1
|
Qian G, Xiong L, Ye Q. Hydroxyapatite-based carriers for tumor targeting therapy. RSC Adv 2023; 13:16512-16528. [PMID: 37274393 PMCID: PMC10234259 DOI: 10.1039/d3ra01476b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
At present, targeted drug delivery is regarded as the most effective means of tumor treatment, overcoming the lack of conventional chemotherapeutics that are difficult to reach or enter into cancer cells. Hydroxyapatite (HAP) is the main component of biological hard tissue, which can be regarded as a suitable drug carrier due to its biocompatibility, nontoxicity, biodegradation, and absorbability. This review focuses on the cutting edge of HAP as a drug carrier in targeted drug delivery systems. HAP-based carriers can be obtained by doping, modification, and combination, which benefit to improve the loading efficiency of drugs and the response sensitivity of the microenvironment in the synthesis process. The drug adsorbed or in situ loaded on HAP-based carriers can achieve targeted drug delivery and precise treatment through the guidance of the in vivo microenvironment and the stimulation of the in vitro response. In addition, HAP-based drug carriers can improve the cellular uptake rate of drugs to achieve a higher treatment effect. These advantages revealed the promising potential of HAP-based carriers from the perspective of targeted drug delivery for tumor treatment.
Collapse
Affiliation(s)
- Gongming Qian
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology Wuhan 430081 China
| | - Lingya Xiong
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
| | - Qing Ye
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology Wuhan 430081 China
| |
Collapse
|
2
|
Production and Optimization of Novel Rice husk Ash reinforced Polycaprolactone/Hydroxyapatite Composite for Bone Regeneration Using Grey Relational Analysis. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
3
|
Enhanced Effect of SiC Nanoparticles Combined with Nanohydroxyapatite Material to Stimulate Bone Regenerations in Femoral Fractures Treatment. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Shanmuganantha L, Baharudin A, Sulong AB, Shamsudin R, Ng MH. Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E277. [PMID: 33430455 PMCID: PMC7826931 DOI: 10.3390/ma14020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
This literature review discusses the influence of titanium ceramic composites as a biomaterial towards the fabrication of implants for orthopedic applications. The concept of applying metal-ceramic composites enable many novel combinations in the design and fabrication of complex materials which enhances functionality to improve cell and tissue matrix interactions particularly in the formation of bone. Specific focus is placed on its plethora of materials selected from the metals and ceramic group and identifying the optimal combination that matches them. The prospect of wollastonite as the ceramic counterpart is also highlighted. In this review, we have highlighted the different fabrication methods for such metal-ceramic materials as well as the role that these hybrids play in an in vitro and in vivo environment. Its economic potential as a bone implant material is also discussed.
Collapse
Affiliation(s)
| | - Azmi Baharudin
- Department of Orthopaedic and Traumatology, National University of Malaysia, Selangor Darul Ehsan 56000, Malaysia;
| | - Abu Bakar Sulong
- Department of Mechanical Engineering, National University of Malaysia, Selangor Darul Ehsan 43600, Malaysia;
| | - Roslinda Shamsudin
- Department of Science and Technology, National University of Malaysia, Selangor Darul Ehsan 43600, Malaysia;
| | - Min Hwei Ng
- Department of Tissue Engineering, National University of Malaysia, Selangor Darul Ehsan 56000, Malaysia;
| |
Collapse
|
6
|
Dee P, You HY, Teoh SH, Le Ferrand H. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair. J Mech Behav Biomed Mater 2020; 112:104078. [DOI: 10.1016/j.jmbbm.2020.104078] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022]
|
7
|
Coelho CC, Padrão T, Costa L, Pinto MT, Costa PC, Domingues VF, Quadros PA, Monteiro FJ, Sousa SR. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep 2020; 10:19098. [PMID: 33154428 PMCID: PMC7645747 DOI: 10.1038/s41598-020-76063-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
Bone graft infections are serious complications in orthopaedics and the growing resistance to antibiotics is increasing the need for antibacterial strategies. The use of magnesium oxide (MgO) is an interesting alternative since it possesses broad-spectrum antibacterial activity. Additionally, magnesium ions also play a role in bone regeneration, which makes MgO more appealing than other metal oxides. Therefore, a bone substitute composed of hydroxyapatite and MgO (HAp/MgO) spherical granules was developed using different sintering heat-treatment cycles to optimize its features. Depending on the sintering temperature, HAp/MgO spherical granules exhibited distinct surface topographies, mechanical strength and degradation profiles, that influenced the in vitro antibacterial activity and cytocompatibility. A proper balance between antibacterial activity and cytocompatibility was achieved with HAp/MgO spherical granules sintered at 1100 ºC. The presence of MgO in these granules was able to significantly reduce bacterial proliferation and simultaneously provide a suitable environment for osteoblasts growth. The angiogenic and inflammation potentials were also assessed using the in vivo chicken embryo chorioallantoic membrane (CAM) model and the spherical granules containing MgO stimulated angiogenesis without increasing inflammation. The outcomes of this study evidence a dual effect of MgO for bone regenerative applications making this material a promising antibacterial bone substitute.
Collapse
Affiliation(s)
- Catarina C Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. .,FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal.
| | - Tatiana Padrão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Laura Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marta T Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal
| | - Paulo C Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV/GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Paulo A Quadros
- FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal
| | - Fernando J Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
8
|
Su Y, Li K, Tielens F, Wang J. Effect of sprayed techniques on the surface microstructure and in vitro behavior of nano-HAp coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111318. [PMID: 32919676 DOI: 10.1016/j.msec.2020.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
Supersonic atmospheric plasma spray (SAPS) technique is a classical method which is employed to coat the carbon/carbon (C/C) composites by nano-hydroxyapatite (HAp) powders to decrease the biologically inert, hydrophobic drawbacks of substrate surfaces. In recent years, profiting from the promoting of energy conservation and environmental protection, more emphasis was placed on industrial manufacturing to simplify the experimental steps. This paper aims to study the preparation of nano-HAp coatings by suspension plasma spray (SPS) instead of the original SAPS technique. A denser, more uniform and less defective coating is successfully fabricated on C/C substrate using SPS technique. More important, fewer surface flaws in SPS coating could be observed by scanning electron microscopy (SEM) which shows that the large drawbacks of the coating have disappeared during spraying process. Meanwhile, except for HAp, phase compositions of the SPS coating appear with slight calcium oxide (CaO, 0.8%) and tricalcium phosphate (TCP, 30.7%), and then all CaO as well as TCP phases transform into dicalcium phosphate anhydrous (DCPA, 60.6%) after microwave-hydrothermal (MH) treatment. Thermal analysis (TG/DSC) reveals that SPS coating (97.51%) has a higher thermal stability than that of the SAPS coating (82.37%). Also, in comparison, the SPS coating after MH treatment (SPS-MH coating) exhibits better thermal properties (92.76%). In addition, compared to the SAPS and SPS coatings, due to the more flaw reduction and phase transformation, SPS-MH coating shows a better biological properties according to the surface microstructure in simulation body fluid (SBF) solution and cell spreading area on coating. The highest corrosion resistance with the current density of 3.9798 × 10-7 A/cm2 and a potential of 0.0419 V is achieved for SPS-MH coating.
Collapse
Affiliation(s)
- Yangyang Su
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China; General Chemistry (ALGC)-materials Modeling Group, Vrije Universiteit Brussel (Free University Brussels-VUB), Pleinlaan 2, 1050 Brussel, Belgium.
| | - Kezhi Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Frederik Tielens
- General Chemistry (ALGC)-materials Modeling Group, Vrije Universiteit Brussel (Free University Brussels-VUB), Pleinlaan 2, 1050 Brussel, Belgium.
| | - Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Dittler ML, Unalan I, Grünewald A, Beltrán AM, Grillo CA, Destch R, Gonzalez MC, Boccaccini AR. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surf B Biointerfaces 2019; 182:110346. [PMID: 31325780 DOI: 10.1016/j.colsurfb.2019.110346] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Bioactive glass (BG)-based scaffolds of 45S5 composition covered with hydroxyapatite nanoparticles loaded with Mg2+, Zn2+ and, both Mg2+ and Zn2+ ions, were developed and tested as materials for tissue engineering applications. The scaffolds were prepared by the foam replica technique and mono- and bi-metal loaded and unloaded hydroxyapatite nanoparticles (HA, Zn-HA, Mg-HA and Mg-Zn-HA) were obtained by an adaptation of the wet chemical deposition method. Coating of BG with these nanoparticles was performed by dip-coating to obtain HA-BG, Zn-HA-BG, Mg-HA-BG and Mg-Zn-HA-BG scaffolds. As predictor of the bone bonding ability of the produced scaffolds, in this study we investigated the formation of an apatite layer on the scaffold surfaces in the presence of simulated body fluid. The cytotoxicity and osteogenic properties of the materials in vitro was evaluated using human osteoblast-like MG-63 cell cultures. The mineralization assay following Kokubo's protocol indicated that bi-metal loaded Mg-Zn-HA-BG scaffolds exhibited higher/faster bioactivity than mono-metal loaded scaffolds while mineralization of HA-BG, Zn-HA-BG and Mg-HA-BG was similar to that of uncoated scaffolds. Moreover, an increase of proliferation of MG-63 cells after 48 h and 7 days was measured by BrdU assays for Mg-Zn-HA-BG scaffolds. In agreement with these results, SEM images confirmed increased interaction between these scaffolds and cells, in comparison to that observed for mono-metal-loaded HA-coated scaffolds. Altogether, the obtained results suggest that nanocrystalline Mg-Zn-HA coatings enhance the biological performance of standard scaffolds of 45S5 BG composition. Thus these novel ion doped HA coated scaffolds are attractive systems for bone tissue engineering.
Collapse
Affiliation(s)
- Maria Laura Dittler
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alina Grünewald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Claudia A Grillo
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina
| | - Rainer Destch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Monica C Gonzalez
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
10
|
Kumar S, Gautam C, Mishra VK, Chauhan BS, Srikrishna S, Yadav RS, Trivedi R, Rai SB. Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications. ACS OMEGA 2019; 4:7448-7458. [PMID: 31459841 DOI: 10.1021/acsomega.8b03473/asset/images/large/ao-2018-03473u_0004.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/05/2019] [Indexed: 05/22/2023]
Abstract
Three-dimensional nanocomposites exhibit unexpected mechanical and biological properties that are produced from two-dimensional graphene nanoplatelets and oxide materials. In the present study, various composites of microwave-synthesized nanohydroxyapatite (nHAp) and graphene nanoparticles (GNPs), (100 - x)HAp-xGNPs (x = 0, 0.1, 0.2, 0.3, and 0.5 wt %), were successfully synthesized using a scalable bottom-up approach, that is, a solid-state reaction method. The structural, morphological and mechanical properties were studied using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal testing machine (UTM). XRD studies revealed that the prepared composites have high-order crystallinity. Addition of GNPs into nHAp significantly improved the mechanical properties. Three-dimensional nanocomposite 99.5HAp-0.5GNPs exhibited exceptionally high mechanical properties, for example, a fracture toughness of ∼116 MJ/m3, Young's modulus of ∼98 GPa, and compressive strength of 96.04 MPa, which were noticed to be much greater than in the pure nHAp. The MTT assay and cell imaging behaviors were carried out on the gut tissues of Drosophila third instars larvae and on primary rat osteoblast cells for the sample 99.5HAp-0.5GNPs that have achieved the highest mechanical properties. The treatment with lower concentrations of 10 μg/mL on the gut tissues of Drosophila and 1 and 5 μg/mL of this composite sample showed favorable cell viability. Therefore, owing to the excellent porous nature, interconnected surface morphology, and mechanical and biological properties, the prepared composite sample 99.5HAp-0.5GNPs stood as a promising biomaterial for bone implant applications.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226027, Uttar Pradesh, India
| | - Chandkiram Gautam
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226027, Uttar Pradesh, India
| | - Vijay Kumar Mishra
- LSS-101 Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory, Department of Biochemistry, and Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, and Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ram Sagar Yadav
- Cell and Neurobiology Laboratory, Department of Biochemistry, and Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ritu Trivedi
- LSS-101 Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Shyam Bahadur Rai
- Cell and Neurobiology Laboratory, Department of Biochemistry, and Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Kumar S, Gautam C, Mishra VK, Chauhan BS, Srikrishna S, Yadav RS, Trivedi R, Rai SB. Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications. ACS OMEGA 2019; 4:7448-7458. [PMID: 31459841 PMCID: PMC6648140 DOI: 10.1021/acsomega.8b03473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/05/2019] [Indexed: 05/08/2023]
Abstract
Three-dimensional nanocomposites exhibit unexpected mechanical and biological properties that are produced from two-dimensional graphene nanoplatelets and oxide materials. In the present study, various composites of microwave-synthesized nanohydroxyapatite (nHAp) and graphene nanoparticles (GNPs), (100 - x)HAp-xGNPs (x = 0, 0.1, 0.2, 0.3, and 0.5 wt %), were successfully synthesized using a scalable bottom-up approach, that is, a solid-state reaction method. The structural, morphological and mechanical properties were studied using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal testing machine (UTM). XRD studies revealed that the prepared composites have high-order crystallinity. Addition of GNPs into nHAp significantly improved the mechanical properties. Three-dimensional nanocomposite 99.5HAp-0.5GNPs exhibited exceptionally high mechanical properties, for example, a fracture toughness of ∼116 MJ/m3, Young's modulus of ∼98 GPa, and compressive strength of 96.04 MPa, which were noticed to be much greater than in the pure nHAp. The MTT assay and cell imaging behaviors were carried out on the gut tissues of Drosophila third instars larvae and on primary rat osteoblast cells for the sample 99.5HAp-0.5GNPs that have achieved the highest mechanical properties. The treatment with lower concentrations of 10 μg/mL on the gut tissues of Drosophila and 1 and 5 μg/mL of this composite sample showed favorable cell viability. Therefore, owing to the excellent porous nature, interconnected surface morphology, and mechanical and biological properties, the prepared composite sample 99.5HAp-0.5GNPs stood as a promising biomaterial for bone implant applications.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced
Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226027, Uttar Pradesh, India
| | - Chandkiram Gautam
- Advanced
Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226027, Uttar Pradesh, India
| | - Vijay Kumar Mishra
- LSS-101
Laboratory, Endocrinology Division, CSIR-Central
Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory,
Department of Biochemistry, and Department of
Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory,
Department of Biochemistry, and Department of
Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ram Sagar Yadav
- Cell and Neurobiology Laboratory,
Department of Biochemistry, and Department of
Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ritu Trivedi
- LSS-101
Laboratory, Endocrinology Division, CSIR-Central
Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Shyam Bahadur Rai
- Cell and Neurobiology Laboratory,
Department of Biochemistry, and Department of
Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
12
|
Gautam C, Chakravarty D, Gautam A, Tiwary CS, Woellner CF, Mishra VK, Ahmad N, Ozden S, Jose S, Biradar S, Vajtai R, Trivedi R, Galvao DS, Ajayan PM. Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications. ACS OMEGA 2018; 3:6013-6021. [PMID: 30023937 PMCID: PMC6045471 DOI: 10.1021/acsomega.8b00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 05/12/2023]
Abstract
Recent advances and demands in biomedical applications drive a large amount of research to synthesize easily scalable low-density, high-strength, and wear-resistant biomaterials. The chemical inertness with low density combined with high strength makes h-BN one of the promising materials for such application. In this work, three-dimensional hexagonal boron nitride (h-BN) interconnected with boron trioxide (B2O3) was prepared by easily scalable and energy efficient spark plasma sintering (SPS) process. The composite structure shows significant densification (1.6-1.9 g/cm3) and high surface area (0.97-14.5 m2/g) at an extremely low SPS temperature of 250 °C. A high compressive strength of 291 MPa with a reasonably good wear resistance was obtained for the composite structure. The formation of strong covalent bonds between h-BN and B2O3 was formulated and established by molecular dynamics simulation. The composite showed significant effect on cell viability/proliferation. It shows a high mineralized nodule formation over the control, which suggests its use as a possible osteogenic agent in bone formation.
Collapse
Affiliation(s)
- Chandkiram Gautam
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
- E-mail: . Tel: +91-8840389015
| | - Dibyendu Chakravarty
- International
Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Balapur, P. O., Hyderabad, Telangana 500005, India
| | - Amarendra Gautam
- Department
of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandra Sekhar Tiwary
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Cristiano Francisco Woellner
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
- Applied
Physics Department, State University of
Campinas-UNICAMP Campinas, São
Paulo 13083-859, Brazil
| | - Vijay Kumar Mishra
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Naseer Ahmad
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Sehmus Ozden
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Sujin Jose
- School
of
Physics, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Santoshkumar Biradar
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Robert Vajtai
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Ritu Trivedi
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Douglas S. Galvao
- Applied
Physics Department, State University of
Campinas-UNICAMP Campinas, São
Paulo 13083-859, Brazil
| | - Pulickel M. Ajayan
- Department
of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Tavassoli H, Javadpour J, Taheri M, Mehrjou M, Koushki N, Arianpour F, Majidi M, Izadi-Mobarakeh J, Negahdari B, Chan P, Ebrahimi Warkiani M, Bonakdar S. Incorporation of Nanoalumina Improves Mechanical Properties and Osteogenesis of Hydroxyapatite Bioceramics. ACS Biomater Sci Eng 2018; 4:1324-1336. [PMID: 33418663 DOI: 10.1021/acsbiomaterials.7b00754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A handful of work focused on improving the intrinsic low mechanical properties of hydroxyapatite (HA) by various reinforcing agents. However, the big challenge regarding improving mechanical properties is maintaining bioactivity. To address this issue, we report fabrication of apatite-based composites by incorporation of alumina nanoparticles (n-Al2O3). Although numerous studies have used micron or submicron alumina for reinforcing hydroxyapatite, only few reports are available about the use of n-Al2O3. In this study, spark plasma sintering (SPS) method was utilized to develop HA-nAl2O3 dense bodies. Compared to the conventional sintering, decomposition of HA and formation of calcium aluminates phases are restricted using SPS. Moreover, n-Al2O3 acts as a bioactive agent while its conventional form is an inert bioceramics. The addition of n-Al2O3 resulted in 40% improvement in hardness along with a 110% increase in fracture toughness, while attaining nearly full dense bodies. The in vitro characterization of nanocomposite demonstrated improved bone-specific cell function markers as evidenced by cell attachment and proliferation, alkaline phosphatase activity, calcium and collagen detection and nitric oxide production. Specifically, gene expression analysis demonstrated that introduction of n-Al2O3 in HA matrix resulted in accelerated osteogenic differentiation of osteoblast and mesenchymal stem cells, as expression of Runx-2 and OSP showed 2.5 and 19.6 fold increase after 2 weeks (p < 0.05). Moreover, protein adsorption analysis showed enhanced adsorption of plasma proteins to HA-nAl2O3 sample compared to HA. These findings suggest that HA-nAl2O3 could be a prospective candidate for orthopedic applications due to its improved mechanical and osteogenic properties.
Collapse
Affiliation(s)
- Hossein Tavassoli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.,Department of Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Mahdiar Taheri
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.,ANU College of Engineering & Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada H3A 0C3
| | - Farzin Arianpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.,Research and Application Center, Kastamonu University, 37100 Kastamonu, Turkey
| | | | | | - Babak Negahdari
- School of Advanced Technologies in Medicine, Department of Medical Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Peggy Chan
- Department of Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales 2007 Australia
| | | |
Collapse
|