1
|
Díaz-Cruz GA, Bignell DRD. Exploring the specialized metabolome of the plant pathogen Streptomyces sp. 11-1-2. Sci Rep 2024; 14:10414. [PMID: 38710735 DOI: 10.1038/s41598-024-60630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Streptomyces bacteria are notable for producing chemically diverse specialized metabolites that exhibit various bioactivities and mediate interactions with different organisms. Streptomyces sp. 11-1-2 is a plant pathogen that produces nigericin and geldanamycin, both of which display toxic effects against various plants. Here, the 'One Strain Many Compounds' approach was used to characterize the metabolic potential of Streptomyces sp. 11-1-2. Organic extracts were prepared from 11-1-2 cultures grown on six different agar media, and the extracts were tested in antimicrobial and plant bioassays and were subjected to untargeted metabolomics and molecular networking. Most extracts displayed strong bioactivity against Gram-positive bacteria and yeast, and they exhibited phytotoxic activity against potato tuber tissue and radish seedlings. Several known specialized metabolites, including musacin D, galbonolide B, guanidylfungin A, meridamycins and elaiophylin, were predicted to be present in the extracts along with closely related compounds with unknown structure and bioactivity. Targeted detection confirmed the presence of elaiophylin in the extracts, and bioassays using pure elaiophylin revealed that it enhances the phytotoxic effects of geldanamycin and nigericin on potato tuber tissue. Overall, this study reveals novel insights into the specialized metabolites that may mediate interactions between Streptomyces sp. 11-1-2 and other bacteria and eukaryotic organisms.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
- Phytopathology Department, Plant Protection Research Center (CIPROC), Agronomy School, Universidad de Costa Rica, San Jose, Costa Rica
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
2
|
Rivera A, Heitman J. Natural product ligands of FKBP12: Immunosuppressive antifungal agents FK506, rapamycin, and beyond. PLoS Pathog 2023; 19:e1011056. [PMID: 36634035 PMCID: PMC9836287 DOI: 10.1371/journal.ppat.1011056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Angela Rivera
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Ashraf N, Zafar S, Makitrynskyy R, Bechthold A, Spiteller D, Song L, Anwar MA, Luzhetskyy A, Khan AN, Akhtar K, Khaliq S. Revealing Genome-Based Biosynthetic Potential of Streptomyces sp. BR123 Isolated from Sunflower Rhizosphere with Broad Spectrum Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11081057. [PMID: 36009926 PMCID: PMC9405382 DOI: 10.3390/antibiotics11081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.
Collapse
Affiliation(s)
- Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
- Department of Chemical Ecology/Biological Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (N.A.); (S.K.); Tel.: +92-41-9201316 (S.K.); Fax: +92-41-92014722 (S.K.)
| | - Sana Zafar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Roman Makitrynskyy
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Dieter Spiteller
- Department of Chemical Ecology/Biological Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lijiang Song
- Department of Chemistry, University of Warwick Coventry, Coventry CV4 7AL, UK
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology Campus, Saarland University, Building C2.3, 66123 Saarbrucken, Germany
| | - Ali Nisar Khan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
- Correspondence: (N.A.); (S.K.); Tel.: +92-41-9201316 (S.K.); Fax: +92-41-92014722 (S.K.)
| |
Collapse
|
4
|
Shi P, Li Y, Zhu J, Shen Y, Wang H. Targeted Discovery of the Polyene Macrolide Hexacosalactone A from Streptomyces by Reporter-Guided Selection of Fermentation Media. JOURNAL OF NATURAL PRODUCTS 2021; 84:1924-1929. [PMID: 34170140 DOI: 10.1021/acs.jnatprod.1c00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New approaches are still needed to fully explore the biosynthetic potential of microbes. We recently devised a melC reporter-guided fermentation media screening approach for targeted activation of cryptic gene clusters. Using this approach, we successfully activated the expression of the hcl gene cluster in Streptomyces sp. LZ35 and discovered a novel polyene macrolide hexacosalactone A (1).
Collapse
Affiliation(s)
- Peng Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
5
|
Shi H, Li Y, Zhu J, Wang H, Shen Y. Discovery of Germicidin Glucuronides from Streptomyces sp. LZ35. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Liu M, Shi P, Lu C, Zhong L. Isolation and Identification of Secondary Metabolites FromStreptomycessp. SP301. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19861791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Seven compounds, namely aminobenzoates A to D (1-4), naphthalenecarboxylates A and B (5-6), and glycosylatelactone A (7), were isolated from the fermentation medium of Streptomyces sp. SP301. Of these, aminobenzoates C and D (3-4), naphthalenecarboxylate B (6), and glycosylatelactone A (7) are new compounds. Aminobenzoates A to D (1-4) shared a common aromatic starter unit, para-aminobenzoic acid , and biosynthesis involving a different pathway. The structures were elucidated on the basis of 1D- and 2D-Nuclear Magnetic Resonance (NMR) spectroscopy and HR-ESIMS analysis.
Collapse
Affiliation(s)
- Mengyujie Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Peng Shi
- Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, P.R. China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, P.R. China
| |
Collapse
|