1
|
Adak T. Homogeneous Gold Catalysis: Development and Recent Advances. Chem Asian J 2025:e202500040. [PMID: 40292763 DOI: 10.1002/asia.202500040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Gold catalysis has witnessed remarkable advances over the past decade, with numerous insightful reviews chronicling this progress. However, a comprehensive review addressing developments in the field during the post-pandemic COVID era remains notably absent. This review aims to bridge that gap by providing an in-depth analysis of recent studies, shedding light on the unique properties of gold complexes, particularly the intriguing aurophilic interactions that distinguish gold chemistry. The review systematically explores the latest achievements in both mono- and dinuclear gold-catalyzed reactions, with a focus on their applications in diverse fields, including redox coupling, asymmetric catalysis, photo-, and electrocatalysis. A special emphasis is placed on the comparative performance of mono- and dinuclear gold catalysts, with the latter often exhibiting enhanced catalytic efficiency and selectivity in certain reactions. By integrating mechanistic insights and DFT perspectives with representative experimental studies from recent years, this review highlights the significance of gold catalysis to synthetic chemistry, identifies emerging trends and outlines future directions for the field.
Collapse
Affiliation(s)
- Tapas Adak
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 Mathew Ave, Urbana, Illinois, 61801, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Lidskog A, Li Y, Gupta AK, Mishra A, Sundin A, Wärnmark K. Diastereospecific Synthesis of Vicinally Substituted 2-Oxazolidinones via Oxidative Rearrangement of α,β-Unsaturated γ-Lactams. J Org Chem 2025; 90:1209-1213. [PMID: 39762143 PMCID: PMC11744868 DOI: 10.1021/acs.joc.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
A diastereospecific synthesis of vicinally substituted 2-oxazolidinones from α,β-unsaturated lactams using m-chloroperoxybenzoic acid is reported. Several highly substituted 2-oxazolidinones were obtained in 19-46% yields in a one-pot reaction with complete control over the relative stereochemistry. The proposed reaction sequence consists of a Baeyer-Villiger oxidation, an epoxidation, and a concerted rearrangement. Experimental results and density functional theory calculations indicate that a CH2COOEt substituent at position 4 of the lactam is necessary for the diastereospecific rearrangement to take place.
Collapse
Affiliation(s)
| | - Yutang Li
- Center for Analysis and Synthesis,
Department of Chemistry, Lund University, Lund SE 221 00, Sweden
| | - Arvind Kumar Gupta
- Center for Analysis and Synthesis,
Department of Chemistry, Lund University, Lund SE 221 00, Sweden
| | - Abhishek Mishra
- Center for Analysis and Synthesis,
Department of Chemistry, Lund University, Lund SE 221 00, Sweden
| | - Anders Sundin
- Center for Analysis and Synthesis,
Department of Chemistry, Lund University, Lund SE 221 00, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis,
Department of Chemistry, Lund University, Lund SE 221 00, Sweden
| |
Collapse
|
3
|
Cunningham CC, Panger JL, Lupi M, Denmark SE. Organoselenium-Catalyzed Enantioselective Synthesis of 2-Oxazolidinones from Alkenes. Org Lett 2024; 26:6703-6708. [PMID: 39082836 DOI: 10.1021/acs.orglett.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
An operationally simple method for generating enantioenriched 2-oxazolidinones from N-Boc amines and mono- or trans-disubstituted alkenes via chiral organoselenium catalysis is described. Critical to the success of the transformation was the inclusion of triisopropylsilyl chloride (TIPSCl), likely because it sequestered fluoride generated by the oxidant (N-fluorocollidinium tetrafluoroborate) throughout the reaction and suppressed side reactivity. The scope of both the amine and alkene substrates was explored, generating a variety of 2-oxazolidinones in modest to high yields with high enantioselectivities.
Collapse
Affiliation(s)
- Carter C Cunningham
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| | - Jesse L Panger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| | - Michela Lupi
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 13, Sesto Fiorentino (FI), 50019 Florence, Italy
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Takamura H, Sugitani Y, Morishita R, Yorisue T, Kadota I. Total synthesis and structure-antifouling activity relationship of scabrolide F. Org Biomol Chem 2024; 22:5739-5747. [PMID: 38828517 DOI: 10.1039/d4ob00698d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment-coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuki Sugitani
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Ryohei Morishita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, 6 Yayoigaoka, Sanda 669-1546, Japan
- Division of Nature and Environmental Management, Museum of Nature and Human Activities, 6 Yayoigaoka, Sanda 669-1546, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
5
|
Hong F, Aldhous TP, Kemmitt PD, Bower JF. A directed enolization strategy enables by-product-free construction of contiguous stereocentres en route to complex amino acids. Nat Chem 2024; 16:1125-1132. [PMID: 38565976 PMCID: PMC11230901 DOI: 10.1038/s41557-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Homochiral α-amino acids are widely used in pharmaceutical design as key subunits in chiral catalyst synthesis or as building blocks in synthetic biology. Many synthetic methods have been developed to access rare or unnatural variants by controlling the installation of the α-stereocentre. By contrast, and despite their importance, α-amino acids possessing β-stereocentres are much harder to synthesize. Here we demonstrate an iridium-catalysed protocol that allows the direct upconversion of simple alkenes and glycine derivatives to give β-substituted α-amino acids with exceptional levels of regio- and stereocontrol. Our method exploits the native directing ability of a glycine-derived N-H unit to facilitate Ir-catalysed enolization of the adjacent carbonyl. The resulting stereodefined enolate cross-couples with a styrene or α-olefin to install two contiguous stereocentres. The process offers very high levels of regio- and stereocontrol and occurs with complete atom economy. In broader terms, our reaction design offers a unique directing-group-controlled strategy for the direct stereocontrolled α-alkylation of carbonyl compounds, and provides a powerful approach for the synthesis of challenging contiguous stereocentres.
Collapse
Affiliation(s)
- Fenglin Hong
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Timothy P Aldhous
- Department of Chemistry, University of Liverpool, Liverpool, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | - Paul D Kemmitt
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - John F Bower
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Jendoubi A, Arfaoui Y, Palaudoux J, Al-Mogren MM, Hochlaf M. DFT mechanistic study of the chemical fixation of CO 2 by aziridine derivatives. J Comput Chem 2024; 45:563-573. [PMID: 38031324 DOI: 10.1002/jcc.27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Using density functional theory (DFT), we treat the reaction of coupling of CO2 with aziridine in gas phase, in the presence of water and of a green catalyst (NaBr). Computations show that, in gas phase, this ring-opening conversions to oxazolidinones initiates by coordinating a CO2 molecule to the nitrogen atom of the aziridine. Then, a nucleophilic interaction between one oxygen atom of the coordinated CO2 and the carbon atom of the aziridine occurs. For methyl substituted aziridine, two pathways are proposed leading either to 4-oxazolidinone or to 5-oxazolidinone. Besides, we show that the activation energy of this reaction reduces in aqueous solution, in the presence of a water molecule explicitly or NaBr catalyst. In addition, the corresponding reaction mechanisms and regioselectivity associated with this ring-opening conversions to oxazolidinones, in the presence of carbon dioxide are found to be influenced by solvent and catalyst. The present findings should allow better designing regioisomer oxazolidinones relevant for organic chemistry, medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Abir Jendoubi
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| | - Youssef Arfaoui
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| |
Collapse
|
7
|
Madiu R, Dellosso B, Doran EL, Doran JM, Pinarci AA, TenHoeve TM, Howard AM, Stroud JL, Rivera DA, Moskovitz DA, Finneran SJ, Singer AN, Rossi ME, Moura-Letts G. Synthesis of aminoalcohols from substituted alkenes via tungstenooxaziridine catalysis. Org Biomol Chem 2024; 22:2300-2306. [PMID: 38410027 DOI: 10.1039/d4ob00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we report the WO2Dipic(H2O) promoted oxyamination of alkenes using sulfonamides as the quantitative source of N. The reaction works for activated and unactivated alkenes in high yields, diastereoselectivities, and stereospecificity. A catalytic cycle involving the formation of tungstenooxaziridine complex 1 as the active catalyst and hydrolysis of tungstenooxazolidine intermediate A as the rate-determining-step has been proposed. Initial kinetic and competition experiments provide evidence for the proposed mechanism.
Collapse
Affiliation(s)
- Rufai Madiu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Brandon Dellosso
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Erin L Doran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Jenna M Doran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Ali A Pinarci
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Tyler M TenHoeve
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Amari M Howard
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - James L Stroud
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Dominic A Rivera
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Dylan A Moskovitz
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Steven J Finneran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Alyssa N Singer
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Morgan E Rossi
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| |
Collapse
|
8
|
Cataffo A, Peña-López M, Pedrazzani R, Echavarren AM. Chiral Auxiliary Approach for Gold(I)-Catalyzed Cyclizations. Angew Chem Int Ed Engl 2023; 62:e202312874. [PMID: 37872748 DOI: 10.1002/anie.202312874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Two different classes of stereoselective cyclizations have been developed using a chiral auxiliary approach with commercially available [JohnPhosAu(MeCN)SbF6 ] as catalyst. First, a stereoselective cascade cyclization of 1,5-enynes was achieved using the Oppolzer camphorsultam as chiral auxiliary. In this case, a one-pot cyclization-hydrolysis sequence was developed to directly afford enantioenriched spirocyclic ketones. Then, the stereoselective alkoxycyclization of 1,6-enynes was mediated by an Evans-type oxazolidinone. A reduction-hydrolysis sequence was selected to remove the auxiliary to give enantioenriched β-tetralones. DFT studies confirmed that the steric clash between the chiral auxiliary and alkene accounts for the experimentally observed diastereoselective cyclization through the Si face.
Collapse
Affiliation(s)
- Andrea Cataffo
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Miguel Peña-López
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Riccardo Pedrazzani
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
9
|
Reddy MB, McGarrigle EM. Visible-light-induced bifunctionalisation of (homo)propargylic amines with CO 2 and arylsulfinates. Chem Commun (Camb) 2023; 59:13711-13714. [PMID: 37906261 DOI: 10.1039/d3cc04160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An unprecedented carboxylative sulfonylation of (homo)propargyl amines with CO2 and sodium arylsulfinates under visible light irradiation has been developed with high efficiency. This ruthenium-catalysed photochemical protocol offers broad substrate scope giving 2-oxazolidinones and 2-oxazinones bearing alkyl sulfones in good yields under ambient reaction conditions. An in situ double bond isomerisation occurs in tandem. A mechanistic rationale for these radical-initiated carboxylative cyclisations involving sulfinyl radicals is presented, supported by control and quenching experiments.
Collapse
Affiliation(s)
- Mandapati Bhargava Reddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Lu H, Handore KL, Wood TE, Shimokura GK, Schimmer AD, Batey RA. Total Synthesis of the 2,5-Disubstituted γ-Pyrone E1 UAE Inhibitor Himeic Acid A. Org Lett 2023; 25:7502-7506. [PMID: 37801638 DOI: 10.1021/acs.orglett.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The first total synthesis of the E1 ubiquitin-activating enzyme inhibitor, himeic acid A, is reported. A McCombie reaction was used to form the core γ-pyrone via a 6π-electrocyclization. A dioxenone ring-opening/acyl ketene trapping reaction with a primary amide provided the unusual unsymmetrical imide functionality. Other key steps include the use of an Evans auxiliary alkylation (d.r. ≥ 95:5) to install the (S)-2-methyl succinic acid fragment and a cross-metathesis to install the unsaturated side-chain.
Collapse
Affiliation(s)
- Heyuan Lu
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Kishor L Handore
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Tabitha E Wood
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Grace K Shimokura
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Acceleration Consortium, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
11
|
Wu X, Sun Y, Zeng Y, Li X. Mechanistic Insights into Oxazolone Synthesis by Bimetallic Au-Pd-Catalyzed Catalysis and Catalyst Design: DFT Investigations. J Org Chem 2023. [PMID: 37449782 DOI: 10.1021/acs.joc.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bimetallic synergistic catalysis is one of the most effective and powerful strategies for the synthesis of oxazolones, an important species in organic synthesis. In this work, the mechanism of AuCl(PMe3)/AgOTf-Pd(0) ([Au-Pd]) bimetallic catalyst-catalyzed oxazolone synthesis using N-alkynyl carbamates as precursors was studied in detail by DFT calculations and the catalytic performances of a series of bimetallic catalysts were evaluated. The results show that the reaction begins from the [Au]-catalyzed cycloisomerization of N-alkynyl carbamates. After the five-membered intermediate is formed, the [Pd(0)]-catalyzed cycle starts, which contains three steps: oxidation addition, transmetalation, and reductive elimination. The whole reaction belongs to a catalyzed catalysis, and the reductive elimination is the rate-determining step. In the transmetalation process, both the [Pd(0)] catalyst and the ionic bridge are necessary. For the [Au-Pd]-catalyzed process, it is Cl- as the bridge, not OTf-. The cheaper metal compound, AgCl(PMe3), can serve as the alternative of AuCl(PMe3) to co-catalyze with the [Pd(0)] catalyst for the title reaction.
Collapse
Affiliation(s)
- Xueju Wu
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yuanyuan Sun
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xiaoyan Li
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
12
|
Gao Y, Zhang B, He J, Baran PS. Ni-Electrocatalytic Enantioselective Doubly Decarboxylative C(sp 3)-C(sp 3) Cross Coupling. J Am Chem Soc 2023; 145:11518-11523. [PMID: 37192404 PMCID: PMC10685996 DOI: 10.1021/jacs.3c03337] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The first examples of enantioselective doubly decarboxylative cross coupling are disclosed. Malonate half amides are smoothly coupled to a variety of primary carboxylic acids after formation of the corresponding redox-active esters under Ni-electrocatalytic conditions using a new chiral ligand based on PyBox, resulting in amides with α-alkylated stereocenters. The scope of the reaction is broad, tolerating numerous functional groups, and uniformly proceeds with high ee. Finally, the potential utility of this enantioselective radical-radical reductive cross coupling to simplify synthesis is demonstrated with numerous case studies.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jiayan He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
13
|
Medici F, Puglisi A, Rossi S, Raimondi L, Benaglia M. Stereoselective [2 + 2] photodimerization: a viable strategy for the synthesis of enantiopure cyclobutane derivatives. Org Biomol Chem 2023; 21:2899-2904. [PMID: 36939196 DOI: 10.1039/d3ob00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The [2 + 2] photodimerization of cinnamic acid derivatives to afford enantiopure cyclobutanes has been investigated. The use of a chiral auxiliary represents a convenient and straightforward method to exert enantiocontrol on the reaction. By exploiting Evans oxazolidinones, the stereoselective light-driven cyclisation affords a functionalised cyclobutane ring with up to 99% enantiocontrol after removing the chiral auxiliary. In-flow experiments allowed us to improve further the efficiency of the methodology, leading to high conversion and excellent enantioselectivity.
Collapse
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Alessandra Puglisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Sergio Rossi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Laura Raimondi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| |
Collapse
|
14
|
Mondal S, Tseng CJ, Tan JJY, Lin DY, Lin HY, Weng JH, Lin CH, Mong KKT. Tunable Strategy for the Asymmetric Synthesis of Sulfoglycolipids from Mycobacterium tuberculosis To Elucidate the Structure and Immunomodulatory Property Relationships. Angew Chem Int Ed Engl 2023; 62:e202212514. [PMID: 36349422 DOI: 10.1002/anie.202212514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/11/2022]
Abstract
We developed a versatile asymmetric strategy to synthesize different classes of sulfoglycolipids (SGLs) from Mycobacterium tuberculosis. The strategy features the use of asymmetrically protected trehaloses, which were acquired from the glycosylation of TMS α-glucosyl acceptors with benzylidene-protected thioglucosyl donors. The positions of the protecting groups at the donors and acceptors can be fine-tuned to obtain different protecting-group patterns, which is crucial for regioselective acylation and sulfation. In addition, a chemoenzymatic strategy was established to prepare the polymethylated fatty acid building blocks. The strategy employs inexpensive lipase as a desymmetrization agent in the preparation of the starting substrate and readily available chiral oxazolidinone as a chirality-controlling agent in the construction of the polymethylated fatty acids. A subsequent investigation on the immunomodulatory properties of each class of SGLs showed how the structures of SGLs impact the host innate immunity response.
Collapse
Affiliation(s)
- Soumik Mondal
- Applied Chemistry Department, National Yang Ming Chiao Tung University (Previously National Chiao Tung University), 1001, University Road, Hsinchu City, Taiwan, R. O. C
| | - Chieh-Jen Tseng
- Applied Chemistry Department, National Yang Ming Chiao Tung University (Previously National Chiao Tung University), 1001, University Road, Hsinchu City, Taiwan, R. O. C
| | - Janet Jia-Yin Tan
- Institute of Biological Chemistry, Academia Sinica, No.128, Academia Road Section2, Nan-Kang, Taipei, 11529, Taiwan
| | - Ding-Yuan Lin
- Applied Chemistry Department, National Yang Ming Chiao Tung University (Previously National Chiao Tung University), 1001, University Road, Hsinchu City, Taiwan, R. O. C
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No.128, Academia Road Section2, Nan-Kang, Taipei, 11529, Taiwan
| | - Jui-Hsia Weng
- Institute of Biological Chemistry, Academia Sinica, No.128, Academia Road Section2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No.128, Academia Road Section2, Nan-Kang, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang Ming Chiao Tung University (Previously National Chiao Tung University), 1001, University Road, Hsinchu City, Taiwan, R. O. C
| |
Collapse
|
15
|
Kaya C, Birgül K, Bülbül B. Fundamentals of chirality, resolution, and enantiopure molecule synthesis methods. Chirality 2023; 35:4-28. [PMID: 36366874 DOI: 10.1002/chir.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The chirality of molecules is a concept that explains the interactions in nature. We may observe the same formula but different organizations revolving around the chiral center. Since Pasteur's meticulous observation of sodium ammonium tartrate crystals' structure, scientists have discovered many features of chiral molecules. The number of newly approved single enantiomeric drugs increases every year and takes place in the market. Thus, separation or resolution methods of racemic mixtures are of continued importance in the efficacy of drugs, installation of affordable production processes, and convenient synthetic chemistry practice. This article presents the asymmetric synthesis approaches and the classification of direct resolution methods of chiral molecules.
Collapse
Affiliation(s)
- Cem Kaya
- Department of Pharmacy, Haydarpasa Numune Training and Research Hospital, İstanbul, Turkey.,Department of Pharmaceutical Chemistry, School of Pharmacy, Altınbaş University, İstanbul, Turkey
| | - Kaan Birgül
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Turkey
| | - Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Düzce, Turkey
| |
Collapse
|
16
|
Kukhtin-Ramirez-Reaction-Inspired Deprotection of Sulfamidates for the Synthesis of Amino Sugars. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010182. [PMID: 36615376 PMCID: PMC9822045 DOI: 10.3390/molecules28010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a mild strategy for deprotecting cyclic sulfamidates via the Kukhtin-Ramirez reaction to access amino sugars. The method features the removal of the sulfonic group of cyclic sulfamidates, which occurs through an N-H insertion reaction that implicates the Kukhtin-Ramirez adducts, followed by a base-promoted reductive N-S bond cleavage. The mild reaction conditions of the protocol enable the formation of amino alcohols including analogs that bear multiple functional groups.
Collapse
|
17
|
Abstract
The first total synthesis of scabrolide F, a norcembranolide isolated from the soft coral Sinularia scabra, is described. Hydroxycarboxylic acid, which is the key synthetic intermediate, was synthesized in a convergent manner by fragment coupling. The obtained hydroxycarboxylic acid was subjected to macrolactonization and subsequent transannular ring-closing metathesis (RCM) to furnish scabrolide F. The synthetic protocol can be extended to the total synthesis of other norcembranolides.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Sugitani
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Ryohei Morishita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Tong X, Schneck F, Fu GC. Catalytic Enantioselective α-Alkylation of Amides by Unactivated Alkyl Electrophiles. J Am Chem Soc 2022; 144:14856-14863. [PMID: 35925763 PMCID: PMC10079215 DOI: 10.1021/jacs.2c06154] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbonyl groups that bear an α stereocenter are commonly found in bioactive compounds, and intense effort has therefore been dedicated to the pursuit of stereoselective methods for constructing this motif. While the chiral auxiliary-enabled coupling of enolates with alkyl electrophiles represented groundbreaking progress in addressing this challenge, the next advance in the evolution of this enolate-alkylation approach would be to use a chiral catalyst to control stereochemistry. Herein we describe the achievement of this objective, demonstrating that a nickel catalyst can accomplish enantioselective intermolecular alkylations of racemic Reformatsky reagents with unactivated electrophiles; the resulting α-alkylated carbonyl compounds can be converted in one additional step into a diverse array of ubiquitous families of chiral molecules. Applying a broad spectrum of mechanistic tools, we have gained insight into key intermediates (including the alkylnickel(II) resting state) and elementary steps of the catalytic cycle.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Felix Schneck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Tovillas P, Navo CD, Oroz P, Avenoza A, Corzana F, Zurbano MM, Jiménez-Osés G, Busto JH, Peregrina JM. Synthesis of β 2,2-Amino Acids by Stereoselective Alkylation of Isoserine Derivatives Followed by Nucleophilic Ring Opening of Quaternary Sulfamidates. J Org Chem 2022; 87:8730-8743. [PMID: 35732024 PMCID: PMC9490828 DOI: 10.1021/acs.joc.2c01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral bicyclic N,O-acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem N,O-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters. Quantum mechanical calculations revealed that a concave-face alkylation is favored due to smaller torsional and steric interactions at the bicyclic scaffold. This synthetic methodology gives access to chiral β2,2-amino acids, attractive compounds bearing a quaternary stereocenter at the α position with applications in peptidomimetic and medicinal chemistry. Thus, enantiopure α-alkylisoserine derivatives were produced upon acidic hydrolysis of these alkylated scaffolds. In addition, α-benzylisoserine was readily transformed into a five-membered ring cyclic sulfamidate, which was ring opened regioselectively with representative nucleophiles to yield other types of enantiopure β2,2-amino acids such as α-benzyl-α-heterofunctionalized-β-alanines and α-benzylnorlanthionine derivatives.
Collapse
Affiliation(s)
- Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
20
|
Takahashi K, Kudo S, Kawamura K, Kusakabe T, Kikkawa S, Azumaya I, Kato K. Synthesis of the Proposed Structure of Mohangic Acid C. Org Lett 2022; 24:3416-3420. [DOI: 10.1021/acs.orglett.2c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shunya Kudo
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kiharu Kawamura
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Taichi Kusakabe
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
21
|
Wang LL, Yu Q, Zhang W, Yang S, Peng L, Zhang L, Li XN, Gagosz F, Kirschning A. Asymmetric Total Synthesis of Antibiotic Elansolid A. J Am Chem Soc 2022; 144:6871-6881. [PMID: 35410472 DOI: 10.1021/jacs.2c01133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elansolid A is a structurally complex polyketide macrolactone natural product that exhibits promising antibacterial properties. Its challenging asymmetric total synthesis was achieved by a convergent strategy, in which the tetrahydroindane core of the molecule and an eastern vinyl iodide moiety were combined as the main fragments. The central tetrahydroindane motif was constructed with high stereoselectivity by a bioinspired intramolecular Diels-Alder cycloaddition, generating four stereogenic centers in a single step. The stereocontrol of this key step could be achieved by virtue of a 1,3-allylic strain generated by the temporary introduction of a steric-directing iodine substituent on the substrate. The formation of the macrolactone motif that completes the synthesis was achieved via two different retrosynthetic disconnections, namely, a Suzuki-Miyaura cross-coupling or an alternative Mukaiyama esterification reaction.
Collapse
Affiliation(s)
- Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Qi Yu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuai Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Lin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
22
|
Puriņš M, Waser J. Asymmetric Cyclopropanation and Epoxidation via a Catalytically Formed Chiral Auxiliary. Angew Chem Int Ed Engl 2022; 61:e202113925. [PMID: 35029319 PMCID: PMC9306854 DOI: 10.1002/anie.202113925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/07/2022]
Abstract
For the enantioselective diversification of a single starting material, a different chiral catalyst is usually required for each transformation. Herein, we extend the concept of catalytically formed chiral auxiliary from hydrogenation to the asymmetric cyclopropanation and epoxidation of tetra-substituted olefins, alleviating the need for different chiral catalysts in the alkene functionalization step. The chiral auxiliary is catalytically constructed from propargylic amines in a Pd-catalyzed enantioselective carboetherification step using a commercially available trifluoroacetaldehyde hemiacetal tether. The installed auxiliary is then controlling the stereochemistry of the cyclopropanation and the epoxidation using standard highly reactive reagents to give enantioenriched spirocyclic aminomethylcyclopropanols and α-amino-α-hydroxy ketones.
Collapse
Affiliation(s)
- Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
23
|
Puriņš M, Waser J. Asymmetric Cyclopropanation and Epoxidation via a Catalytically Formed Chiral Auxiliary. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Salam A, Kumar D, Sahu TK, Khan R, Khan T. Total Synthesis of (−)‐Magnoshinin and (+)‐Merrilliaquinone: Application of a Late‐Stage Oxidative Functionalization Protocol. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abdus Salam
- Indian Institute of Technology Bhubaneswar School of Basic Sciences Argul, KhurdhaOdishaBhubaneswar 752050 Bhubaneswar INDIA
| | - Dileep Kumar
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Tonish K. Sahu
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Rahimuddin Khan
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Tabrez Khan
- Indian Institute of Technology Bhubaneswar School of Basic Sciences Argul, Jatni 752050 Khurdha INDIA
| |
Collapse
|
25
|
Qin X, Zou N, Cheng X, Liang C, Mo D. Synthesis of Chiral Nine‐Membered N‐Heterocycles through Silver(I)‐Promoted Cycloaddition and Rearrangement from
N
‐Vinyl‐α,β‐Unsaturated Nitrones with Chiral 3‐Propioloyloxazolidin‐2‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Ting Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Xiao‐Ling Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
26
|
Recent Advances in the Synthesis and Ring‐Opening Transformations of 2‐Oxazolidinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Bhamboo P, Bera S, Mondal D. TiCl
4
‐Promoted Asymmetric Aldol Reaction of Oxazolidinones and its Sulphur‐Congeners for Natural Product Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prateek Bhamboo
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
28
|
Rostami A, Ebrahimi A, Sakhaee N, Golmohammadi F, Al-Harrasi A. Microwave-Assisted Electrostatically Enhanced Phenol-Catalyzed Synthesis of Oxazolidinones. J Org Chem 2021; 87:40-55. [PMID: 34581567 DOI: 10.1021/acs.joc.1c01686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electrostatically enhanced phenol is utilized as a straightforward, sustainable, and potent one-component organocatalyst for the atom-economic transformation of epoxides to oxazolidinones under microwave irradiation. Integrating a positively charged center into phenols over a modular one-step preparation gives rise to a bifunctional system with improved acidity and activity, competent in rapid assembly of epoxides and isocyanates under microwave irradiation in a short reaction time (20-60 min). A careful assessment of the efficacy of various positively charged phenols and anilines and the impact of several factors, such as catalyst loading, temperature, and the kind of nucleophile, on catalytic reactivity were examined. Under neat conditions, this one-component catalytic platform was exploited to prepare more than 40 examples of oxazolidinones from a variety of aryl- and alkyl-substituted epoxides and isocyanates within minutes, where up to 96% yield and high degree of selectivity were attained. DFT calculations to achieve reaction barriers for different catalytic routes were conducted to provide mechanistic understanding and corroborated the experimental findings in which concurrent epoxide ring-opening and isocyanate incorporation were proposed.
Collapse
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Nader Sakhaee
- Roger Adams Laboratory, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Farhad Golmohammadi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| |
Collapse
|
29
|
Mumford EM, Hemric BN, Denmark SE. Catalytic, Enantioselective Syn-Oxyamination of Alkenes. J Am Chem Soc 2021; 143:13408-13417. [PMID: 34375090 DOI: 10.1021/jacs.1c06750] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chemo-, regio-, diastereo-, and enantioselective 1,2-oxyamination of alkenes using selenium(II/IV) catalysis with a chiral diselenide catalyst is reported. This method uses N-tosylamides to generate oxazoline products that are useful both as protected 1,2-amino alcohol motifs and as chiral ligands. The reaction proceeds in good yields with excellent enantio- and diastereoselectivity for a variety of alkenes and pendant functional groups such as sulfonamides, alkyl halides, and glycol-protected ketones. Furthermore, the rapid generation of oxazoline products is demonstrated in the expeditious assembly of chiral PHOX ligands as well as diversely protected amino alcohols.
Collapse
Affiliation(s)
- Emily M Mumford
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Brett N Hemric
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Marin L, Jerhaoui S, Kolodziej E, Guillot R, Gandon V, Colobert F, Schulz E, Wencel‐Delord J, Lebœuf D. Sulfoxide‐Controlled Stereoselective Aza‐Piancatelli Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Soufyan Jerhaoui
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emilie Kolodziej
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
31
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
32
|
Damiano C, Sonzini P, Manca G, Gallo E. Valorization of CO
2
into
N
‐alkyl Oxazolidin‐2‐ones Promoted by Metal‐Free Porphyrin/TBACl System: Experimental and Computational Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Caterina Damiano
- Department of Chemistry University of Milan Via Golgi, 19 20133 Milan Italy
| | - Paolo Sonzini
- Department of Chemistry University of Milan Via Golgi, 19 20133 Milan Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti OrganoMetallici ICCOM-CNR Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Emma Gallo
- Department of Chemistry University of Milan Via Golgi, 19 20133 Milan Italy
| |
Collapse
|
33
|
Bresciani G, Bortoluzzi M, Pampaloni G, Marchetti F. Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. Org Biomol Chem 2021; 19:4152-4161. [PMID: 33881440 DOI: 10.1039/d1ob00458a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The catalytic potential of ammonium halide salts was explored in the coupling reaction of a model aziridine with carbon dioxide, highlighting the superior activity of [NH2Et2]I. Then, working at room temperature, atmospheric CO2 pressure and in the absence of solvent, the [NH2Et2]I-catalyzed synthesis of a series of 5-aryl-2-oxazolidinones was accomplished in good to high yields and excellent selectivity, from 2-aryl-aziridines with N-methyl or N-ethyl groups. NMR studies and DFT calculations outlined the pivotal role of both the diethylammonium cation and the iodide anion. The proposed method represents a convenient choice for obtaining a limited number of valuable molecules for which more complex and more expensive catalytic systems have been reported even in recent years.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Marco Bortoluzzi
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy. and University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, I-56124 Pisa, Italy and CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
| |
Collapse
|
34
|
Bresciani G, Zacchini S, Famlonga L, Pampaloni G, Marchetti F. Trapping carbamates of α-Amino acids: One-Pot and catalyst-free synthesis of 5-Aryl-2-Oxazolidinonyl derivatives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Synthesis of multifunctional 4-hydroxymethyl 2-oxazolidinones from glycidyl carbamate derivatives catalyzed by bicyclic guanidine. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Yadav RN, Paniagua A, Banik BK. An intramolecular oxa-Michael addition on prebuilt β-lactam tethered α, β-unsaturated ester: A remarkable synthesis of a unique scaffold of 2,3-fused β-lactam-1,4-dioxepane. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Meninno S, Franco F, Benaglia M, Lattanzi A. Pyrazoleamides in Catalytic Asymmetric Reactions: Recent Advances. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Francesca Franco
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| |
Collapse
|
38
|
Bagheri I, Mohammadi L, Zadsirjan V, Heravi MM. Organocatalyzed Asymmetric Mannich Reaction: An Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202003034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ilnaz Bagheri
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Leila Mohammadi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
39
|
Zhang Y, Ji P, Gao F, Huang H, Zeng F, Wang W. Photoredox Asymmetric Nucleophilic Dearomatization of Indoles with Neutral Radicals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yueteng Zhang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-0001, United States
| | - Fanxun Zeng
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
40
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02695j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recent review on the α-C–H functionalization of tertiary amines using low-cost and benign I2 or its derivatives.
Collapse
Affiliation(s)
- Mohit L. Deb
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - B. Shriya Saikia
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Paran J. Borpatra
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Pranjal K. Baruah
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| |
Collapse
|
41
|
Heravi MM, Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 2020; 10:44247-44311. [PMID: 35557843 PMCID: PMC9092475 DOI: 10.1039/d0ra09198g] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical applications and their selected synthetic pathways. It is worth mentioning that the reported examples are actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic information has been extracted from both scientific journals and the wider patent literature.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
42
|
Fernandes RA, Gangani AJ, Kumari A, Kumar P. A Decade of Muricatacin Synthesis and Beyond. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Ashvin J. Gangani
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Anupama Kumari
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| |
Collapse
|
43
|
Moreira R, Noden M, Taylor SD. Synthesis of Azido Acids and Their Application in the Preparation of Complex Peptides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAzido acids are important synthons for the synthesis of complex peptides. As a protecting group, the azide moiety is atom-efficient, easy to install and can be reduced in the presence of many other protecting groups, making it ideal for the synthesis of branched and/or cyclic peptides. α-Azido acids are less bulky than urethane-protected counterparts and react more effectively in coupling reactions of difficult-to-form peptide and ester bonds. Azido acids can also be used to form azoles on complex intermediates. This review covers the synthesis of azido acids and their application to the total synthesis of complex peptide natural products.1 Introduction2 Synthesis of α-Azido Acids2.1 From α-Amino Acids or Esters2.2 Via α-Substitution2.3 Via Electrophilic Azidation2.4 Via Condensation of N-2-Azidoacetyl-4-Phenylthiazolidin- 2-Thi one Enolates with Aldehydes and Acetals2.5 Synthesis of α,β-Unsaturated α-Azido Acids and Esters3 Synthesis of β-Azido Acids3.1 Preparation of Azidoalanine and 3-Azido-2-aminobutanoic Acids3.2 General Approaches to Preparing β-Azido Acids Other Than Azi doalanine and AABA4 Azido Acids in Total Synthesis4.1 α-Azido Acids4.2 β-Azido Acids and Azido Acids Containing an Azide on the Side
Chain5 Conclusions
Collapse
|
44
|
Bresciani G, Antico E, Ciancaleoni G, Zacchini S, Pampaloni G, Marchetti F. Bypassing the Inertness of Aziridine/CO 2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. CHEMSUSCHEM 2020; 13:5586-5594. [PMID: 32902136 DOI: 10.1002/cssc.202001823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2 . The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases.
Collapse
Affiliation(s)
- Giulio Bresciani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Emanuele Antico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
45
|
Smith IT, Neeley JB, Brinley TD, Fullmer PR, Andrus MB. Synthesis of pyrroloindolines through formal [3 + 2]-cycloaddition of indoles with chiral N-2-acetamidoacrylyl oxazolidinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Chaumont-Olive P, Cossy J. A One-Pot Iodo-Cyclization/Transition Metal-Catalyzed Cross-Coupling Sequence: Synthesis of Substituted Oxazolidin-2-ones from N-Boc-allylamines. Org Lett 2020; 22:3870-3874. [PMID: 32343584 DOI: 10.1021/acs.orglett.0c01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A one-pot iodo-cyclization/transition metal-catalyzed cross-coupling sequence is reported to access various C5-functionalized oxazolidin-2-ones from unsaturated N-Boc-allylamines. Depending on the Grignard reagents used for the cross-coupling, e.g., aryl- or cyclopropylmagnesium bromide, a cobalt or copper catalyst has to be used to obtain the functionalized oxazolidin-2-ones in good yields.
Collapse
Affiliation(s)
- Pauline Chaumont-Olive
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
47
|
Heravi MM, Janati F, Zadsirjan V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02586-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Bartoccini F, Mari M, Retini M, Galarini R, Bartolucci S, Piersanti G. Single‐Step Synthesis of Dehydroalanine Derivatives via a Brønsted Acid‐Catalyzed Multicomponent Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular SciencesUniversity of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino, PU Italy
| | - Michele Mari
- Department of Biomolecular SciencesUniversity of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino, PU Italy
| | - Michele Retini
- Department of Biomolecular SciencesUniversity of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino, PU Italy
| | - Roberta Galarini
- Centro Sviluppo e Validazione MetodiIstituto Zooprofilattico Sperimentale dell'Umbria e delle Marche “Togo Rosati” Via G. Salvemini 1 06126 Perugia, PG Italy
| | - Silvia Bartolucci
- Department of Biomolecular SciencesUniversity of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino, PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular SciencesUniversity of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino, PU Italy
| |
Collapse
|
49
|
Rostami A, Ebrahimi A, Husband J, Anwar MU, Csuk R, Al-Harrasi A. Squaramide-Quaternary Ammonium Salt as an Effective Binary Organocatalytic System for Oxazolidinone Synthesis from Isocyanates and Epoxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - John Husband
- Department of Chemistry; College of Science; Sultan Qaboos University; PO Box 36, Al-Khod 123 Muscat Sultanate of Oman
| | - Muhammad Usman Anwar
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Kurt-Mothes-str. 2; College of Science; Martin-Luther-University Halle-Wittenberg; 06120 Halle Saale Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| |
Collapse
|
50
|
Heravi MM, Dehghani M, Zadsirjan V, Ghanbarian M. Alkynes as Privileged Synthons in Selected Organic Name Reactions. Curr Org Synth 2020; 16:205-243. [PMID: 31975673 DOI: 10.2174/1570179416666190126100744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alkynes are actually basic chemicals, serving as privileged synthons for planning new organic reactions for assemblage of a reactive motif, which easily undergoes a further desirable transformation. Name reactions, in organic chemistry are referred to those reactions which are well-recognized and reached to such status for being called as their explorers, discoverers or developers. Alkynes have been used in various name reactions. In this review, we try to underscore the applications of alkynes as privileged synthons in prevalent name reactions such as Huisgen 1,3-dipolar cycloaddtion via Click reaction, Sonogashira reaction, and Hetero Diels-Alder reaction. OBJECTIVE In this review, we try to underscore the applications of alkynes as privileged synthons in the formation of heterocycles, focused on the selected reactions of alkynes as a synthon or impending utilization in synthetic organic chemistry, which have reached such high status for being included in the list of name reactions in organic chemistry. CONCLUSION Alkynes (including acetylene) are an unsaturated hydrocarbon bearing one or more triple C-C bond. Remarkably, alkynes and their derivatives are frequently being used as molecular scaffolds for planning new organic reactions and installing reactive functional group for further reaction. It is worth mentioning that in general, the terminal alkynes are more useful and more frequently being used in the art of organic synthesis. Remarkably, alkynes have found different applications in pharmacology, nanotechnology, as well as being known as appropriate starting precursors for the total synthesis of natural products and biologically active complex compounds. They are predominantly applied in various name reactions such as Sonogashira, Glaser reaction, Friedel-crafts reaction, Castro-Stephens coupling, Huisgen 1.3-dipolar cycloaddtion reaction via Click reaction, Sonogashira reaction, hetero-Diels-Alder reaction. In this review, we tried to impress the readers by presenting selected name reactions, which use the alkynes as either stating materials or precursors. We disclosed the applications of alkynes as a privileged synthons in several popular reactions, which reached to such high status being classified as name reactions. They are thriving and well known and established name reactions in organic chemistry such as Regioselective, 1,3-dipolar Huisgen cycloaddtion reaction via Click reaction, Sonogashira reaction and Diels-Alder reaction.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Mahzad Dehghani
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Manijheh Ghanbarian
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|