocycle constructions and ring-opening reactions.
Collapse
Affiliation(s)
- Wenqing Yin
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Xuelian Wang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| |
Collapse
|
27
|
Zhou B, Zheng L, Xu Z, Jin H, Wu Q, Li T, Liu Y. Synthesis of Functionalized Phenathridine-6-carbonitriles via Copper-catalyzed Annulation of Vinyl Azides and NaN3
in the Presence of PhI(OAc)2. ChemistrySelect 2018. [DOI: 10.1002/slct.201801772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Qingan Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering; Nanyang Normal University, Nangyang, Henan; 473061 P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| |
Collapse
|
28
|
Chen P, Sun CH, Wang Y, Xue Y, Chen C, Shen MH, Xu HD. Intramolecular Schmidt Reaction of Vinyl Azides with Cyclic Ketones. Org Lett 2018; 20:1643-1646. [PMID: 29504761 DOI: 10.1021/acs.orglett.8b00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic ketones tethered with a vinyl azide group undergo a Schmidt-hydrolysis sequence to give secondary lactams bearing a ketone side chain. Secondary lactams are obtained in a regioselective manner that is not possible in a conventional Schimdt reaction. In addition to the well-documented C-2 nucleophilicity, the N nucleophilicity of vinyl azide disclosed in this work opens a new direction for reaction invention involving vinyl azides.
Collapse
Affiliation(s)
- Peng Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Chu-Han Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Yu Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Ying Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Mei-Hua Shen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| | - Hua-Dong Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Pharmaceutical Engineering & Life Science , Changzhou University , Changzhou 213164 , P. R. China
| |
Collapse
|
29
|
Yang JC, Zhang JY, Zhang JJ, Duan XH, Guo LN. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. J Org Chem 2018; 83:1598-1605. [DOI: 10.1021/acs.joc.7b02861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun-Cheng Yang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jia-Yu Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jin-Jiang Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li-Na Guo
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
30
|
Mao LL, Zheng DG, Zhu XH, Zhou AX, Yang SD. Visible-light-induced sulfonylation/cyclization of vinyl azides: one-pot construction of 6-(sulfonylmethyl)phenanthridines. Org Chem Front 2018. [DOI: 10.1039/c7qo00790f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile and efficient protocol has been developed for sulfonylation/cyclization of vinyl azides under photoredox conditions.
Collapse
Affiliation(s)
- Liu-Liang Mao
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Da-Gui Zheng
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Xian-Hong Zhu
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
31
|
Li Y, Zhu Y, Yang SD. Visible-light-induced tandem phosphorylation cyclization of vinyl azides under mild conditions. Org Chem Front 2018. [DOI: 10.1039/c7qo01004d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This method provides a visible-light-induced radical tandem cyclization for the synthesis of phosphorus phenanthridines with various nitrogen-containing substrates.
Collapse
Affiliation(s)
- Yonghong Li
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yuanyuan Zhu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
32
|
Wang X, Li Y, Qiu G, Wu J. Synthesis of 6-(sulfonylmethyl)phenanthridines through a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and vinyl azides. Org Chem Front 2018. [DOI: 10.1039/c8qo00679b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis of 6-(sulfonylmethyl)phenanthridines through a three-component reaction of aryldiazonium tetrafluoroborates, a sulfur dioxide surrogate of DABCO·(SO2)2, and vinyl azides under metal- and additive-free conditions is achieved.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yuewen Li
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
33
|
Hayashi H, Kaga A, Chiba S. Application of Vinyl Azides in Chemical Synthesis: A Recent Update. J Org Chem 2017; 82:11981-11989. [DOI: 10.1021/acs.joc.7b02455] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hirohito Hayashi
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Atsushi Kaga
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Shunsuke Chiba
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
34
|
Fu J, Zanoni G, Anderson EA, Bi X. α-Substituted vinyl azides: an emerging functionalized alkene. Chem Soc Rev 2017; 46:7208-7228. [DOI: 10.1039/c7cs00017k] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vinyl azides are highly versatile synthons that provide access to numerous N-heterocycles and other functional groups.
Collapse
Affiliation(s)
- Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Giuseppe Zanoni
- Department of Chemistry
- University of Pavia
- 10-27100 Pavia
- Italy
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
35
|
Yang T, Wang W, Wei D, Zhang T, Han B, Yu W. Synthesis of quinazolinones via radical cyclization of α-azidyl benzamides. Org Chem Front 2017. [DOI: 10.1039/c6qo00656f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under visible light irradiation with N-bromosuccinimide, α-azidyl benzamides can be transformed into quinazolinones in high efficiency via cascade radical processes.
Collapse
Affiliation(s)
- Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Weixia Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Dian Wei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Tianqi Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|