1
|
Wilk M, Brodzka A, Koszelewski D, Samsonowicz‐Górski J, Ostaszewski R. Model Studies on the Enzyme‐Regulated Stereodivergent Cascade Passerini Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Monika Wilk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jan Samsonowicz‐Górski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
2
|
Banerjee M, Panjikar PC, Bhutia ZT, Bhosle AA, Chatterjee A. Micellar nanoreactors for organic transformations with a focus on “dehydration” reactions in water: A decade update. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
The amine as carbonyl precursor in the chemoenzymatic synthesis of Passerini adducts in aqueous medium. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
4
|
Paprocki D, Koszelewski D, Madej A, Brodzka A, Walde P, Ostaszewski R. Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect 2020. [DOI: 10.1002/slct.202002266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Paprocki
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Dominik Koszelewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Arleta Madej
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Peter Walde
- Laboratory for Multifunctional MaterialsDepartment of Materials, ETH Zurich, Vladimir-Prelog-Weg 5 8093 Zurich Switzerland
| | - Ryszard Ostaszewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|
5
|
Shaabani A, Mohammadian R, Afshari R, Hooshmand SE, Nazeri MT, Javanbakht S. The status of isocyanide-based multi-component reactions in Iran (2010-2018). Mol Divers 2020; 25:1145-1210. [PMID: 32072381 DOI: 10.1007/s11030-020-10049-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
Isocyanides as key intermediates and magic reactants have been widely applied in organic reactions for direct access to a broad spectrum of remarkable organic compounds. Although the history of these magical compounds dates back more than 100 years, it still has been drawing widespread attention of chemists who confirmed their versatility and effectiveness. Because of their wide spectrum of pharmacological, industrial and synthetic applications, many reactions with the utilization of isocyanides are reported in the literature. In this context, Iranian scientist played a significant role in the growth of isocyanides chemistry. The present review article covers literature from the period starting from 2010 onward and encompasses new synthetic routes and organic transformation involving isocyanides by Iranian researchers. During this period, a diverse range of isocyanide-based multi-component reactions (I-MCRs) has been reported such as a new modification of Ugi, post-Ugi, Passerini and Groebke-Blackburn-Bienayme condensation reactions, isocyanide-based [1 + 4] cycloaddition reactions, isocyanide-acetylene-based MCRs, isocyanide and Meldrum's acid-based MCRs, several unexpected reactions besides green mediums and novel catalytic systems for the synthesis of diverse kinds of pharmaceutically and industrially remarkable heterocyclic and linear organic compounds. This review also emphasizes the neoteric applications of I-MCR for the synthesis of valuable peptide and pseudopeptide scaffolds, enzyme immobilization and functionalization of materials with tailorable properties that can play important roles in the plethora of applications.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran.
| | - Reza Mohammadian
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran
| | - Ronak Afshari
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran
| | - Seyyed Emad Hooshmand
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19396-4716, Iran
| |
Collapse
|
6
|
Kęciek A, Paprocki D, Koszelewski D, Ostaszewski R. Evaluation of alcohols as substrates for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under environmentally friendly conditions. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Simić S, Jeremic S, Djokic L, Božić N, Vujčić Z, Lončar N, Senthamaraikannan R, Babu R, Opsenica IM, Nikodinovic-Runic J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme Microb Technol 2020; 132:109411. [DOI: 10.1016/j.enzmictec.2019.109411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/17/2023]
|
8
|
Wilk M, Brodzka A, Koszelewski D, Madej A, Paprocki D, Żądło-Dobrowolska A, Ostaszewski R. The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorg Chem 2019; 93:102817. [PMID: 30824123 DOI: 10.1016/j.bioorg.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023]
Abstract
The impact of isocyanoesters structure on enzymatic three-component Ugi reactions course has been determined. The significant promiscuous ability of enzyme in Ugi-type reaction switching between four (U-4CR) and three (U-3CR) components reactions depending on the size of used isocyanoester. The application of short-chain cyanoesters up to isocyanpropionate leading to product of three component reaction exclusively while longer isocyanobutyrate gives only the product of four component reaction. The limitation of studied enzymatic Ugi reaction is a substrate selectivity of lipases.
Collapse
Affiliation(s)
- Monika Wilk
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arleta Madej
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Żądło-Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
9
|
Paprocki D, Madej A, Koszelewski D, Brodzka A, Ostaszewski R. Multicomponent Reactions Accelerated by Aqueous Micelles. Front Chem 2018; 6:502. [PMID: 30406083 PMCID: PMC6204348 DOI: 10.3389/fchem.2018.00502] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022] Open
Abstract
Multicomponent reactions are powerful synthetic tools for the efficient creation of complex organic molecules in an one-pot one-step fashion. Moreover, the amount of solvents and energy needed for separation and purification of intermediates is significantly reduced what is beneficial from the green chemistry issues point of view. This review highlights the development of multicomponent reactions conducted using aqueous micelles systems during the last two decades.
Collapse
Affiliation(s)
- Daniel Paprocki
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Arleta Madej
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
10
|
Madej A, Koszelewski D, Paprocki D, Brodzka A, Ostaszewski R. The sustainable synthesis of peptidomimetics via chemoenzymatic tandem oxidation-Ugi reaction. RSC Adv 2018; 8:28405-28413. [PMID: 35542459 PMCID: PMC9084175 DOI: 10.1039/c8ra04583f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022] Open
Abstract
A simply and green synthetic protocol based on the selective laccase-oxidation of alcohol to a corresponding aldehyde and a following Ugi reaction in a micellar system made of SDS was developed and is reported herein. Special emphasis was placed on the metal-free chemoenzymatic tandem reaction based on alcohol oxidation strategies using molecular oxygen from air, followed by an Ugi reaction. The reaction was carried out without the use of a transition metal or organic solvents as a reaction medium. The presented protocol offers an efficient and environmentally friendly procedure.
Collapse
Affiliation(s)
- Arleta Madej
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
11
|
Koszelewski D, Trzepizur D, Zaorska E, Madej A, Brodzka A, Paprocki D, Borys F, Wilk M, Ostaszewski R. Facile Conversion of α-Acyloxy Amides into 3-Hydroxy-lactams. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Damian Trzepizur
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ewelina Zaorska
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Arleta Madej
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Filip Borys
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Monika Wilk
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
12
|
Brenna E, Crotti M, De Pieri M, Gatti FG, Manenti G, Monti D. Chemo-Enzymatic Oxidative Rearrangement of Tertiary Allylic Alcohols: Synthetic Application and Integration into a Cascade Process. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elisabetta Brenna
- Dipartimento CMIC “G. Natta”; Politecnico di Milano; Via Mancinelli 20134 Milan IT
- The Protein Factory; Politecnico di Milano Università degli Studi dell' Insubria; Via Mancinelli 7 20131 Milano IT
| | - Michele Crotti
- Dipartimento CMIC “G. Natta”; Politecnico di Milano; Via Mancinelli 20134 Milan IT
| | - Matteo De Pieri
- Dipartimento CMIC “G. Natta”; Politecnico di Milano; Via Mancinelli 20134 Milan IT
| | - Francesco G. Gatti
- Dipartimento CMIC “G. Natta”; Politecnico di Milano; Via Mancinelli 20134 Milan IT
- The Protein Factory; Politecnico di Milano Università degli Studi dell' Insubria; Via Mancinelli 7 20131 Milano IT
| | - Gabriele Manenti
- Dipartimento CMIC “G. Natta”; Politecnico di Milano; Via Mancinelli 20134 Milan IT
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare C.N.R.; Via Mario Bianco 9 20131 Milano IT
| |
Collapse
|
13
|
Liu J, Wu S, Li Z. Recent advances in enzymatic oxidation of alcohols. Curr Opin Chem Biol 2017; 43:77-86. [PMID: 29258054 DOI: 10.1016/j.cbpa.2017.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Abstract
Enzymatic alcohol oxidation plays an important role in chemical synthesis. In the past two years, new alcohol oxidation enzymes were developed through genome-mining and protein engineering, such as new copper radical oxidases with broad substrate scope, alcohol dehydrogenases with altered cofactor preference and a flavin-dependent alcohol oxidase with enhanced oxygen coupling. New cofactor recycling methods were reported for alcohol dehydrogenase-catalyzed oxidation with photocatalyst and coupled glutaredoxin-glutathione reductase as promising examples. Different alcohol oxidation systems were used for the oxidation of primary and secondary alcohols, especially in the cascade conversion of alcohols to lactones, lactams, chiral amines, chiral alcohols and hydroxyketones. Among them, biocatalyst with low enantioselectivity demonstrated an interesting feature for complete conversion of racemic secondary alcohols through non-enantioselective oxidation.
Collapse
Affiliation(s)
- Ji Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
14
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
15
|
Liu YT, Li YR, Wang X. Spontaneous onion shape vesicle formation and fusion of comb-like block copolymers studied by dissipative particle dynamics. RSC Adv 2017. [DOI: 10.1039/c6ra26127b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of an onion shape vesicle.
Collapse
Affiliation(s)
- Ying-Tao Liu
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Yan-Rong Li
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Xin Wang
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| |
Collapse
|
16
|
Madej A, Paprocki D, Koszelewski D, Żądło-Dobrowolska A, Brzozowska A, Walde P, Ostaszewski R. Efficient Ugi reactions in an aqueous vesicle system. RSC Adv 2017. [DOI: 10.1039/c7ra03376a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new, alternative route for the synthesis of a variety of α-aminoacyl amides via the four-component Ugi reaction in the presence of different surfactants in aqueous solution was investigated. High reaction yields were obtained in many cases with vesicles formed from DDAB.
Collapse
Affiliation(s)
- Arleta Madej
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | | | - Anna Brzozowska
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Peter Walde
- Laboratory of Polymer Chemistry
- Department of Materials
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | |
Collapse
|
17
|
Liu YT, Li YR, Wang X. Dynamic evolution of a vesicle formed by comb-like block copolymer-tethered nanoparticles: a dissipative particle dynamics simulation study. Phys Chem Chem Phys 2017; 19:27313-27319. [DOI: 10.1039/c7cp05196d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vesicles are well-sealed capsules that can store or transport substances.
Collapse
Affiliation(s)
- Ying-Tao Liu
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Yan-Rong Li
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Xin Wang
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| |
Collapse
|