1
|
Nguyen TD, Lee JS. Dynamic Bonds in Biopolymers: Enhancing Performance and Properties. Polymers (Basel) 2025; 17:457. [PMID: 40006119 PMCID: PMC11860009 DOI: 10.3390/polym17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
As the demand for polymer materials increases, conventional petroleum-based synthetic polymers face several significant challenges, including raw material depletion, environmental issues, and the potential for biotoxicity in biological applications. In response, bio-based polymers derived from natural sources, such as cellulose, alginate, chitosan, and gelatin, have garnered attention due to their advantages of biocompatibility and biodegradability. However, these polymers often suffer from poor physical stability due to the high density of hydrogen bonds and the large structure of pyranose rings. This review explores the potential of incorporating dynamic covalent bonds into biopolymers to overcome these limitations. The chemical structures of biopolymers contain numerous functional groups that can serve as anchoring sites for dynamic bonds, thereby enhancing the mechanical properties and overall stability of the polymer network. The review discusses the performance improvements achievable through dynamic covalent bonds and examines the future potential of this technology to enhance the physical properties of biopolymers and expand their applicability in biological fields.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Lan J, Li X, Xu M, Zhang B, Luo J, Zhou Y, Wang T. Visible-Light-Induced Radical Carbon Oximation of Styrenes Using N-Nitrosoamine and Organic Halides. J Org Chem 2025; 90:250-258. [PMID: 39711500 DOI: 10.1021/acs.joc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An efficient visible-light-induced radical carbon oximation of styrenes with 1-nitrosopyrrolidine and organic halides is developed. The reaction proceeds smoothly in the absence of a transition metal and a photocatalyst under mild conditions, producing a wide range of functionalized oximes in moderate to good yields. Mechanistic studies reveal that the reaction involves the generation of nucleophilic α-amino alkyl radicals and subsequent halogen atom transfer (XAT) with organic halides.
Collapse
Affiliation(s)
- Jinping Lan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaolong Li
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Mengyu Xu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Bin Zhang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jin Luo
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yuan Zhou
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
3
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
4
|
Wang M, Ren HY, Pu XY, Zhang XL, Zhu HY, Wu AX, Zhao BT. Rongalite/iodine-mediated C(sp 3)-H bond oximation and thiomethylation reaction of methyl ketones using copper nitrate as the [NO] reagent: synthesis of thiohydroximic acids. Org Biomol Chem 2024; 22:7623-7627. [PMID: 39222034 DOI: 10.1039/d4ob01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products. Mechanistic studies revealed that copper nitrate might be converted into a NO2 radical or the NO2 radical dimeric forms as an ion-pair equivalent to participate in the transformation.
Collapse
Affiliation(s)
- Miao Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Hui-Ying Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Yu Pu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Xiao-Lu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - He-Ying Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| |
Collapse
|
5
|
Saifullah MSM, Rajak AK, Hofhuis KA, Tiwale N, Mahfoud Z, Testino A, Karadan P, Vockenhuber M, Kazazis D, Valiyaveettil S, Ekinci Y. Approaching Angstrom-Scale Resolution in Lithography Using Low-Molecular-Mass Resists (<500 Da). ACS NANO 2024; 18:24076-24094. [PMID: 39163414 PMCID: PMC11375778 DOI: 10.1021/acsnano.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Resists that enable high-throughput and high-resolution patterning are essential in driving the semiconductor technology forward. The ultimate patterning performance of a resist in lithography is limited because of the trade-off between resolution, line-width roughness, and sensitivity; improving one or two of these parameters typically leads to a loss in the third. As the patterned feature sizes approach angstrom scale, the trade-off between these three metrics becomes increasingly hard to resolve and calls for a fundamental rethinking of the resist chemistry. Low-molecular-mass monodispersed metal-containing resists of high atom economy can provide not only very high resolution but also very low line-width roughness without sacrificing sensitivity. Here we describe a modular metal-containing resist platform (molecular mass <500 Da) where a molecular resist consists of just two components: a metal and a radical initiator bonded to it. This simple system not only is amenable to high-resolution electron beam lithography (EBL) and extreme ultraviolet lithography (EUVL) but also unites them mechanistically, giving a consolidated perspective of molecular and chemical processes happening during exposure. Irradiation of the resist leads to the production of secondary electrons that generate radicals in the initiator bonded to metal. This brings about an intramolecular rearrangement and causes solubility switch in the exposed resist. We demonstrate record 1.9-2.0 nm isolated patterns and 7 nm half-pitch dense line-space features over a large area using EBL. With EUVL, 12 nm half-pitch line-space features are shown at a dose of 68 mJ/cm2. In both of these patterning techniques, the line-width roughness was found to be ≤2 nm, a record low value for any resist platform, also leading to a low-performance trade-off metric, Z factor, of 0.6 × 10-8 mJ·nm3. With the ultimate resolution limited by instrumental factors, potential patterning at the level of a unit cell can be envisaged, making low-molecular-mass resists best poised for angstrom-scale lithography.
Collapse
Affiliation(s)
- Mohammad S M Saifullah
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
- PiBond Oy, Kutojantie 2B, Espoo 02630, Finland
| | - Anil Kumar Rajak
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Kevin A Hofhuis
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Nikhil Tiwale
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000, United States of America
| | - Zackaria Mahfoud
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Andrea Testino
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
- École Polytechnique Fédérale de Lausanne, STI SMX-GE, Lausanne CH 1015, Switzerland
| | - Prajith Karadan
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | | | - Dimitrios Kazazis
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yasin Ekinci
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| |
Collapse
|
6
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
7
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
8
|
Pettazzoni L, Ximenis M, Leonelli F, Vozzolo G, Bodo E, Elizalde F, Sardon H. Oxime metathesis: tuneable and versatile chemistry for dynamic networks. Chem Sci 2024; 15:2359-2364. [PMID: 38362428 PMCID: PMC10866338 DOI: 10.1039/d3sc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
Oxime chemistry has emerged as a versatile tool for use in a wide range of applications. In particular, the combination of oximes with esters and urethanes has enabled the realisation of Covalent Adaptable Networks (CANs) with improved and tunable dynamic properties. Nevertheless, an exclusively oxime-based chemistry has not yet been explored in the fabrication of CANs. In this work, we investigate the mechanism of the acid-catalysed dynamic exchange of oximes. We propose a metathesis mechanism that is well supported by both experimental and computational studies, which highlight the importance of the substituent effect on the exchange reaction kinetics. Then, as a proof of concept, we incorporate oxime groups into a cross-linked polymeric material and demonstrate the ability of oxime-based polymers to be reprocessed under acid catalysis while maintaining their structural integrity.
Collapse
Affiliation(s)
- Luca Pettazzoni
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Marta Ximenis
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Francesca Leonelli
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Giulia Vozzolo
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Enrico Bodo
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Fermin Elizalde
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Haritz Sardon
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country. UPV/EHU Donostia-San Sebastián 20018 Spain
| |
Collapse
|
9
|
Dudchak R, Podolak M, Holota S, Szewczyk-Roszczenko O, Roszczenko P, Bielawska A, Lesyk R, Bielawski K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg Chem 2024; 143:106982. [PMID: 37995642 DOI: 10.1016/j.bioorg.2023.106982] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Collapse
Affiliation(s)
- Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Magdalena Podolak
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine.
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| |
Collapse
|
10
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
11
|
Manikpuri D, Sankar RV, Gunanathan C. Direct Synthesis of Aldoximes: Ruthenium-Catalyzed Coupling of Alcohols and Hydroxylamine Hydrochloride. Chem Asian J 2023; 18:e202300678. [PMID: 37671629 DOI: 10.1002/asia.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
A catalytic method for the direct synthesis of oximes from alcohols and hydroxyl amine hydrochloride salt is reported. The reaction is catalyzed by a ruthenium pincer catalyst, which oxidizes alcohols involving amine-amide metal-ligand cooperation, and the in situ formed aldehydes condense with hydroxyl amine to deliver the oximes. Notably, the reaction requires only a catalyst and base; water and liberated hydrogen are the only byproducts, making this protocol attractive and environmentally benign.
Collapse
Affiliation(s)
- Deepsagar Manikpuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| |
Collapse
|
12
|
Lopat'eva ER, Krylov IB, Paveliev SA, Emtsov DA, Kostyagina VA, Korlyukov AA, Terent'ev AO. Free Radicals in the Queue: Selective Successive Addition of Azide and N-Oxyl Radicals to Alkenes. J Org Chem 2023; 88:13225-13235. [PMID: 37616501 DOI: 10.1021/acs.joc.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The selective successive addition of azide (•N3) and N-oxyl radicals to alkenes is demonstrated, despite each of the two radicals being known to attack C═C bonds and the mixture of radical adducts possibly being expected. The proposed radical mechanism was supported by density functional theory calculations, electron paramagnetic resonance, and radical trapping experiments. The reaction proceeds at room temperature with the available reagents: NaN3, N-hydroxy compounds, and PhI(OAc)2 as the oxidant. The method can be applied for N-hydroxyimides, N-hydroxyamides, N-hydroxybenzotriazole, and oximes as N-oxyl radical precursors. Vinylarenes, aliphatic alkenes, and even electron-deficient methyl methacrylate were successfully functionalized.
Collapse
Affiliation(s)
- Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Daniil A Emtsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Vera A Kostyagina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov strasse, 28, 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
13
|
Kemmer A, Heinze T. Dextran thioparaconate - Evaluation of the multifunctional thiolactone linker for easily adaptable polysaccharide modification. Carbohydr Polym 2023; 315:120946. [PMID: 37230630 DOI: 10.1016/j.carbpol.2023.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
For the preparation of tailored polymers based on polysaccharides, an easy adaptable modification method was developed by introduction of a multifunctional linker into the polymer backbone. Dextran was functionalized with a thiolactone compound that can be further treated with amine resulting in ring opening and formation of a thiol. The functional thiol group emerging can be used for crosslinking or introduction of a further functional compound by disulfide formation. Here, the efficient esterification of thioparaconic acid after in-situ activation and studies about reactivity of the dextran thioparaconate obtained are discussed. The derivative was converted by aminolysis with model compound hexylamin and the thiol generated therefrom was subsequently converted with an activated functional thiol to the corresponding disulfide. The thiolactone, which protects the thiol, enables efficient esterification without side reactions and allows storage of the polysaccharide derivative at ambient conditions for years. Not only the multifunctional reactivity of the derivative but also the end product with a balanced ratio of hydrophobic and cationic moiety is appealing for biomedical application.
Collapse
Affiliation(s)
- Agnes Kemmer
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstr. 10, D-07743 Jena, Germany.
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstr. 10, D-07743 Jena, Germany; Friedrich Schiller University Jena, Jena Center for Soft Matters, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
14
|
Lu H, Ye H, Zhang M, Liu Z, Zou H, You L. Photoswitchable dynamic conjugate addition-elimination reactions as a tool for light-mediated click and clip chemistry. Nat Commun 2023; 14:4015. [PMID: 37419874 DOI: 10.1038/s41467-023-39669-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Phototriggered click and clip reactions can endow chemical processes with high spatiotemporal resolution and sustainability, but are challenging with a limited scope. Herein we report photoswitchable reversible covalent conjugate addition-elimination reactions toward light-addressed modular covalent connection and disconnection. By coupling between photochromic dithienylethene switch and Michael acceptors, the reactivity of Michael reactions was tuned through closed-ring and open-ring forms of dithienylethene, allowing switching on and off dynamic exchange of a wide scope of thiol and amine nucleophiles. The breaking of antiaromaticity in transition states and enol intermediates of addition-elimination reactions provides the driving force for photoinduced change in kinetic barriers. To showcase the versatile application, light-mediated modification of solid surfaces, regulation of amphiphilic assemblies, and creation/degradation of covalent polymers on demand were achieved. The manipulation of dynamic click/clip reactions with light should set the stage for future endeavors, including responsive assemblies, biological delivery, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
15
|
Chen PW, Ji DH, Zhang YS, Lee C, Yeh MY. Electroactive and Stretchable Hydrogels of 3,4-Ethylenedioxythiophene/thiophene Copolymers. ACS OMEGA 2023; 8:6753-6761. [PMID: 36844572 PMCID: PMC9948203 DOI: 10.1021/acsomega.2c07368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Hydrogels are conductive and stretchable, allowing for their use in flexible electronic devices, such as electronic skins, sensors, human motion monitoring, brain-computer interface, and so on. Herein, we synthesized the copolymers having various molar ratios of 3,4-ethylenedioxythiophene (EDOT) to thiophene (Th), which served as conductive additives. With doping engineering and incorporation with P(EDOT-co-Th) copolymers, hydrogels have presented excellent physical/chemical/electrical properties. It was found that the mechanical strength, adhesion ability, and conductivity of hydrogels were highly dependent on the molar ratio of EDOT to Th of the copolymers. The more the EDOT, the stronger the tensile strength and the greater the conductivity, but the lower the elongation break tends to be. By comprehensively evaluating the physical/chemical/electrical properties and cost of material use, the hydrogel incorporated with a 7:3 molar ratio P(EDOT-co-Th) copolymer was an optimal formulation for soft electronic devices.
Collapse
|
16
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
17
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
18
|
Sood A, Ji SM, Kumar A, Han SS. Enzyme-Triggered Crosslinked Hybrid Hydrogels for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6383. [PMID: 36143697 PMCID: PMC9506111 DOI: 10.3390/ma15186383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The quest to develop state-of-the-art hydrogels for bone tissue engineering has accompanied substantial innovation and significant progression in the field of bioactive hydrogels. Still, there is scope for advancement in this cell-friendly and biocompatible scaffold system. The crosslinking approaches used for hydrogel synthesis plays a decisive role in guiding and regulating the mechanical stability, network framework, macroscopic architect, immunological behaviors, and cellular responses. Until recently, enzyme-based crosslinking strategies were considered as the pinnacle in designing efficient hybrid hydrogel systems. A variety of enzymes have been explored for manufacturing hydrogels while taking the advantage of the biocompatible nature, specificity, ability to produce nontoxic by products and high efficiency of enzymes. The current review focuses on the utility of different enzymes as crosslinking agents for hydrogel formation with their application in bone tissue engineering. The field of enzyme crosslinked hydrogel synthesis is rapidly maturing with a lot of opportunities to be explored in bone tissue engineering. Enzyme-based in situ and externally crosslinked hydrogels for bone regeneration is an attractive field, and with innovation in using engineered enzymes this field will continue to flourish with clinical orientation.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
19
|
Golec B, Sałdyka M, Mielke Z. Photo-Induced Reactions between Glyoxal and Hydroxylamine in Cryogenic Matrices. Molecules 2022; 27:molecules27154797. [PMID: 35956748 PMCID: PMC9369962 DOI: 10.3390/molecules27154797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the photochemistry of glyoxal−hydroxylamine (Gly−HA) complexes is studied using FTIR matrix isolation spectroscopy and ab initio calculations. The irradiation of the Gly−HA complexes with the filtered output of a mercury lamp (λ > 370 nm) leads to their photoconversion to hydroxyketene−hydroxylamine complexes and the formation of hydroxy(hydroxyamino)acetaldehyde with a hemiaminal structure. The first product is the result of a double hydrogen exchange reaction between the aldehyde group of Gly and the amino or hydroxyl group of HA. The second product is formed as a result of the addition of the nitrogen atom of HA to the carbon atom of one aldehyde group of Gly, followed by the migration of the hydrogen atom from the amino group of hydroxylamine to the oxygen atom of the carbonyl group of glyoxal. The identification of the products is confirmed by deuterium substitution and by MP2 calculations of the structures and vibrational spectra of the identified species.
Collapse
Affiliation(s)
- Barbara Golec
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: (B.G.); (M.S.); Tel.: +48-22-343-3410 (B.G.)
| | - Magdalena Sałdyka
- Faculty of Chemistry, University of Wroclaw, 50-383 Wrocław, Poland;
- Correspondence: (B.G.); (M.S.); Tel.: +48-22-343-3410 (B.G.)
| | - Zofia Mielke
- Faculty of Chemistry, University of Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
20
|
Wang Y, Liao Q, Fan Y, Chen D, Ma Y, Zhao C, Yang W. Surface engineering of Si wafers with tunable surface morphology and stiffness via visible light induced t
hiol‐ene
click polymerization with 4‐(
N
,
N
‐diphenylamino)benzaldehyde as an organocatalyst. J Appl Polym Sci 2022. [DOI: 10.1002/app.52677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yiran Wang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Qingyu Liao
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Yuqing Fan
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Dong Chen
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Yuhong Ma
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Changwen Zhao
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Wantai Yang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
21
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Yan J, Gundsambuu B, Krasowska M, Platts K, Facal Marina P, Gerber C, Barry SC, Blencowe A. Injectable Diels-Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes. J Mater Chem B 2022; 10:3329-3343. [PMID: 35380575 DOI: 10.1039/d2tb00274d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels in situ via efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix. Hydrogels were prepared via the DAC between fulvene and maleimide functionalised poly(ethylene glycol) (PEG) derivatives. By adjusting the concentration and molecular weight of the functionalised PEGs in the hydrogel formulation the in vitro gelation time (Tgel), initial Young's modulus (E) and degradation time (Td) could be tailored from 15-150 min, 5-179 kPa and 7-114 h, respectively. Prior to gelation, the formulations could be readily injected through narrow gauge (26 G) needles with the working time correlating closely with the Tgel. A 5 wt% hydrogel formation with conjugated cyclic RGD motif was found to be optimal for the encapsulation and release of CD3+ T-cells with a near linear release profile and >70% cell viability over the first 4 d and release continuing out to 7 d. With their tuneable Tgel, Td and stiffness, the DAC hydrogels provide the opportunity to control the release period and profile of encapsulated cells.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marta Krasowska
- Surface Interaction and Soft Matter (SISM) Group, Future Industries Institute (FII), UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Cobus Gerber
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
23
|
Liu Z, Wei H, Liu Y, Li W, Li S, Wang G, Guo T. Fabrication and characterization of interpenetrating network hydrogels based on sequential amine‐anhydride reaction and photopolymerization in water. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zijun Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Weikun Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Songmao Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| |
Collapse
|
24
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
25
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
26
|
Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int J Biol Macromol 2021; 193:1032-1042. [PMID: 34800516 DOI: 10.1016/j.ijbiomac.2021.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023]
Abstract
Polysaccharide-based hydrogels are particularly attractive materials for biomedical applications. However, their use is restricted due to their brittleness and poor mechanical properties. Here, to overcome such limitations, we report an original, green, simple, and efficient strategy to synthesize a polysaccharide-based hydrogel of chitosan (Cht) and a vinyl-functionalized PVA (PVA-MA), a non-toxic synthetic polymer that is widely known to improve the mechanical properties and stability of materials containing polysaccharides. The hydrogel was crosslinked through an aza-Michael addition among the amino groups of Cht with the vinyl moieties of PVA-MA catalyzed by boric acid (B(OH)3), an eco-friendly inorganic compound. Characterization analyses revealed that the prepared hydrogel has a porous-like morphology, an outstanding liquid uptake capacity (>665%), and improved stability in a physiological fluid for long periods. In summary, this original and simple strategy showed to be efficient in the synthesis of hydrogels with attractive properties for the biomedical field application.
Collapse
|
27
|
Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proc Natl Acad Sci U S A 2021; 118:2110961118. [PMID: 34504006 PMCID: PMC8449376 DOI: 10.1073/pnas.2110961118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/19/2022] Open
Abstract
Hydrogels are extensively used for cell culture, tissue engineering, and flexible electronics. In all of these applications, mechanical properties of hydrogels play an important role. Although tremendous studies have been devoted to optimizing the stiffness, strain, toughness, and dynamic mechanical response, the mechanical homogeneity of hydrogels has rarely been considered. By developing a general strategy to control the mechanical homogeneity of hydrogels, here we show that nanoscale variation in matrix stiffness can considerably affect the lineage specification of human embryonic stem cells. Inhomogeneous hydrogels suppress mechanotransduction and facilitate stemness maintenance, while homogenous hydrogels promote mechanotransduction and osteogenic differentiation. Therefore, engineering hydrogels with controllable and well-defined nanoscale homogeneity may have considerable implications in stem cell culture and regenerative medicine. The extracellular matrix (ECM) is mechanically inhomogeneous due to the presence of a wide spectrum of biomacromolecules and hierarchically assembled structures at the nanoscale. Mechanical inhomogeneity can be even more pronounced under pathological conditions due to injury, fibrogenesis, or tumorigenesis. Although considerable progress has been devoted to engineering synthetic hydrogels to mimic the ECM, the effect of the mechanical inhomogeneity of hydrogels has been widely overlooked. Here, we develop a method based on host–guest chemistry to control the homogeneity of maleimide–thiol cross-linked poly(ethylene glycol) hydrogels. We show that mechanical homogeneity plays an important role in controlling the differentiation or stemness maintenance of human embryonic stem cells. Inhomogeneous hydrogels disrupt actin assembly and lead to reduced YAP activation levels, while homogeneous hydrogels promote mechanotransduction. Thus, the method we developed to minimize the mechanical inhomogeneity of hydrogels may have broad applications in cell culture and tissue engineering.
Collapse
|
28
|
Cai Y, Li C, Yang Y, Li H, Wang Y, Zhang Q. Self-Healable and Reprocessable Cross-Linked Poly(urea-urethane) Elastomers with High Mechanical Performance Based on Dynamic Oxime–Carbamate Bonds. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchao Cai
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yumin Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Haonan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi’an 710100, People’s Republic of China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
29
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
30
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Ziegler CE, Graf M, Nagaoka M, Lehr H, Goepferich AM. In Situ Forming iEDDA Hydrogels with Tunable Gelation Time Release High-Molecular Weight Proteins in a Controlled Manner over an Extended Time. Biomacromolecules 2021; 22:3223-3236. [PMID: 34270216 DOI: 10.1021/acs.biomac.1c00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Off-target interactions between reactive hydrogel moieties and drug cargo as well as slow reaction kinetics and the absence of controlled protein release over an extended period of time are major drawbacks of chemically cross-linked hydrogels for biomedical applications. In this study, the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene- and tetrazine-functionalized eight-armed poly(ethylene glycol) (PEG) macromonomers was used to overcome these obstacles. Oscillatory shear experiments revealed that the gel point of a 15% (w/v) eight-armed PEG hydrogel with a molecular weight of 10 kDa was less than 15 s, suggesting the potential for fast in situ gelation. However, the high-speed reaction kinetics result in a risk of premature gel formation that complicates the injection process. Therefore, we investigated the effect of polymer concentration, temperature, and chemical structure on the gelation time. The cross-linking reaction was further characterized regarding bioorthogonality. Only 11% of the model protein lysozyme was found to be PEGylated by the iEDDA reaction, whereas 51% interacted with the classical Diels-Alder reaction. After determination of the mesh size, fluorescein isothiocyanate-dextran was used to examine the release behavior of the hydrogels. When glucose oxidase was embedded into 15% (w/v) hydrogels, a controlled release over more than 250 days was achieved. Overall, the PEG-based hydrogels cross-linked via the fast iEDDA reaction represent a promising material for the long-term administration of biologics.
Collapse
Affiliation(s)
- Christian E Ziegler
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Moritz Graf
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Makoto Nagaoka
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
32
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
33
|
Abstract
Click chemistry has been established rapidly as one of the most valuable methods for the chemical transformation of complex molecules. Due to the rapid rates, clean conversions to the products, and compatibility of the reagents and reaction conditions even in complex settings, it has found applications in many molecule-oriented disciplines. From the vast landscape of click reactions, approaches have emerged in the past decade centered around oxidative processes to generate in situ highly reactive synthons from dormant functionalities. These approaches have led to some of the fastest click reactions know to date. Here, we review the various methods that can be used for such oxidation-induced "one-pot" click chemistry for the transformation of small molecules, materials, and biomolecules. A comprehensive overview is provided of oxidation conditions that induce a click reaction, and oxidation conditions are orthogonal to other click reactions so that sequential "click-oxidation-click" derivatization of molecules can be performed in one pot. Our review of the relevant literature shows that this strategy is emerging as a powerful approach for the preparation of high-performance materials and the generation of complex biomolecules. As such, we expect that oxidation-induced "one-pot" click chemistry will widen in scope substantially in the forthcoming years.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,Synaffix BV, Industrielaan 63, 5349 AE, Oss, The Netherlands
| |
Collapse
|
34
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
35
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
36
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Hobich J, Huber B, Theato P, Mutlu H. Acyclic Diene Metathesis (ADMET) Polymerization of 2,2,6,6-Tetramethylpiperidine-1-sulfanyl (TEMPS) Dimers. Macromol Rapid Commun 2021; 42:e2100118. [PMID: 33834582 DOI: 10.1002/marc.202100118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Indexed: 01/15/2023]
Abstract
The preparation of polymers containing sulfur-nitrogen bond derivatives, particularly 2,2,6,6-tetramethylpiperidine-1-sulfanyl (TEMPS) dimers (i.e., BiTEMPS), has been limited to free-radical or conventional step-growth polymerization as result of the inherent thermal lability of the BiTEMPS unit. Accordingly, a novel poly(diaminodisulfide) possessing the BiTEMPS functional group is synthesized via acyclic diene metathesis (ADMET) polymerization at 65-75 °C within 3 h with precise control over the primary polymer structure. Polymer is isolated with an Mn of 20 400 g mol-1 and Ð of 1.9. Importantly, detailed nuclear magnetic resonance (NMR), size exclusion chromatography, attenuated total reflectance Fourier transform infrared (ATR-IR) in addition to elemental analysis studies of the BiTEMPS polymer confirm the successful polymerization, and show that the BiTEMPS unit remains intact during the polymerization process. Furthermore, the previously unexplored UV-responsiveness of the BiTEMPS decorated polymer backbone is investigated for the very first time.
Collapse
Affiliation(s)
- Jan Hobich
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Birgit Huber
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, Karlsruhe, D-73131, Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| |
Collapse
|
38
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Baker AEG, Cui H, Ballios BG, Ing S, Yan P, Wolfer J, Wright T, Dang M, Gan NY, Cooke MJ, Ortín-Martínez A, Wallace VA, van der Kooy D, Devenyi R, Shoichet MS. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute. Biomaterials 2021; 271:120750. [PMID: 33725584 DOI: 10.1016/j.biomaterials.2021.120750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Vitreous substitutes are clinically used to maintain retinal apposition and preserve retinal function; yet the most used substitutes are gases and oils which have disadvantages including strict face-down positioning post-surgery and the need for subsequent surgical removal, respectively. We have engineered a vitreous substitute comprised of a novel hyaluronan-oxime crosslinked hydrogel. Hyaluronan, which is naturally abundant in the vitreous of the eye, is chemically modified to crosslink with poly(ethylene glycol)-tetraoxyamine via oxime chemistry to produce a vitreous substitute that has similar physical properties to the native vitreous including refractive index, density and transparency. The oxime hydrogel is cytocompatible in vitro with photoreceptors from mouse retinal explants and biocompatible in rabbit eyes as determined by histology of the inner nuclear layer and photoreceptors in the outer nuclear layer. The ocular pressure in the rabbit eyes was consistent over 56 d, demonstrating limited to no swelling. Our vitreous substitute was stable in vivo over 28 d after which it began to degrade, with approximately 50% loss by day 56. We confirmed that the implanted hydrogel did not impact retina function using electroretinography over 90 days versus eyes injected with balanced saline solution. This new oxime hydrogel provides a significant improvement over the status quo as a vitreous substitute.
Collapse
Affiliation(s)
- Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Sonja Ing
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Peng Yan
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada
| | - Joe Wolfer
- Toronto Animal Eye Clinic, 150 Norseman St, Etobicoke, ON, M8Z 2R4, Canada
| | - Thomas Wright
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Nicola Y Gan
- Department of Ophthalmology, Tock Seng Hospital, National Healthcare Group Eye Institute, 11 Jln Tan Tock Seng, 308433, Singapore
| | - Michael J Cooke
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Arturo Ortín-Martínez
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada
| | - Valerie A Wallace
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Robert Devenyi
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Toronto Western Hospital, 399 Bathurst St, Room 6 E W 438, Toronto, ON, M5T 2S8, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada.
| |
Collapse
|
40
|
Gentil S, Pifferi C, Rousselot-Pailley P, Tron T, Renaudet O, Le Goff A. Clicked Bifunctional Dendrimeric and Cyclopeptidic Addressable Redox Scaffolds for the Functionalization of Carbon Nanotubes with Redox Molecules and Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1001-1011. [PMID: 33433232 DOI: 10.1021/acs.langmuir.0c02095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm-2, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, via copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.
Collapse
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | - Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
41
|
Truong VX, Barner-Kowollik C. Red-Light Driven Photocatalytic Oxime Ligation for Bioorthogonal Hydrogel Design. ACS Macro Lett 2021; 10:78-83. [PMID: 35548995 DOI: 10.1021/acsmacrolett.0c00767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-mediated polymer cross-linking is frequently employed for the preparation of hydrogels for biomedical applications. However, most photopolymerization processes require activation by UV light or short wavelength visible light, which are highly absorbed by skin and tissue, limiting their uses in transdermal initiation. Herein, we introduce red light-enabled oxime ligation by the in situ photogeneration of aldehydes, which rapidly react with hydroxylamines. We demonstrate efficient polymer cross-linking behind a dermal tissue model by red light initiation. Optimization of the photopolymerization conditions allows for 3D encapsulation of human foreskin fibroblasts with good cell viability postencapsulation.
Collapse
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| |
Collapse
|
42
|
Escorihuela J, Looijen WJE, Wang X, Aquino AJA, Lischka H, Zuilhof H. Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis. J Org Chem 2020; 85:13557-13566. [PMID: 33105075 PMCID: PMC7656516 DOI: 10.1021/acs.joc.0c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
chemistry of strained unsaturated cyclic compounds has experienced
remarkable growth in recent years via the development of metal–free
click reactions. Among these reactions, the cycloaddition of cyclopropenes
and their analogues to ortho-quinones has been established
as a highly promising click reaction. The present work investigates
the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence
this reaction. For this purpose, we use B97D density functional theory
calculations throughout, and for relevant cases, we use spin component–scaled
MP2 calculations and single–point domain-based local pair natural
orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes
are analyzed in detail using the distortion/interaction model, and
suggestions for future experimental work are made.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament de Quı́mica Orgànica, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Wilhelmus J E Looijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Xiao Wang
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
43
|
El-Faham A, Albericio F, Manne SR, de la Torre BG. OxymaPure Coupling Reagents: Beyond Solid-Phase Peptide Synthesis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractOxymaPure [ethyl 2-cyano-2-(hydroxyimino)acetate] is an exceptional reagent with which to suppress racemization and enhance coupling efficiency during amide bond formation. The tremendous popularity of OxymaPure has led to the development of several Oxyma-based reagents. OxymaPure and its derived reagents are widely used in solid- and solution-phase peptide chemistry. This review summarizes the recent developments and applications of OxymaPure and Oxyma-based reagents in peptide chemistry, in particular in solution-phase chemistry. Moreover, the side reaction associated with OxymaPure is also discussed.1 Introduction2 Oxyma-Based Coupling Reagents2.1 Aminium/Uronium Salts of OxymaPure2.2 Phosphonium Salts of OxymaPure2.3 Oxyma-Based Phosphates2.4 Sulfonate Esters of OxymaPure2.5 Benzoate Esters of OxymaPure2.6 Carbonates of OxymaPure Derivatives3 OxymaPure Derivatives4 Other Oxime-Based Additives and Coupling Reagents5 Side Reactions Using OxymaPure Derivatives6 Conclusion7 List of Abbreviations
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University
- Department of Chemistry, Faculty of Science, Alexandria University,
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
- Department of Chemistry, College of Science, King Saud University
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona
| | - Srinivasa Rao Manne
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal
| |
Collapse
|
44
|
Reactivity of Coordinated 2-Pyridyl Oximes: Synthesis, Structure, Spectroscopic Characterization and Theoretical Studies of Dichlorodi{(2-Pyridyl)Furoxan}Zinc(II) Obtained from the Reaction between Zinc(II) Nitrate and Pyridine-2-Chloroxime. INORGANICS 2020. [DOI: 10.3390/inorganics8090047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work reports our first results in the area of the reactivity of coordinated chloroximes. The 1:2:2:2 Zn(NO3)2∙6H2O/Eu(NO3)3∙6H2O/ClpaoH/Et3N reaction mixture in MeOH, where ClpaoH is pyridine-2-chloroxime, resulted in complex [ZnCl2(L)] (1); L is the di(2-pyridyl)furoxan [3,4-di(2-pyridyl)-1,2,5-oxadiazole-2-oxide] ligand. The same complex can be isolated in the absence of the lanthanoid. The direct reaction of ZnCl2 and pre-synthesized L in MeOH also provides access to 1. In the tetrahedral complex, L behaves as a Npyridyl,N′pyridyl-bidentate ligand, forming an unusual seven-membered chelating ring. The Hirshfeld Surface analysis of the crystal structure reveals a multitude of intermolecular interactions, which generate an interesting 3D architecture. The complex has been characterized by FTIR and Raman spectroscopies. The structure of 1 is not retained in DMSO (dimethylsulfoxide) solution, as proven by NMR (1H, 13C, 15N) spectroscopy and its molar conductivity value. Upon excitation at 375 nm, solid 1 emits blue light with a maximum at 452 nm; the emission is of an intraligand character. The geometric and energetic profiles of possible pathways involved in the reaction of ClpaoH and Zn(NO3)2∙6H2O in MeOH in the presence of Et3N has been investigated by DFT (Density Functional Theory) computational methodologies at the PBE0/Def2-TZVP(Cr)∪6-31G(d,p)(E)/Polarizable Continuum Model (PCM) level of theory. This study reveals an unprecedented cross-coupling reaction between two coordinated 2-pyridyl nitrile oxide ligands.
Collapse
|
45
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
46
|
Fitzgerald ER, Mineo AM, Pryor ML, Buck ME. Photomediated post-fabrication modification of azlactone-functionalized gels for the development of hydrogel actuators. SOFT MATTER 2020; 16:6044-6049. [PMID: 32638814 DOI: 10.1039/d0sm00832j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report an approach for the photomediated post-fabrication modification of reactive, azlactone-containing gels using light-initiated deprotection of amines caged with 2-(nitrophenyl)propyloxycarbonyl (NPPOC). Photomediated modification of these gels can be used to generate a gradient in chemical functionality. When functionalized with tertiary amine groups, these gradient gels exhibit rapid and reversible shape deformations in response to changes in pH.
Collapse
Affiliation(s)
- Emily R Fitzgerald
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Autumn M Mineo
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Mae L Pryor
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Maren E Buck
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| |
Collapse
|
47
|
Plucinski A, Willersinn J, Lira RB, Dimova R, Schmidt BVKJ. Aggregation and Crosslinking of Poly(
N,N
‐dimethylacrylamide)‐
b
‐pullulan Double Hydrophilic Block Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alexander Plucinski
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | - Jochen Willersinn
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Rafael B. Lira
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Moleculaire BiofysicaZernike Instituut Rijksuniversiteit Groningen Groningen Netherlands
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Bernhard V. K. J. Schmidt
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
48
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
49
|
Wu WX. Lipase-catalyzed synthesis and post-polymerization modification of new fully bio-based poly(hexamethylene γ-ketopimelate) and poly(hexamethylene γ-ketopimelate- co-hexamethylene adipate) copolyesters. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A novel full bio-based ketone-containing aliphatic polyester was prepared by enzyme-catalyzed polycondensation of diethyl γ-ketopimelate (DEK) with 1,6-hexanediol (HDO) using immobilized lipase B from Candida antarctica (CALB). The influences of polymerization conditions such as temperature, time, enzyme amount, and solvent amount on the molecular weight of poly(hexamethylene γ-ketopimelate) (PHK) were investigated. New fully bio-based poly(hexamethylene γ-ketopimelate-co-hexamethylene adipate) (poly(HK-co-HA)) copolymers with narrow polydispersity and well-defined composition were synthesized by copolymerization of DEK, HDO, and diethyl adipate. The structures of PHK and poly(HK-co-HA) copolymers were characterized by nuclear magnetic resonance, and their thermal characterization was examined by thermogravimetric analysis and differential scanning calorimetry. The degradation of PHK and poly(HK-co-HA) copolymers was studied. The post-polymerization modification of these polyketoesters via oxime click chemistry was further demonstrated.
Collapse
Affiliation(s)
- Wan-Xia Wu
- College of Pharmacy and Biological Engineering , Chengdu University , Chengdu 610106 , China
| |
Collapse
|
50
|
Mutlu H, Theato P. Making the Best of Polymers with Sulfur–Nitrogen Bonds: From Sources to Innovative Materials. Macromol Rapid Commun 2020; 41:e2000181. [DOI: 10.1002/marc.202000181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
| | - Patrick Theato
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Str. 18 Karlsruhe D‐76131 Germany
| |
Collapse
|