1
|
Dutta S, Kataki S, Banerjee I, Pohrmen CB, Jaiswal KK, Jaiswal AK. Microalgal biorefineries in sustainable biofuel production and other high-value products. N Biotechnol 2025; 87:39-59. [PMID: 40023220 DOI: 10.1016/j.nbt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Microalgae has been emerging as a promising solution against the backdrop of the global need for sustainable, eco-friendly alternatives. This review article analyses the use of photosynthetic microalgae as an important resource for sustainable biofuel and high value bioproduct production, emphasizing the potential of self-sustaining microalgae biorefineries. A closed-loop, integrated multi-product producing microalgal biorefinery approach could significantly reduce the indicated negative environmental and energy impact from standalone microalgal biofuel generation. The economic feasibility of these biorefineries is linked to their recovery rate, improved by integrating various unit operations as well as multiple product dimensions under optimal conditions, enhancing resource recovery, process efficiency, and profitability. This approach ensures profitability and ubiquitous implementation of microalgal biorefineries, offering a sustainable solution to market demands. In conclusion, making microalgae biorefineries a major player in sustainable bioeconomy underscores the necessity of interdisciplinary research to surmount current challenges and completely realize their advantages.
Collapse
Affiliation(s)
- Swapnamoy Dutta
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam 784001, India
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheryl Bernice Pohrmen
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry 605014, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry 605014, India.
| | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland.
| |
Collapse
|
2
|
Ngerem EC, Sanusi IA, Kana GE, Olaniran AO. Optimization of co-valorisation techniques for dairy and paper pulp wastewater in the cultivation of Chlorococcum sp. with a focus on mixture design, microwave-assisted pretreatment, and bioethanol production. Heliyon 2025; 11:e42531. [PMID: 40028583 PMCID: PMC11870163 DOI: 10.1016/j.heliyon.2025.e42531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
This study optimized biomass and lipid accumulation using mixed dairy and paper-pulp wastewater for the cultivation of Chlorococcum sp. The obtained microalgal biomass was thereafter subjected to microwave-assisted pretreatment for optimal fermentable sugar release. Microwave power (100-700 W), pretreatment time (1-7 min), and acid-liquid ratio (1-5 %) were the input parameters for the pretreatment optimization study. The wastewater mixture ratios (25:75, 50:50, 100:0) of dairy and paper-pulp wastewater (DWW and PWW respectively) were achieved using simplex lattice mixture design to obtain high biomass and lipid accumulation in Chlorococcum sp cultivation. The model recommended a mixture of 64.69 % DWW and 35.31 % PWW for optimal biomass concentration, and a ratio of 34.21 % DWW and 65.79 % PWW for maximum lipid accumulation, predicting biomass concentration of 1.17 g/L and lipid accumulation of 0.39 g/g. Experimental validation resulted in biomass concentration and lipid accumulation 0.94 g/L and 0.39 g/g, respectively. Moreover, the experimental confirmation of the predicted fermentable sugar (11.14 g/L) yielded 15.67 g/L with pretreatment set points of 2.52 % HCl for 4.06 min at 700 W. Additionally, the prospect of the optimized pretreated microalgal biomass for bioethanol production (7.85 g/L) was achieved. Findings from this study could facilitate the implementation of DWW and PWW wastewaters utilization that could significantly lower the use of scarce potable water in keeping with portable water, energy, and environmental sustainability nexus towards the realisation of a circular bioeconomy.
Collapse
Affiliation(s)
- Emmanuel C. Ngerem
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Isaac A. Sanusi
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Gueguim E.B. Kana
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Ademola O. Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, South Africa
| |
Collapse
|
3
|
de Souza Celente G, de Cassia de Souza Schneider R, Medianeira Rizzetti T, Lobo EA, Sui Y. Using wastewater as a cultivation alternative for microalga Dunaliella salina: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168812. [PMID: 38000734 DOI: 10.1016/j.scitotenv.2023.168812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Untreated or poorly treated wastewater still represents environmental issues world-widely. Wastewater, especially saline wastewater treatment, is still primarily associated with high costs from physical and chemical processes, as high salinity hinders biological treatment. One favourable way is to find the suitable biological pathways and organisms to improve the biological treatment efficiency. In this context, halophilic microorganisms could be strong candidates to address the economics and effectiveness of the saline wastewater treatment process. Dunaliella salina is a photoautotrophic microalga that grows in saline environments. It is known for producing marketable bio-compounds such as carotenoids, lipids, and proteins. A biological treatment based on D. salina cultivation offers the opportunity to treat saline wastewater, reducing the threat of possible eutrophication from inappropriate discharge. At the same time, D. salina cultivation could yield compounds of industrial relevance to turn saline wastewater treatment into a profitable and sustainable process. Most research on D. salina has primarily focused on bioproduct generation, leaving thorough reviews of its application in wastewater treatment inadequate. This paper discusses the future challenges and opportunities of using D. salina to treat wastewater from different sources. The main conclusions are (1) D. salina effectively recovers some heavy metals (driven by metal binding capacity and exposure time) and nutrients (driven by pH, their bioavailability, and functional groups in the cell); (2) salinity plays a significant role in bioproducts generation, and (3) wastewater can be combined with the generation of bioproducts.
Collapse
Affiliation(s)
- Gleison de Souza Celente
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Tiele Medianeira Rizzetti
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Eduardo Alcayaga Lobo
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Yixing Sui
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
4
|
Abstract
The excess biomass of drifting algae and their casting to the Baltic Sea coast imposes a significant environmental burden. The analysis of beach-cast algae showed that the dominant species are macroalgae Ulva sp., Furcellaria lumbricalis, Cladophora sp., and Polysiphonia fucoides. The biomass of Furcellaria and Polysiphonia algae, containing 25.6% and 19.98% sugars, respectively, has the greatest resource potential in terms of obtaining carbohydrates. Fucose, glucose, and galactose were found to be the most common carbohydrates. The lipid content did not exceed 4.3% (2.3–4.3%), while the fatty acid composition was represented by saturated fatty acids (palmitic, stearic, methyloleic, behenic, etc.). The highest content of crude protein was found in samples of macroalgae of the genus Polysiphonia and amounted to 28.2%. A study of the elemental composition of drifting algae revealed that they have a high carbon content (31.3–37.5%) and a low hydrogen (4.96–5.82%), and sulfur (1.75–3.00%) content. Red algal biomass has the most resource potential in terms of biofuel generation, as it has a high number of lipids and proteins that can produce melanoidins during hydrothermal liquefaction, enhancing the fuel yield. The study noted the feasibility of using the biomass of the studied algae taxa to produce polysaccharides and biofuels. The analyses of antioxidant properties, fat content, and fat composition do not provide convincing evidence of the viability of using the aforementioned macroalgae for their production.
Collapse
|
5
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
6
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
7
|
Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144236. [PMID: 33422843 DOI: 10.1016/j.scitotenv.2020.144236] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In recent years, microalgal feedstocks have gained immense potential for sustainable biofuel production. Thermochemical, biochemical conversions and transesterification processes are employed for biofuel production. Especially, the transesterification process of lipid molecules to fatty acid alkyl esters (FAAE) is being widely employed for biodiesel production. In the case of the extractive transesterification process, biodiesel is produced from the extracted microalgal oil. Whereas In-situ (reactive) transesterification allows the direct conversion of microalgae to biodiesel avoiding the sequential steps, which subsequently reduces the production cost. Though microalgae have the highest potential to be an alternate renewable feedstock, the minimization of biofuel production cost is still a challenge. The biorefinery approaches that rely on simple cascade processes involving cost-effective technologies are the need of an hour for sustainable bioenergy production using microalgae. At the same time, combining the biorefineries for both (i) high value-low volume (food and health supplements) and (ii) low value- high volume (waste remediation, bioenergy) from microalgae involves regulatory and technical problems. Waste-remediation and algal biorefinery were extensively reviewed in many previous reports. On the other hand, this review focuses on the cascade processes for efficient utilization of microalgae for integrated bioenergy production through the transesterification. Microalgal biomass remnants after the transesterification process, comprising carbohydrates as a major component (process flow A) or the carbohydrate fraction after bio-separation of pretreated microalgae (process flow B) can be utilized for bioethanol production. Therefore, this review concentrates on the cascade flow of integrated bioprocessing methods for biodiesel and bioethanol production through the transesterification and biochemical routes. The review also sheds light on the recent combinatorial approaches of transesterification of microalgae. The applicability of spent microalgal biomass residue for biogas and other applications to bring about zero-waste residue are discussed. Furthermore, techno-economic analysis (TEA), life cycle assessment (LCA) and challenges of microalgal biorefineries are discussed.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States
| | - Ramasamy Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
8
|
Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions. ENERGIES 2021. [DOI: 10.3390/en14051246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy-storage metabolites such as neutral lipids and carbohydrates are valuable compounds for liquid biofuel production. The aim of this work is to elucidate the main biological responses of two algae species known for their effective energy-rich compound accumulation in nitrogen limitation and day–night cycles: Nannochloropsis gaditana, a seawater species, and Parachlorella kessleri, a freshwater species. Lipid and carbohydrate production are investigated, as well as cell resistance to mechanical disruption for energy-rich compound release. Nitrogen-depleted N. gaditana showed only a low consumption of energy-storage molecules with a non-significant preference for neutral lipids (TAG) and carbohydrates in day–night cycles. However, it did accumulate significantly fewer carbohydrates than P. kessleri. Following this, the highest levels of productivity for N. gaditana in chemostat cultures at four levels of nitrogen limitation were found to be 3.4 and 2.2 × 10−3 kg/m2·d for carbohydrates and TAG, respectively, at 56%NO3 limitation. The cell disruption rate of N. gaditana decreased along with nitrogen limitation, from 75% (at 200%NO3) to 17% (at 13%NO3). In the context of potentially recoverable energy for biofuels, P. kessleri showed good potential for biodiesel and high potential for bioethanol; by contrast, N. gaditana was found to be more efficient for biodiesel production only.
Collapse
|
9
|
Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int J Biol Macromol 2020; 156:180-185. [PMID: 32289426 DOI: 10.1016/j.ijbiomac.2020.04.045] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022]
Abstract
Transformation of renewable biomass into value-added chemicals and biofuels has evolved to be a vital field of research in recent years. Accurate estimation of reducing sugars post pretreatment of lignocellulosic biomass has been very inconsistent. For a few decades, 3,5-dinitrosalicylic acid (DNS) assay has been widely employed for the estimation of reducing sugars derived from pretreatment of lignocellulosic biomass. This assay tests for the presence of free carbonyl group (C=O), the so-called reducing sugars. This involves the oxidation of the aldehyde functional group present to the corresponding acid while DNS is simultaneously reduced to 3-amino-5-nitrosalicylic acid under alkaline conditions. However, the presence of other active carbonyl groups can potentially also react with DNS leading to incorrect yields of reducing sugars. Therefore, a detailed study has been carried out to evaluate the influence of active carbonyl compounds like furfural and 5-hydroxymethylfurfural (5-HMF) in the overall estimation of reducing sugars (glucose, xylose and arabinose) by DNS assay. In addition to this, reducing sugars estimation in the presence of furans were also investigated, it reveals that reducing sugars estimation was found to be 68% higher than actual sugars. Therefore, current findings strongly indicate that the employment of DNS assay for quantifying the reducing sugars in the presence of furans is not appropriate.
Collapse
|
10
|
|
11
|
What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019; 24:molecules24234296. [PMID: 31775355 PMCID: PMC6930497 DOI: 10.3390/molecules24234296] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Microalgae and their metabolites have been an El Dorado since the turn of the 21st century. Many scientific works and industrial exploitations have thus been set up. These developments have often highlighted the need to intensify the processes for biomass production in photo-autotrophy and exploit all the microalgae value including ExoPolySaccharides (EPS). Indeed, the bottlenecks limiting the development of low value products from microalgae are not only linked to biology but also to biological engineering problems including harvesting, recycling of culture media, photoproduction, and biorefinery. Even respecting the so-called "Biorefinery Concept", few applications had a chance to emerge and survive on the market. Thus, exploiting EPS from microalgae for industrial applications in some low-value markets such as food is probably not a mature proposition considering the competitiveness of polysaccharides from terrestrial plants, macroalgae, and bacteria. However, it does not imply drawing a line on their uses but rather "thinking them" differently. This review provides insights into microalgae, EPS, and their exploitation. Perspectives on issues affecting the future of EPS microalgae are also addressed with a critical point of view.
Collapse
|
12
|
De Bhowmick G, Sarmah AK, Sen R. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. BIORESOURCE TECHNOLOGY 2019; 283:198-206. [PMID: 30908984 DOI: 10.1016/j.biortech.2019.03.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
We evaluated wastewater remediation and CO2 utilization potential of Chlorella minutissima from flue gas in a raceway pond, while synthesizing lutein and lipid for potential healthcare and biofuel application. A mix of 20% kitchen waste, 10 g L-1 of poultry litter waste and 5% flue gas was maintained while cultivating the microalga. Complete removal of nitrate, nitrite and ammonium, 85% carbon and 91% phosphorus was observed. An average areal biomass productivity of 4.06 ± 0.12 g m-2 day-1 with a specific growth rate of 0.34 ± 0.03 day-1 was observed within 9 days. Biomass productivity of 6.21 ± 0.16 g m-2 day-1 with a specific growth rate of 0.34 ± 0.03 day-1 was achieved during winter. Furthermore, lipid content with appropriate fatty acid composition 1.04:1 (saturation:unsaturation) increased from 25% to 58%. Additionally, lutein productivity of 1.2 ± 0.08 mgL-1 day-1, while utilizing 80.74 ± 0.07 mg L-1 day-1 of CO2 from 5% flue gas was obtained.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
13
|
Chandra R, Iqbal HMN, Vishal G, Lee HS, Nagra S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. BIORESOURCE TECHNOLOGY 2019; 278:346-359. [PMID: 30718075 DOI: 10.1016/j.biortech.2019.01.104] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
In recent years, ever-increasing socio-economic awareness, and negative impact of excessive petro consumption have redirected the research interests towards bio-resources such as algal-based biomass. In order to meet current bio-economy challenges to produce high-value multiple products at a time, new integrated processes in research and development are necessary. Though various strategies have been posited for conversion of algal-based biomass to fuel and fine chemicals, none of them has been proved as economically viable and energetically feasible. Therefore, a range of other bio-products needs to be pursued. In this context, the algal bio-refinery concept has appeared with notable solution to recover multiple products from a single operation process. Herein, an algal-based bio-refinery platform for fuel, food, and pharmaceuticals considering Bio-refinery Complexity Index (BCI) has been evaluated, as an indicator of techno-economic risks. This review presents recent developments on algal-biomass utilization for various value-added products as part of an integrated bio-refinery.
Collapse
Affiliation(s)
- Rashmi Chandra
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico; Tecnologico de Monterrey, School of Engineering and Science, Campus Toluca, Ave. Eduardo Monroy Cárdenas 2000, Toluca, State of Mexico CP 50110, Mexico; Biodesign Swette Center of Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Garima Vishal
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi 110016, India
| | - Hyung-Sool Lee
- Civil & Environmental Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Sunil Nagra
- Aavesh Green Sustainability Solutions S. De R. L. De. C. V. Monterrey, N.L. 64821, Mexico
| |
Collapse
|
14
|
Kirupa Sankar M, Ravikumar R, Naresh Kumar M, Sivakumar U. Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. BIORESOURCE TECHNOLOGY 2018; 269:227-236. [PMID: 30179756 DOI: 10.1016/j.biortech.2018.08.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Today, many researchers are focusing on research for alternative promising energy sources and sustainable technology for bioethanol production to meet the increasing global energy demand. Here, we develop a novel one-pot pretreatment technology by co-immobilizing laccase, cellulase and β-glucosidase to act as a tri-enzyme biocatalyst for evaluating the bioethanol production potential of four sustainable lignocellulosic biomasses viz., Typha angustifolia, Arundo donax, Saccharum arundinaceum, and Ipomoea carnea. The co-immobilized enzyme system was more stable at different temperatures and at longer storage, compared to free enzyme. During enzymatic saccharification, Saccharum arundinaceum showed higher total reducing sugar of 205 ± 3.73 mg/g when compared to other biomass. The highest percentage of bioethanol yield of 63.43 ± 9.35% was obtained with Ipomoea carnea. The effects of co-immobilized tri-enzyme biocatalyst on the biomasses were evaluated. The results revealed that the co-immobilized tri-enzyme biocatalyst could act as effective one-pot pretreatment for the production of bioethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Muthuvelu Kirupa Sankar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India
| | - Rajarathinam Ravikumar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India.
| | - Manickam Naresh Kumar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India
| | - Uthandi Sivakumar
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore, Tamilnadu, India
| |
Collapse
|
15
|
Fraga-García P, Kubbutat P, Brammen M, Schwaminger S, Berensmeier S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E292. [PMID: 29723963 PMCID: PMC5977306 DOI: 10.3390/nano8050292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Microalgae continue to gain in importance as a bioresource, while their harvesting remains a major challenge at the moment. This study presents findings on microalgae separation using low-cost, easy-to-process bare iron oxide nanoparticles with the additional contribution of the upscaling demonstration of this simple, adhesion-based process. The high affinity of the cell wall for the inorganic surface enables harvesting efficiencies greater than 95% for Scenedesmus ovalternus and Chlorella vulgaris. Successful separation is possible in a broad range of environmental conditions and primarily depends on the nanoparticle-to-microalgae mass ratio, whereas the effect of pH and ionic strength are less significant when the mass ratio is chosen properly. The weakening of ionic concentration profiles at the interphase due to the successive addition of deionized water leads the microalgae to detach from the nanoparticles. The process works efficiently at the liter scale, enabling complete separation of the microalgae from their medium and the separate recovery of all materials (algae, salts, and nanoparticles). The current lack of profitable harvesting processes for microalgae demands innovative approaches to encourage further development. This application of magnetic nanoparticles is an example of the prospects that nanobiotechnology offers for biomass exploitation.
Collapse
Affiliation(s)
- Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Peter Kubbutat
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Markus Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| |
Collapse
|
16
|
Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv 2018; 36:798-817. [DOI: 10.1016/j.biotechadv.2018.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
|
17
|
|
18
|
Ghosh S, Banerjee S, Das D. Process intensification of biodiesel production from Chlorella sp. MJ 11/11 by single step transesterification. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS. Microalgae biorefinery: High value products perspectives. BIORESOURCE TECHNOLOGY 2017; 229:53-62. [PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006] [Citation(s) in RCA: 512] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
Collapse
Affiliation(s)
- Kit Wayne Chew
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jing Ying Yap
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Food and Pharmaceutical Engineering Research Group, Molecular Pharming and Bioproduction Research Group, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ng Hui Suan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Laboratory of Advanced Catalysis and Environmental Technology, Monash University Sunway Campus, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
20
|
Ansari FA, Shriwastav A, Gupta SK, Rawat I, Bux F. Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04814] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater
Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Amritanshu Shriwastav
- Institute for Water and Wastewater
Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sanjay Kumar Gupta
- Institute for Water and Wastewater
Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater
Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater
Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
21
|
Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2016.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Kuo CM, Jian JF, Lin TH, Chang YB, Wan XH, Lai JT, Chang JS, Lin CS. Simultaneous microalgal biomass production and CO 2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. BIORESOURCE TECHNOLOGY 2016; 221:241-250. [PMID: 27643732 DOI: 10.1016/j.biortech.2016.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
A microalgal strain, Chlorella sp. GD, cultivated in aquaculture wastewater (AW) aerated with boiler flue gas, was investigated. When AW from a grouper fish farm was supplemented with additional nutrients, the microalgal biomass productivity after 7days of culture was 0.794gL-1d-1. CO2 fixation efficiencies of the microalgal strains aerated with 0.05, 0.1, 0.2, and 0.3vvm of boiler flue gas (containing approximately 8% CO2) were 53, 51, 38, and 30%, respectively. When the microalgal strain was cultured with boiler flue gas in nutrient-added AW, biomass productivity increased to 0.892gL-1d-1. In semi-continuous cultures, average biomass productivities of the microalgal strain in 2-day, 3-day, and 4-day replacement cultures were 1.296, 0.985, and 0.944gL-1d-1, respectively. These results demonstrate the potential of using Chlorella sp. GD cultivations in AW aerated with boiler flue gas for reusing water resources, reducing CO2 emission, and producing microalgal biomass.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jhong-Fu Jian
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Bin Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Xin-Hua Wan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|