1
|
Genuario Barroso N, Kiyomi Okuro P, Ângelo Parente Ribeiro Cerqueira M, Lopes Cunha R. Unveiling the formation capacity of multicomponent oleogels: Performance of lecithin interacting with monostearate derivatives. Food Res Int 2024; 187:114430. [PMID: 38763679 DOI: 10.1016/j.foodres.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.
Collapse
Affiliation(s)
- Noádia Genuario Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Paula Kiyomi Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Harasym J, Banaś K. Lecithin's Roles in Oleogelation. Gels 2024; 10:169. [PMID: 38534587 DOI: 10.3390/gels10030169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
This manuscript analyzes the research considering the exploitation of lecithin in oleogelation. The main objective of the work was to gather, analyze, and extract from the existing research data the information that enables us to identify lecithin-dependent roles. Oleogelation is still under research, while using various oleogelators and structurants provides changes on different physico-chemical levels. Multivariable formulations do not facilitate the elucidation of the specific role of any of them. Lecithin, due to its complex structure, big molecule, and amphiphilic nature, can provide different functionalities in complex matrices like oleogels. Therefore, this review identifies and categorizes the functionality of lecithin in oleogelation into four main roles: 1. oleogelation facilitator; 2. structure-forming impact; 3. texturing agent; and 4. functionality provider. Also, the origin and structure-forming characteristics of lecithin, as well as a short summary of the oleogelation process itself, are presented. Our critical analysis allowed us to identify the roles of lecithin in the oleogelation process and categorized them as follows: oleogelator, emulsifier, structural organization facilitator, structural modifier, crystal characteristics modifier, self-assembly promoter, thermal behavior changer, hydrogen-bonded networks promoter, hydrogel structure modifier, texture and structural modifier, gel-like state promoter, oil capacity enhancer, functionality provider, shelf life extender, and bioavailability and bioaccessibility enhancer. Lecithin came out as an important and multifunctional compound whose applications in oleogelation need to be thoroughly pre-considered. It is crucial to grasp all the possible roles of used compounds to be able to predict the final functionality and characteristics of formed oleogel matrices.
Collapse
Affiliation(s)
- Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| | - Karol Banaś
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
3
|
Jeong S, Oh I. Characterization of mixed-component oleogels: Beeswax and glycerol monostearate interactions towards Tenebrio Molitor larvae oil. Curr Res Food Sci 2024; 8:100689. [PMID: 38333773 PMCID: PMC10850890 DOI: 10.1016/j.crfs.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Edible insects are attracting attention as an alternative food due to their excellent production efficiency, lower carbon consumption, and containing high protein. Tenebrio Molitor larvae (TM), one of the approved edible insects worldwide, contain more than 30 % fat content consisting of 70 % unsaturated fatty acids, and particularly high phospholipids. Most of the research has focused on the utilization of proteins, and there are few studies using oils from TM. Therefore, in this study, to expand the utilization of TM oil in food applications, the oleogel was prepared with TM oil fortified by the incorporation of beeswax (BSW) and glycerol monostearate (GMS), and their structure, rheological and thermal properties were evaluated. The interaction between BSW and GMS contributed to the strength of the oleogel structure. The addition of GMS or the increase of the gelator concentrations resulted in increasing the melting point, which is consistent with the observed increase in viscoelasticity. As the temperature increased, the solid fat content decreased. The result of FT-IR suggests that TM oil is physically solidified without changing chemical composition through oleogelation. This study suggests a new processing direction for edible insects by confirming the rheological, thermal, and physicochemical characteristics of TM oil-based oleogel.
Collapse
Affiliation(s)
- Sohui Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
4
|
Fu DW, Li JJ, Dai DM, Zhou DY, Zhu BW, Song L. Development and characterization of self-emulsifying high internal phase emulsions using endogenous phospholipids from Antarctic krill oil. Food Chem 2023; 428:136765. [PMID: 37423109 DOI: 10.1016/j.foodchem.2023.136765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
High internal phase emulsions (HIPEs) have emerged as a promising structured oil system in food industry. This study developed self-emulsifying HIPEs (SHIPEs) using Antarctic krill oil (KO) with endogenous phospholipids as surfactant and algae oil as a diluent. The influence of phospholipids self-assembly on SHIPEs formation was investigated by evaluating the microstructures, particle size, rheological properties, and water distribution. Results demonstrated that the concentration and self-assembly behavior of phospholipids dominated the SHIPEs formation. Optimized SHIPEs with desirable gel properties contained 10 wt% krill oil in the oil phase at an 80 wt% oil phase level. Furthermore, these SHIPEs exhibited excellent performance in 3D printing applications. Hydrated phospholipids formed lamellar network at the oil-water interface, enhancing gel strength by crosslinking oil droplets. These findings shed light on the self-assembly of phospholipids during HIPEs formation and highlight the potential phospholipids-rich marine lipids in SHIPEs for functional food products development.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jing-Jing Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Dong-Mei Dai
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
5
|
Wojtalewicz S, Erickson S, Vizmeg J, Shuckra J, Barger K, Cleveland A, Davis J, Niederauer S, Beeman M, Panic V, Wilcox K, Metcalf C, Agarwal J, Lade C, Davis B. Assessment of glyceride-structured oleogels as an injectable extended-release delivery system of bupivacaine. Int J Pharm 2023; 637:122887. [PMID: 36990171 DOI: 10.1016/j.ijpharm.2023.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
This manuscript systematically assesses three different glycerides (tripalmitin, glyceryl monostearate, and a blend of mono-, di- and triesters of palmitic and stearic acids (Geleol™)) as potential gelator structuring agents of medium-chain triglyceride oil to form an oleogel-based injectable long-acting local anesthetic formulation for postoperative pain management. Drug release testing, oil-binding capacity, injection forces, x-ray diffraction, differential scanning calorimetry, and rheological testing were serially performed to characterize the functional properties of each oleogel. After benchtop assessment, the superior bupivacaine-loaded oleogel formulation was compared to bupivacaine HCl, liposomal bupivacaine, and bupivacaine-loaded medium-chain triglyceride oil in a rat sciatic nerve block model to assess in vivo long-acting local anesthetic performance. In vitro drug release kinetics were similar for all formulations, indicating that drug release rate is primarily dependent on the drug's affinity to the base oil. Glyceryl monostearate-based formulations had superior shelf-life and thermal stability. The glyceryl monostearate oleogel formulation was selected for in vivo evaluation. It was found to have a significantly longer duration of anesthetic effect than liposomal bupivacaine and was able to provide anesthesia twice as long as the equipotent bupivacaine-loaded medium-chain triglyceride oil, indicating that the increased viscosity of the oleogel provided enhanced controlled release over the drug-loaded oil alone.
Collapse
|
6
|
Jakubczyk E, Kamińska-Dwórznicka A, Kot A. The Rheological Properties and Texture of Agar Gels with Canola Oil-Effect of Mixing Rate and Addition of Lecithin. Gels 2022; 8:738. [PMID: 36421560 PMCID: PMC9689232 DOI: 10.3390/gels8110738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine the effect of different mixing rates and the addition of lecithin on the rheological mechanical, and acoustic properties of agar gels with the addition of canola oil. The mixing rate of the agar-oil mixture was changed from 10,000 to 13,000 rpm. Additionally, agar gels with the addition of lecithin from 1 to 5% were prepared. The frequency sweep test was used (at 4 and 50 °C) within the linear viscoelastic region (LVR) in oscillatory measurement. The agar-oil mixture was cooled from 80 to 10 °C, enabling the obtainment of the gelling temperature. Texture profile analysis (TPA) and compression tests, as well as the acoustic emission method, were applied to analyse the texture of the gels. The syneresis and stability of gels during storage were also measure. The increase in mixing rate in the case of agar gel with canola oil causes an increase in the elastic component of materials as well hardness and gumminess. Also, samples prepared with the higher mixing rate have more uniform and stable structures, with small bubbles. The increase in the concentration of lecithin is ineffective due to the formation of gels with a weak matrix and low hardness, gumminess, and stability during storage.
Collapse
|
7
|
Babu A, Sivakumar G, Das A, Bharti D, Qureshi D, Habibullah SK, Satheesan A, Mohanty B, Pal K, Maji S. Preparation and Characterization of Novel Oleogels Using Jasmine Floral Wax and Wheat Germ Oil for Oral Delivery of Curcumin. ACS OMEGA 2022; 7:30125-30136. [PMID: 36061661 PMCID: PMC9434628 DOI: 10.1021/acsomega.2c03201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 05/31/2023]
Abstract
Oleogels (OGs) have gained a lot of interest as a delivery system for a variety of pharmaceuticals. The current study explains the development of jasmine floral wax (JFW) and wheat germ oil (WGO)-based OGs for oral drug (curcumin) delivery application. The OGs were made by dissolving JFW in WGO at 70 °C and cooling it to room temperature (25 °C). The critical gelation concentration of JFW that induces the gelation of WGO was found to be 10% (w/w). The OGs were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopic analysis, and mechanical test. XRD data indicated that JFW influences the crystallinity of the OGs. Among the prepared OGs, OG 17.5 showed higher crystallization in the series. Optical microscopic studies demonstrated the formation of fiber structures due to the entanglement of crystals whereas, polarized light micrographs suggested the formation of spherulites or clustered crystallite structures. The mechanical properties of the OGs increased linearly with the increase in the JFW concentration. Curcumin-loaded OGs were examined for their controlled release applications. In summary, the developed OGs were found to have the necessary features for modulating the oral delivery of curcumin.
Collapse
Affiliation(s)
- Anashwara Babu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Gomathi Sivakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Anubhab Das
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Deepti Bharti
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Dilshad Qureshi
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - SK Habibullah
- Institute
of Pharmacy and Technology, Salipur, Odisha 754202, India
| | - Anjana Satheesan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | | | - Kunal Pal
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Samarendra Maji
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| |
Collapse
|
8
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
da Silva TLT, Danthine S. High-intensity Ultrasound as a Tool to Form Water in Oleogels Emulsions Structured by Lipids Oleogelators. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Res Int 2022; 154:110997. [DOI: 10.1016/j.foodres.2022.110997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
|
11
|
Abstract
Lecithin is a mixture of amphiphilic lipids with health benefits. In this study, four different fractions (ethanol soluble, ethanol insoluble, phospholipid and glycolipid fractions) from soy lecithin were obtained and evaluated as oleogelators. As with the parent lecithin, the ethanol insoluble fraction (EIF) was unable to function as an oleogelator. The ethanol soluble fraction (ESF) and phospholipid fraction (PLF) formed oleogels at 30% (wt%), while the glycolipid fraction (GLF) formed oleogels at 15%. ESF resulted in an oleogel with a similar appearance and microstructure, but a harder and less cohesive texture than the PLF-supported oleogel. The oleogels formed with GLF were different from those formed with ESF and PLF in appearance and microstructure. GLF at 20% formed an oleogel with better texture characteristics (in the light of hardness) and oil-holding capacity than those formed with 30% of ESF and PLF. This is the first study to investigate the oil-gelling properties of fractions from soy lecithin. Our results show that the naturally occurring glycolipids from soy lecithin exhibit great potential as oleogelators.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Luwei Zhang
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Kamel R, Elmotasem H, Abdelsalam E, Salama A. Lepidium sativum seed oil 3D nano-oleogel for the management of diabetic wounds: GC/MS analysis, in-vitro and in-vivo studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Kulawik-Pióro A, Miastkowska M. Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. Int J Mol Sci 2021; 22:ijms22105124. [PMID: 34066105 PMCID: PMC8151792 DOI: 10.3390/ijms22105124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Psoriasis is a chronic skin disease, and it is especially characterized by the occurrence of red, itchy, and scaly eruptions on the skin. The quality of life of patients with psoriasis is decreased because this disease remains incurable, despite the rapid progress of therapeutic methods and the introduction of many innovative antipsoriatic drugs. Moreover, many patients with psoriasis are dissatisfied with their current treatment methods and the form with which the drug is applied. The patients complain about skin irritation, clothing stains, unpleasant smell, or excessive viscosity of the preparation. The causes of these issues should be linked with little effectiveness of the therapy caused by low permeation of the drug into the skin, as well as patients’ disobeying doctors’ recommendations, e.g., concerning regular application of the preparation. Both of these factors are closely related to the physicochemical form of the preparation and its rheological and mechanical properties. To improve the quality of patients’ lives, it is important to gain knowledge about the specific form of the drug and its effect on the safety and efficacy of a therapy as well as the patients’ comfort during application. Therefore, we present a literature review and a detailed analysis of the composition, rheological properties, and mechanical properties of polymeric gels as an alternative to viscous and greasy ointments. We discuss the following polymeric gels: hydrogels, oleogels, emulgels, and bigels. In our opinion, they have many characteristics (i.e., safety, effectiveness, desired durability, acceptance by patients), which can contribute to the development of an effective and, at the same time comfortable, method of local treatment of psoriasis for patients.
Collapse
Affiliation(s)
| | - Małgorzata Miastkowska
- Correspondence: (A.K.-P.); (M.M.); Tel.: +48-1-2628-2740 (A.K.-P.); +48-1-2628-3072 (M.M.)
| |
Collapse
|
14
|
Shakeel A, Farooq U, Gabriele D, Marangoni AG, Lupi FR. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Zhuang X, Gaudino N, Clark S, Acevedo NC. Novel lecithin-based oleogels and oleogel emulsions delay lipid oxidation and extend probiotic bacteria survival. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Guo S, Lv M, Chen Y, Hou T, Zhang Y, Huang Z, Cao Y, Rogers M, Lan Y. Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation. Food Funct 2020; 11:2048-2057. [PMID: 32159192 DOI: 10.1039/c9fo02540e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mixture of ceramide (CER) and lecithin (LEC) at specific ratios was capable of forming oleogels in sunflower oil triggered by adding a trace amount of water. It was noted that the addition of water at different temperatures (TW) resulted in different gelation behaviors and microstructures. To better illuminate the assembly mechanism at different TW, samples with water added at different TW (20 °C, 45 °C, 70 °C and 95 °C) were prepared. The viscoelastic properties, microstructures, and the crystal packing of these samples were investigated. It was observed that all samples prepared at TW of 20 °C and 95 °C formed gels, while most samples prepared at TW of 45 °C and 70 °C were too weak to form gels. Gels prepared at 95 °C were stronger but more fragile in texture compared to gels produced at 20 °C. The crystal morphology of gels drastically changed with TW. Spindle-shaped crystals were observed in gels prepared at low TW (20 °C), while gels prepared at high TW (95 °C) exhibited a network with packed oil droplets stabilized by lamellar shells together with fibrillar crystals in the bulk phase. X-ray diffractograms showed a different reflection peak (d-spacing of 14.5 Å) in gel prepared at 20 °C, compared to the d-spacing in oleogels with a single gelator (13.14 Å and 15.33 Å, respectively, for CER and LEC). Gel prepared at 95 °C showed two long-spacing characteristic peaks, which correspond to the characteristic peaks of CER gel (∼13 Å) and LEC gel (∼12 Å). Fourier transform infrared spectroscopy results indicated that the different gelation behaviors at different TW were mainly caused by vibrational changes in the amide bond of CER. Our hypothesized assembly mechanism can be concluded as: increasing TW resulted in the conversion of CER and LEC crystallization from co-assembly (TW = 20 °C) to self-sorting by individual gelators (TW = 95 °C). In this study, novel water-induced oleogels were produced by manipulating TW, and such information further assists the rational design of lipid-based healthy fat products.
Collapse
Affiliation(s)
- Shenglan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510623, P.R. China
| | - Yumeng Zhang
- Monte Vista Christian School, Watsonville, CA 95076, USA
| | - Zhaohuai Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Michael Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
17
|
Cooper Z, Simons CR, Ward R, Martini S. Functional properties of dairy phospholipid gels. J Dairy Sci 2020; 104:1412-1423. [PMID: 33189284 DOI: 10.3168/jds.2020-18737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
In this study dairy phospholipid (PL) gels were made using 3 different concentrations of PL (15%, 30%, and 45%) and soybean oil to determine the gel-forming ability and functional traits that dairy PL have. After 24 h of storage the visual stability, crystal morphology, solid fat content, melting behavior, viscosity, and oil binding capacity of the gels were evaluated. All samples showed visual stability, whereas polarized light microscopy showed that high concentrations of PL reduced PL mobility, preventing tubular micelles from forming at high concentrations of PL (45%). Solid fat content increased with an increase in PL concentration. The melting enthalpy increased as the concentration of PL increased. The viscosity was assessed at 0.01, 0.1, and 1.0 1/s shear rates. A significant difference was observed between the 45% PL samples and the other samples at low and intermediate shear, but at high shear levels, a significant difference was only seen between the 15% PL sample and the other samples. The oil binding capacity showed a significant difference between the 45% PL sample and the other 2 samples. This study shows that dairy PL can be added to a vegetable oil to produce semi-solid material with appropriate functional properties.
Collapse
Affiliation(s)
- Zachary Cooper
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322
| | - Casey R Simons
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322
| | - Robert Ward
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322.
| |
Collapse
|
18
|
Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Bascuas S, Salvador A, Hernando I, Quiles A. Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
|
21
|
Bollom MA, Clark S, Acevedo NC. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105570] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Martins AJ, Vicente AA, Pastrana LM, Cerqueira MA. Oleogels for development of health-promoting food products. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Chen K, Zhang H. Fabrication of Oleogels via a Facile Method by Oil Absorption in the Aerogel Templates of Protein-Polysaccharide Conjugates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7795-7804. [PMID: 31961642 DOI: 10.1021/acsami.9b21435] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a novel and facile method was developed to fabricate oleogels. The alginate/soy protein conjugates with excellent emulsifying activity and emulsion stability were prepared via Maillard reaction and freeze-dried to form the aerogel templates, which were then immersed in corn oil within 6 h to induce the oleogels. Compared with the alginate and soy protein solutions, the viscosity and elastic modulus G' of the conjugate solutions increased, indicating the formation of a new macromolecule and strengthened gel network from Maillard reaction. The conjugate aerogels presented the morphology of serious aggregation and conglutination but the higher elastic modulus and better thermal stability, due to the increasing covalent interactions. These aerogel templates showed a good oil absorption of up to 10.89 g/g aerogel and holding capacity of 40%. The resulting oleogels loaded with thymol showed excellent antimicrobial activities against Staphylococcus aureus and Escherichia coli. This work suggests that the fabrication of oleogels is not limited to the choice of existing oleogelators but from a wide variety of protein-polysaccharide conjugates to form the aerogel templates for oil absorption.
Collapse
Affiliation(s)
- Kailun Chen
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
24
|
Safieh P, Pensini E, Marangoni A, Lamont K, Ghazani SM, Callaghan-Patrachar N, Strüder-Kypke M, Peyronel F, Chen J, Rodriguez BM. Natural emulsion gels and lecithin-based sorbents: A potential treatment method for organic spills on surface waters. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Li X, Li Y, Wang Z. Structural properties of lecithin based reverse hexagonal (H II) liquid crystals and in vitro release of dihydromyricetin. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2017.1417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xuepeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, PR China
| | - Yang Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, PR China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, PR China
| |
Collapse
|
26
|
Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, Dewettinck K, Cunha RL. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food Funct 2018; 9:1755-1767. [PMID: 29508864 DOI: 10.1039/c7fo01775h] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.
Collapse
Affiliation(s)
- Paula K Okuro
- Laboratory of Process Engineering, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil.
| | - Iris Tavernier
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mohd D Bin Sintang
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium and Department of Food Technology and Bioprocess, Faculty of Food Science and Nutrition, University Malaysia, Sabah, Malaysia
| | - Andre G Skirtach
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - António A Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Koen Dewettinck
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Rosiane L Cunha
- Laboratory of Process Engineering, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
27
|
Wei L, Li X, Guo F, Liu X, Wang Z. Structural properties, in vitro release and radical scavenging activity of lecithin based curcumin-encapsulated inverse hexagonal (HII) liquid crystals. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
|
29
|
Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. J Colloid Interface Sci 2017; 504:387-396. [PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
Collapse
Affiliation(s)
- Mohd Dona Bin Sintang
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Department of Food Technology and Bioprocessing, Faculty of Food Science and Nutrition, University Malaysia Sabah, Malaysia.
| | - Sabine Danthine
- Department of Food Science and Formulation, Universite de Liege, Passage des Deportes, Gembloux, Belgium
| | - Ashok R Patel
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Tom Rimaux
- Vandemoortele R&D Centre, Izegem, Belgium
| | - Davy Van De Walle
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
30
|
Yadav I, Kasiviswanathan U, Soni C, Paul SR, Nayak SK, Sagiri SS, Anis A, Pal K. Stearic Acid Modified Stearyl Alcohol Oleogel: Analysis of the Thermal, Mechanical and Drug Release Properties. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1974-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|