1
|
Li SY, Zong Y, Liu BH, Liu N, Wu ZQ. Helix-induced full-color circularly polarized luminescence films with multiple information encryption and multi-stimuli responsiveness. Chem Sci 2025; 16:5036-5042. [PMID: 40007665 PMCID: PMC11848626 DOI: 10.1039/d5sc00019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
The development of full-color circularly polarized luminescence (CPL) materials is of great significance in the field of luminescent materials; however, it is difficult due to the limitations in the synthesis and preparation methods. Helical polymers, with their high optical activity and easy processability, offer a promising solution for the construction of high-performance CPL materials. In this study, we successfully prepared full-color CPL composite films using precisely synthesized polyisocyanide (PI) as chiral source, poly(methyl methacrylate) as the matrix, and commercially available fluorescein as fluorescence source. The introduction of PI not only improves the mechanical properties and fluorescence lifetime of the composite films but also facilitates recyclability through centrifugation after dissolving the composite films with the poor solvent of PI. Moreover, the use of spiropyran as a red fluorescein allows for dynamic responsiveness to light, heat, and acid-base stimuli, broadening the functionality of the CPL materials and constructs a multiple information encryption system. This work presents a low-cost, easily processable, and multi-stimuli responsive strategy for full-color fabrication of CPL materials based on helical PI.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing-Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
2
|
Wang Q, Liu Y, Gao R, Wu Z. Selective synthesis of helical polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qian Wang
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Yu‐Qi Liu
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Run‐Tan Gao
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| | - Zong‐Quan Wu
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| |
Collapse
|
3
|
Wu D, Ma C, Wan T, Zhu P, Kong Y. Strategies to synthesize a chiral helical polymer accompanying with two stereogenic centers for chiral electroanalysis. Anal Chim Acta 2022; 1206:339810. [DOI: 10.1016/j.aca.2022.339810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/01/2022]
|
4
|
Kang SM, Han SS, Zhu YY, Wu ZQ. Cobalt(III) Porphyrin-Decorated Stereoregular Polyisocyanides Enable Highly Effective Cooperative Catalysis for Hydration of Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shu-Ming Kang
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Shan-Shan Han
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zong-Quan Wu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
5
|
Sheng Loong Tan N, Nealon GL, Moggach SA, Lynam JM, Ogden MI, Massi M, Lowe AB. (η4-Tetrafluorobenzobarrelene)-η1-((tri-4-fluorophenyl)phosphine)-η1-(2-phenylphenyl)rhodium(I): A Catalyst for the Living Polymerization of Phenylacetylenes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas Sheng Loong Tan
- School of Molecular and Life Sciences (MLS), Curtin University, Bentley, Perth, WA 6102, Australia
| | - Gareth L. Nealon
- Centre for Microscopy, Characterisation, and Analysis (CMCA) and School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Stephen A. Moggach
- Centre for Microscopy, Characterisation, and Analysis (CMCA) and School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Mark I. Ogden
- School of Molecular and Life Sciences (MLS), Curtin University, Bentley, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences (MLS), Curtin University, Bentley, Perth, WA 6102, Australia
| | - Andrew B. Lowe
- School of Molecular and Life Sciences (MLS), Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
6
|
Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe3O4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021. [DOI: 10.1039/d1py00022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The drug-loaded micelles self-assembled from co-poly(phenyl isocyanide), Fe3O4 and DOX demonstrated thermoresponsiveness and magnetic hyperthermia for synergistic thermochemotherapy.
Collapse
|
7
|
Jimaja S, Xie Y, Foster JC, Taton D, Dove AP, O'Reilly RK. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polym Chem 2021. [DOI: 10.1039/d0py00791a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) as a straightforward and versatile methodology to achieve functional helix-containing polymeric nano-objects.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | - Yujie Xie
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | | | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques
- Université de Bordeaux/CNRS École Nationale Supérieure de Chimie
- de Biologie & de Physique
- 33607 Cedex Pessac
- France
| | - Andrew P. Dove
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | | |
Collapse
|
8
|
Gerrits L, Hammink R, Kouwer PHJ. Semiflexible polymer scaffolds: an overview of conjugation strategies. Polym Chem 2021. [DOI: 10.1039/d0py01662d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semiflexible polymers are excellent scaffolds for the presentation of a wide variety of (bio)molecules. This manuscript reviews advantages and challenges of the most common conjugation strategies for the major classes of semiflexible polymers.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 GA Nijmegen
- The Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
9
|
Du J, Huang D, Li H, Qin A, Tang BZ, Li Y. Catalyst-Free Click Polymerization of Thiol and Activated Internal Alkynes: A Facile Strategy toward Functional Poly(β-thioacrylate)s. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Su YX, Xu L, Xu XH, Hou XH, Liu N, Wu ZQ. Controlled Synthesis of Densely Grafted Bottlebrushes That Bear Helical Polyisocyanide Side Chains on Polyisocyanide Backbones and Exhibit Greatly Increased Viscosity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yi-Xu Su
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
11
|
Hu Z, Zhang M, Zhou Q, Xu X, Tang B. Domino synthesis of fully substituted pyridines by silver-catalyzed chemoselective hetero-dimerization of isocyanides. Org Chem Front 2020. [DOI: 10.1039/c9qo01333d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A silver-catalyzed hetero-dimerization of various vinyl isocyanides with isocyanoacetamides has been developed for the efficient and practical synthesis of fully substituted pyridines in a single operation.
Collapse
Affiliation(s)
- Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Mingyue Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Qinghua Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| |
Collapse
|
12
|
Pomarico SK, Wang C, Weck M. Synthesis and Light-Mediated Structural Disruption of an Azobenzene-Containing Helical Poly(isocyanide). Macromol Rapid Commun 2019; 41:e1900324. [PMID: 31454126 DOI: 10.1002/marc.201900324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Indexed: 12/22/2022]
Abstract
Helical poly(isocyanide)s are an important class of synthetic polymers possessing a static helical structure. Since their initial discovery, numerous examples of these helices have been fabricated. In this contribution, the synthesis of a chiral, azobenzene (azo)-containing isocyanide monomer is reported. Upon polymerization with nickel(II) catalysts, a well-defined circular dichroism (CD) trace is obtained, corresponding to the formation of a right-handed polymeric helix. The helical polymer, dissolved in chloroform and irradiated with UV light (365 nm), undergoes a cis to trans isomerization of the azobenzene side-chains. After the isomerization, a change in conformation of the helix occurs, as evidenced by CD spectroscopy. When the solution is irradiated with LED light, the polymer returns to a right-handed helical conformation. To open up the possibility for chain-end post-polymerization modification of this light-responsive system, an alkyne-functionalized nickel(II) catalyst is also used in the polymerization of the azobenzene monomer, resulting in a stimuli-responsive, terminal-alkyne-containing helical poly(isocyanide).
Collapse
Affiliation(s)
- Scott K Pomarico
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Chengyuan Wang
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
13
|
Chae CG, Yu YG, Seo HB, Kim MJ, Wen Z, Lee JS. End-Capping Reaction of Living Anionic Poly(benzyl methacrylate) with a Pentafluorophenyl Ester for a Norbornenyl-ω-End Macromonomer with a Long Flexible Spacer: Advantage in the Well-Controlled Synthesis of Ultrahigh-Molecular-Weight Bottlebrush Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chang-Geun Chae
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung-Jin Kim
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Zuwang Wen
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Shen L, Xu L, Hou XH, Liu N, Wu ZQ. Polymerization Amplified Stereoselectivity (PASS) of Asymmetric Michael Addition Reaction and Aldol Reaction Catalyzed by Helical Poly(phenyl isocyanide) Bearing Secondary Amine Pendants. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ling Shen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009 Anhui Province China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009 Anhui Province China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009 Anhui Province China
| |
Collapse
|
15
|
Xu L, Xu XH, Liu N, Zou H, Wu ZQ. A Facile Synthetic Route to Multifunctional Poly(3-hexylthiophene)-b-poly(phenyl isocyanide) Copolymers: From Aggregation-Induced Emission to Controlled Helicity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| |
Collapse
|
16
|
Zhang WM, Zhang J, Qiao Z, Liu HY, Wu ZQ, Yin J. Facile fabrication of positively-charged helical poly(phenyl isocyanide) modified multi-stimuli-responsive nanoassembly capable of high efficiency cell-penetrating, ratiometric fluorescence imaging, and rapid intracellular drug release. Polym Chem 2018. [DOI: 10.1039/c8py00865e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High efficiency cell-penetrating helical chain functionalized polymeric micelles capable of co-delivery of cargoes and rapid release were reported.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jian Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Huan-Ying Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
17
|
Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2035-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Optically active helical polyisocyanides bearing chiral phosphine pendants: Facile synthesis and application in enantioselective Rauhut-Currier reaction. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2044-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Zhang ZH, Qiao CY, Zhang J, Zhang WM, Yin J, Wu ZQ. Synthesis of Unimolecular Micelles with Incorporated Hyperbranched Boltorn H30 Polyester modified with Hyperbranched Helical Poly(phenyl isocyanide) Chains and their Enantioselective Crystallization Performance. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi-Huang Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Chen-Yang Qiao
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Jian Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Wen-Ming Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Jun Yin
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| |
Collapse
|
20
|
Zhang Y, Lin J, Deng J. Effects of cosolvents on helical substituted polyacetylene particles prepared through suspension polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jiangfeng Lin
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
21
|
Han X, Zhang J, Qiao CY, Zhang WM, Yin J, Wu ZQ. High-Efficiency Cell-Penetrating Helical Poly(phenyl isocyanide) Chains Modified Cellular Tracer and Nanovectors with Thiol Ratiometric Fluorescence Imaging Performance. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xin Han
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Jian Zhang
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Chen-Yang Qiao
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Wen-Ming Zhang
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Jun Yin
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| |
Collapse
|