1
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
2
|
Barabanova AI, Blagodatskikh IV, Vyshivannaya OV, Muranov AV, Peregudov AS, Khokhlov AR. Synthesis, Thermoresponsive Behavior, and Catalytic Properties of Amphiphilic Diblock Copolymers of N-Vinylcaprolactam and N-Vinylimidazole. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Thermoresponsive diblock copolymers (DCs) were prepared by two-stage reversible addition-fragmentation chain transfer/macromolecular design by interchange of xanthate (RAFT/MADIX) polymerization of N-vinylcaprolactam and N-vinylimidazole (VI). The poly(N-vinylcaprolactam) (PVCL) blocks were first synthesized and used as macro-chain transfer agent in VI polymerization. The temperature behavior of PVCL and DCs in aqueous media has been studied by static and dynamic light scattering. It has been shown that the phase separation temperature of both PVCLs and DCs depends on the length of the PVCL chain and the composition of aqueous solvent. The temperature range above the PVCL θ temperature and below the cloud point is characterized by the conformational rearrangements leading to the formation of mesoglobules. The study of catalytic activity of DCs in the hydrolysis reaction of p-nitrophenyl propionate has shown that their activity substantially increases in this transitional temperature region owing to the formation of highly developed hydrophilic–hydrophobic interfaces inside the mesoglobules.
Collapse
|
3
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen-Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020; 59:22258-22264. [PMID: 32844514 DOI: 10.1002/anie.202010722] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Achieving well-defined polymers with ultrahigh molecular weight (UHMW) is an enduring pursuit in the field of reversible deactivation radical polymerization. Synthetic protocols have been successfully developed to achieve UHMWs with low dispersities exclusively from conjugated monomers while no polymerization of unconjugated monomers has provided the same level of control. Herein, an oxygen-tolerant photoenzymatic RAFT (reversible addition-fragmentation chain transfer) polymerization was exploited to tackle this challenge for unconjugated monomers at 10 °C, enabling facile synthesis of well-defined, linear and star polymers with near-quantitative conversions, unprecedented UHMWs and low dispersities. The exquisite level of control over composition, MW and architecture, coupled with operational ease, mild conditions and environmental friendliness, broadens the monomer scope to include unconjugated monomers, and to achieve previously inaccessible low-dispersity UHMWs.
Collapse
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen‐Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130012 China
| |
Collapse
|
5
|
Gibson RR, Cornel EJ, Musa OM, Fernyhough A, Armes SP. RAFT dispersion polymerisation of lauryl methacrylate in ethanol–water binary mixtures: synthesis of diblock copolymer vesicles with deformable membranes. Polym Chem 2020. [DOI: 10.1039/c9py01768b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diblock copolymer vesicles with deformable membranes are prepared via RAFT dispersion polymerisation of lauryl methacrylate in an 80 : 20 w/w ethanol–water mixture; visible light irradiation allows facile RAFT chain-end removal from these nano-objects.
Collapse
Affiliation(s)
- R. R. Gibson
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - E. J. Cornel
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
6
|
Peng H, Rübsam K, Hu C, Jakob F, Schwaneberg U, Pich A. Stimuli-Responsive Poly( N-Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules 2019; 20:992-1006. [PMID: 30608144 DOI: 10.1021/acs.biomac.8b01608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report the synthesis of new reactive stimuli-responsive polymers by RAFT copolymerization of glycidyl methacrylate and three cyclic N-vinyllactam derivatives. The copolymerization process was thoroughly investigated and the influence of the steric hindrance originating from the monomer structure of cyclic N-vinyllactams on the polymerization process and the properties of obtained copolymers were studied. A series of water-soluble copolymers with variable chemical composition, controlled molecular weight and narrow dispersity ( Đ) were synthesized and their properties are systematically investigated. Experimentally determined cloud points for different copolymers in aqueous solutions indicate shift of lower critical solution temperature (LCST) to lower values with the increase of GMA content in copolymers and increase of the lactam ring size. The obtained reactive stimuli-responsive copolymers can be efficiently used for encapsulation of cellulase in water-in-oil emulsions forming biohybrid nanogels. The enzymes entrapped in nanogels demonstrated significantly improved resistance against harsh store conditions, chaotropic agents, and organic solvents.
Collapse
Affiliation(s)
- Huan Peng
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Kristin Rübsam
- DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Chaolei Hu
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Felix Jakob
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Ulrich Schwaneberg
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| |
Collapse
|
7
|
Siirilä J, Häkkinen S, Tenhu H. The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polym Chem 2019. [DOI: 10.1039/c8py01421c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A thermoresponsive polymer, poly(N-vinylcaprolactam) (PNVCL), was synthesized in an emulsion above its thermal transition temperature to produce particles via polymerization induced self-assembly (PISA).
Collapse
|
8
|
Reyhani A, McKenzie TG, Fu Q, Qiao GG. Redox-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. Aust J Chem 2019. [DOI: 10.1071/ch19109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reversible addition–fragmentation chain transfer (RAFT) polymerization initiated by a radical-forming redox reaction between a reducing and an oxidizing agent (i.e. ‘redox RAFT’) represents a simple, versatile, and highly useful platform for controlled polymer synthesis. Herein, the potency of a wide range of redox initiation systems including enzyme-mediated redox reactions, the Fenton reaction, peroxide-based reactions, and metal-catalyzed redox reactions, and their application in initiating RAFT polymerization, are reviewed. These redox-RAFT polymerization methods have been widely studied for synthesizing a broad range of homo- and co-polymers with tailored molecular weights, compositions, and (macro)molecular structures. It has been demonstrated that redox-RAFT polymerization holds particular promise due to its excellent performance under mild conditions, typically operating at room temperature. Redox-RAFT polymerization is therefore an important and core part of the RAFT methodology handbook and may be of particular importance going forward for the fabrication of polymeric biomaterials under biologically relevant conditions or in biological systems, in which naturally occurring redox reactions are prevalent.
Collapse
|
9
|
Roh YH, Moon JY, Hong EJ, Kim HU, Shim MS, Bong KW. Microfluidic fabrication of biocompatible poly(N-vinylcaprolactam)-based microcarriers for modulated thermo-responsive drug release. Colloids Surf B Biointerfaces 2018; 172:380-386. [PMID: 30193197 DOI: 10.1016/j.colsurfb.2018.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022]
Abstract
Various thermo-responsive polymers have been developed for controlled drug delivery upon the local application of external heat. The development of thermo-responsive polymers with high biocompatibility and tunable thermo-sensitivity is crucial for safe and efficient therapeutic application. In this study, thermo-responsive drug carriers featuring tunable thermo-sensitivities were synthesized using biocompatible poly(N-vinyl caprolactam) (PVCL) and stop-flow lithography. The PVCL-based particles showed selective drug release depending on temperature, illustrating their feasibility for on-demand controlled drug delivery. The volume phase transition temperature (VPTT) of the PVCL-based particles can be adjusted to vary from room temperature to body temperature by controlling their monomer compositions. In addition, modulated drug release was achieved by constructing multicompartments of different thermo-sensitivities within the PVCL particles. To accomplish thermo-responsive anticancer therapy, doxorubicin (DOX) was encapsulated into the PVCL particles as an anticancer drug. The DOX-loaded PVCL particles exhibited both thermo-responsive drug release and anticancer activity. This study demonstrates that thermo-responsive PVCL particles are highly promising carriers for safe and targeted anticancer therapy.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ju Yeon Moon
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Ji Hong
- Division of Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Langlais M, Coutelier O, Destarac M. Thiolactone-Functional Reversible Deactivation Radical Polymerization Agents for Advanced Macromolecular Engineering. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marvin Langlais
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, Cedex 9 31062 Toulouse, France
| | - Olivier Coutelier
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, Cedex 9 31062 Toulouse, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, Cedex 9 31062 Toulouse, France
| |
Collapse
|
11
|
Devlaminck DJG, Van Steenberge PHM, De Keer L, Reyniers MF, D'hooge DR. A detailed mechanistic study of bulk MADIX of styrene and its chain extension. Polym Chem 2017. [DOI: 10.1039/c7py00961e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By combining experimental and modeling tools, a detailed characterization study of MADIX properties becomes possible.
Collapse
Affiliation(s)
| | | | - Lies De Keer
- Laboratory for Chemical Technology (LCT)
- Ghent University
- B-9052 Ghent
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- B-9052 Ghent
- Belgium
- Centre for Textile Science and Engineering
| |
Collapse
|