1
|
Song M, Zhang J, Shen K, Hu Y, Shen W, Tang S, Lee HK. Application of smart-responsive hydrogels in nucleic acid and nucleic acid-based target sensing: A review. Biosens Bioelectron 2025; 267:116803. [PMID: 39316868 DOI: 10.1016/j.bios.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In recent years, nucleic acid-related sensing and detection have become essential in clinical diagnostics, treatment and genotyping, especially in connection with the Human Genome Project and the COVID-19 pandemic. Many traditional nucleic acid-related sensing strategies have been employed in analytical chemistry, including fluorescence, colorimetric and chemiluminescence methods. However, their key limitation is the lack of understanding of the interaction during analysis, particularly at the 3D matrix level close to biological tissue. To address this issue, smart-responsive hydrogels are increasingly used in biosensing due to their hydrophilic and biocompatible properties. By combining smart-responsive hydrogels with traditional nucleic acid-related sensing, biological microenvironments can be mimicked, and targets can be easily accessed and diffused, making them ideal for nucleic acid sensing. This review focuses on utilizing smart-responsive hydrogels for nucleic acid-related sensing and detection, including nucleic acid detection, other nucleic acid-based analyte detection and nucleic acid-related sensing platforms applying nucleic acid as sensing tools in hydrogels. Additionally, the analytical mechanisms of smart-responsive hydrogels with the combination of various detection platforms such as optical and electrochemical techniques are described. The limitations of using smart-responsive hydrogels in nucleic acid-related sensing and proposed possible solutions are also discussed. Lastly, the future challenge of smart-responsive hydrogels in nucleic acid-related sensing is explored. Smart-responsive hydrogels can be used as biomimetic materials to simulate the extracellular matrix, achieve biosensing, and exhibit great potential in nucleic acid-related sensing. They serve as a valuable complement to traditional detection and analytical methods.
Collapse
Affiliation(s)
- Meiqi Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Ke Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yaxue Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Lin X, Yan H, Zhao L, Duan N, Wang Z, Wu S. Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications. Crit Rev Food Sci Nutr 2024; 64:6395-6414. [PMID: 36660935 DOI: 10.1080/10408398.2023.2168619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Food safety is a global issue in public hygiene. The accurate, sensitive, and on-site detection of various food contaminants performs significant implications. However, traditional methods suffer from the time-consuming and professional operation, restricting their on-site application. Hydrogels with the merits of highly porous structure, high biocompatibility, good shape-adaptability, and stimuli-responsiveness offer a promising biomaterial to design sensors for ensuring food safety. This review describes the emerging applications of hydrogel-based sensors in food safety inspection in recent years. In particular, this study elaborates on their fabrication strategies and unique sensing mechanisms depending on whether the hydrogel is stimuli-responsive or not. Stimuli-responsive hydrogels can be integrated with various functional ligands for sensitive and convenient detection via signal amplification and transduction; while non-stimuli-responsive hydrogels are mainly used as solid-state encapsulating carriers for signal probe, nanomaterial, or cell and as conductive media. In addition, their existing challenges, future perspectives, and application prospects are discussed. These practices greatly enrich the application scenarios and improve the detection performance of hydrogel-based sensors in food safety detection.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lehan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Fan P, Li Q, Zhang Z, Jiang P, Zhang Z, Wu Q, Li L. A G-quadruplex-assisted target-responsive dual-mode aptasensor based on copper nanoclusters synthesized in situ in a DNA hydrogel for ultrasensitive detection of ochratoxin A. Talanta 2024; 270:125550. [PMID: 38104426 DOI: 10.1016/j.talanta.2023.125550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Developing ultrasensitive sensing platforms for trace ochratoxin A (OTA) in food safety is still challenging. Herein, we presented a novel dual-mode sensing strategy for fluorescence and colorimetric detection of OTA by combining the target-responsive hemin-encapsulated and copper nanoclusters (CuNCs) functionalized DNA hydrogel. Through simple assembly and in situ synthesis methods, fluorescence CuNCs are synthesized and modified on the 3D hydrophilic network structure of DNA cross-linked. OTA specifically recognized by Apt-linker can control the collapse of hydrogel, resulting in the fluorescence quenching of CuNCs and release of coated hemin. Interestingly, OTA could trigger Apt-linker conformational changes to form G-quadruplex structures, allowing the released hemin to form G-quadruplex/hemin DNAzyme via self-assembly. Fluorescence signal amplification could be achieved through further fluorescence quenching of CuNCs caused by DNAzyme-catalyzed hydrogen peroxide (H2O2) because of the peroxidase activity of DNAzyme. Simultaneously, DNAzyme could catalyze the H2O2-mediated oxidation of TMB to provide colorimetric signal. Thereafter, the DNA-CuNCs hydrogel exhibited low detection limits of 3.49 pg/mL in fluorescence mode and 0.25 ng/mL in colorimetric modality. Real sample analyses of foodstuffs showed satisfactory results, providing prospective potential for monitoring mycotoxin contaminant.
Collapse
Affiliation(s)
- Pengfei Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Qianji Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhengduo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Ping Jiang
- The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Zhan Zhang
- The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Qian Wu
- The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
4
|
Qiao L, Zhao Y, Zhang M, Tao Y, Xiao Y, Zhang N, Zhang Y, Zhu Y. Preparation Strategies, Functional Regulation, and Applications of Multifunctional Nanomaterials-Based DNA Hydrogels. SMALL METHODS 2024; 8:e2301261. [PMID: 38010956 DOI: 10.1002/smtd.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
5
|
Wang Q, Qu Y, Zhang Z, Huang H, Xu Y, Shen F, Wang L, Sun L. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022; 8:gels8070400. [PMID: 35877485 PMCID: PMC9320917 DOI: 10.3390/gels8070400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022] Open
Abstract
Regulated drug delivery is an important direction in the field of medicine and healthcare research. In recent years, injectable hydrogels with good biocompatibility and biodegradability have attracted extensive attention due to their promising application in controlled drug release. Among them, DNA hydrogel has shown great potentials in local drug delivery and immunotherapy. DNA hydrogel is a three-dimensional network formed by cross-linking of hydrophilic DNA strands with extremely good biocompatibility. Benefiting from the special properties of DNA, including editable sequence and specificity of hybridization reactions, the mechanical properties and functions of DNA hydrogels can be precisely designed according to specific applications. In addition, other functional materials, including peptides, proteins and synthetic organic polymers can be easily integrated with DNA hydrogels, thereby enriching the functions of the hydrogels. In this review, we first summarize the types and synthesis methods of DNA hydrogels, and then review the recent research progress of injectable DNA hydrogels in local drug delivery, especially in immunotherapy. Finally, we discuss the challenges facing DNA hydrogels and future development directions.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201240, China
- Correspondence: (F.S.); (L.S.)
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
- Correspondence: (F.S.); (L.S.)
| |
Collapse
|
6
|
Li J, Zhang Y, Zhu L, Chen K, Li X, Xu W. Smart Nucleic Acid Hydrogels with High Stimuli-Responsiveness in Biomedical Fields. Int J Mol Sci 2022; 23:1068. [PMID: 35162990 PMCID: PMC8835224 DOI: 10.3390/ijms23031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their hydrophilic, biocompatible and adjustability properties, hydrogels have received a lot of attention. The introduction of nucleic acids has made hydrogels highly stimuli-responsiveness and they have become a new generation of intelligent biomaterials. In this review, the development and utilization of smart nucleic acid hydrogels (NAHs) with a high stimulation responsiveness were elaborated systematically. We discussed NAHs with a high stimuli-responsiveness, including pure NAHs and hybrid NAHs. In particular, four stimulation factors of NAHs were described in details, including pH, ions, small molecular substances, and temperature. The research progress of nucleic acid hydrogels in biomedical applications in recent years is comprehensively discussed. Finally, the opportunities and challenges facing the future development of nucleic acid hydrogels are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Keren Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Xiangyang Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| |
Collapse
|
7
|
Zhao L, Li L, Yang G, Wei B, Ma Y, Qu F. Aptamer functionalized DNA hydrogels: Design, applications and kinetics. Biosens Bioelectron 2021; 194:113597. [PMID: 34534951 DOI: 10.1016/j.bios.2021.113597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
DNA hydrogels have received considerable attention in various promising applications due to their excellent biocompatibility, controlled biodegradability, adjustable mechanical properties, stability against proteases, self-healing ability, and stimuli responsiveness. To obtain the specific molecular recognition capability, aptamers and many other functional motifs are utilized. Aptamers are short single-stranded DNA or RNA selected through SELEX to bind with specific target with high affinity and specificity. With advantages of broad range of targets, good stability, easy modification, and low cost, aptamer functionalized DNA hydrogels become popular in a wide range of promising applications. In this review, the recent progress on aptamer functionalized DNA hydrogels including general design principles, applications and kinetics has been summarized. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Liping Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Bo Wei
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yao Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
8
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
9
|
Zhang Y, Zhu L, Tian J, Zhu L, Ma X, He X, Huang K, Ren F, Xu W. Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100216. [PMID: 34306976 PMCID: PMC8292884 DOI: 10.1002/advs.202100216] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Nucleic acid-based hydrogels that integrate intrinsic biological properties of nucleic acids and mechanical behavior of their advanced assemblies are appealing bioanalysis and biomedical studies for the development of new-generation smart biomaterials. It is inseparable from development and incorporation of novel structural and functional units. This review highlights different functional units of nucleic acids, polymers, and novel nanomaterials in the order of structures, properties, and functions, and their assembly strategies for the fabrication of nucleic acid-based hydrogels. Also, recent advances in the design of multifunctional and stimuli-responsive nucleic acid-based hydrogels in bioanalysis and biomedical science are discussed, focusing on the applications of customized hydrogels for emerging directions, including 3D cell cultivation and 3D bioprinting. Finally, the key challenge and future perspectives are outlined.
Collapse
Affiliation(s)
- Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Jingjing Tian
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xuan Ma
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| |
Collapse
|
10
|
Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1731. [PMID: 34132055 DOI: 10.1002/wnan.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Molecular recognition is essential to the development of biomaterials. Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity. Thus, aptamers have recently attracted significant attention in the development of an emerging class of biomaterials, that is, aptamer-functionalized hydrogels. In this review, we introduce the methods of incorporating aptamers into hydrogels as pendant motifs or crosslinkers. We further introduce the functions of these hydrogels in recognizing proteins, cells, and analytes through four applications including protein delivery, cell capture, regenerative medicine, and molecular biosensing. Notably, as aptamer-functionalized hydrogels have the characteristics of both aptamers and hydrogels, their potential applications are broad and beyond the scope of this review. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Di Y, Wang P, Li C, Xu S, Tian Q, Wu T, Tian Y, Gao L. Design, Bioanalytical, and Biomedical Applications of Aptamer-Based Hydrogels. Front Med (Lausanne) 2020; 7:456. [PMID: 33195288 PMCID: PMC7642814 DOI: 10.3389/fmed.2020.00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Aptamers are special types of single-stranded DNA generated by a process called systematic evolution of ligands by exponential enrichment (SELEX). Due to significant advances in the chemical synthesis and biotechnological production, aptamers have gained considerable attention as versatile building blocks for the next generation of soft materials. Hydrogels are high water-retainable materials with a three-dimensional (3D) polymeric network. Aptamers, as a vital element, have greatly expanded the applications of hydrogels. Due to their biocompatibility, selective binding, and molecular recognition, aptamer-based hydrogels can be utilized for bioanalytical and biomedical applications. In this review, we focus on the latest strategies of aptamer-based hydrogels in bioanalytical and biomedical applications. We begin this review with an overview of the underlying design principles for the construction of aptamer-based hydrogels. Next, we will discuss some bioanalytical and biomedical applications of aptamer-based hydrogel including biosensing, target capture and release, logic devices, gene and cancer therapy. Finally, the recent progress of aptamer-based hydrogels is discussed, along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ya Di
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ping Wang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunyan Li
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shufeng Xu
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qi Tian
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tong Wu
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yaling Tian
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Liming Gao
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
12
|
Huo B, Hu Y, Gao Z, Li G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2020; 222:121565. [PMID: 33167261 DOI: 10.1016/j.talanta.2020.121565] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It has seen increasing development of reliable, robust, and flexible biosensors for rapid food-safety analysis in the past few decades. Recently, functional nucleic acid-based biosensors have attracted attention because of their programmability, bottom-up characteristics, and structural switches. However, few systematic reviews devoted to categorizing the potential of DNA nanostructures and devices were found for detecting food contaminants. Hence, the applications of functional nucleic acid-based biosensors were reviewed for analyzing food contaminants, including foodborne pathogen bacteria, biotoxins, heavy metals, and et al. In addition to categorizing the various biosensors, multiple signal readout strategies, such as optical, electrochemical, and mass-based signals were also examined. Finally, the future changes and potential opportunities, as well as practical applications of functional nucleic acid-based biosensors were discussed.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
14
|
Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem 2020; 320:126607. [PMID: 32203832 DOI: 10.1016/j.foodchem.2020.126607] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Colorimetric aptasensors have been intensively studied for the ochratoxin A (OTA) detection, but they mostly exhibit just one-color change, resulting in poor visual resolution and limited use for semi-quantitative analysis. Thus, we designed a high-resolution colorimetric assay on the basis of aptamer structural switching and enzyme-induced metallization of gold nanorods (AuNRs). DNA-alkaline phosphatase (ALP)-immobilized magnetic beads were prepared. The aptamer bounded to OTA to form G-quadruplexes, releasing ALP-labelled complementary DNA (cDNA-ALP). After magnetic separation, cDNA-ALP catalyzed the decomposition of ascorbic acid 2-phosphate to ascorbic acid that reduced Ag+, forming an Ag shell on the surface of AuNRs. This caused a blue-shift of the longitudinal local surface plasmon resonance peak of the AuNRs and a naked eye visible multicolor change. Under optimal conditions, the assay exhibited a 9.0 nM detection limit for OTA, with high specificity. This method is promising for the on-site visual semi-quantitative detection of mycotoxins in foods.
Collapse
|
15
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
16
|
Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020; 378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
DNA nanostructures hold great promise for various applications due to their remarkable properties, including programmable assembly, nanometric positional precision, and dynamic structural control. The past few decades have seen the development of various kinds of DNA nanostructures that can be employed as useful tools in fields such as chemistry, materials, biology, and medicine. Aptamers are short single-stranded nucleic acids that bind to specific targets with excellent selectivity and high affinity and play critical roles in molecular recognition. Recently, many attempts have been made to integrate aptamers with DNA nanostructures for a range of biological applications. This review starts with an introduction to the features of aptamer-functionalized DNA nanostructures. The discussion then focuses on recent progress (particularly during the last five years) in the applications of these nanostructures in areas such as biosensing, bioimaging, cancer therapy, and biophysics. Finally, challenges involved in the practical application of aptamer-functionalized DNA nanostructures are discussed, and perspectives on future directions for research into and applications of aptamer-functionalized DNA nanostructures are provided.
Collapse
Affiliation(s)
- Xiaoyi Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jungyeon Lee
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Qi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Mengyi Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gezhi Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Abstract
Background:
Highly sensitive and rapid analysis of food contaminants is of great significance
for food safety control. Aptamer is a new kind of recognition molecules which could be applied
for constructing homogeneous analysis assays, potentially achieving highly sensitive, cheap and rapid
profiling of food contaminants.
Methods:
An overview of the literature concerning the homogeneous analysis of food contaminations
based on aptamers has been reviewed (focused on the most recent literature, 2000-2018).
Results:
Attributed to aptamer’s controllability, designability and feasibility for the adoption of nucleic
acid amplification, rapid, highly sensitive homogeneous assay for various food contaminants could
be constructed. The structure-switching aptamer probe would confer quick, efficient and specific response
to target food contaminants. Besides, the capability of amplification of aptamer sequences or
nucleic acid probes would lead to highly sensitive detection.
Conclusion:
Aptamer-based homogeneous analysis methods have already been applied to detect various
food contaminations ranging from toxins, heavy metal and pesticide to allergen and pathogenic
bacteria. However, it is still a challenge to achieve robust and accurate detection of food contaminants
in complex food samples.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Tian F, Zhou J, Jiao B, He Y. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. NANOSCALE 2019; 11:9547-9555. [PMID: 31049533 DOI: 10.1039/c9nr02872b] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colorimetric assays have been widely developed for the detection of toxin ochratoxin A (OTA), but most of them suffer from moderate sensitivity when they are adopted for the detection of trace OTA in a complicated food matrix. For the purpose of overcoming this issue, an innovative cascade reaction-based colorimetric aptasensor was developed for the achievement of high sensitivity. The biotin-labelled OTA aptamer was immobilized onto streptavidin magnetic beads by means of the biotin-streptavidin reaction. With OTA binding to its aptamer, the structural switching of the aptamer results in the release of the alkaline phosphatase-labelled oligonucleotide, which is partially complementary to the aptamer. Following the magnetic separation, the cascade reaction is initiated through the enzymatic conversion of ascorbic acid-2-phosphate into ascorbic acid. Subsequent to that, the generated ascorbic acid reduces MnO2 nanosheets to Mn2+ ions, accordingly destroying the oxidase-mimicking activity of MnO2 nanosheets. In consequence, it is not possible to oxidize 3,3',5,5'-tetramethylbenzidine (TMB), a substrate for oxidase, with Mn2+ for the production of the blue colour product (TMB Ox). With the increasing amount of OTA, a colour change occurs from blue to colourless. The cascade reaction has the potential of greatly amplifying the detection signal, together with remarkably improving the sensitivity, making this colorimetric sensor a universal and promising platform for the highly sensitive detection of mycotoxins in the field of public food safety monitoring.
Collapse
Affiliation(s)
- Fengyu Tian
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China.
| | | | | | | |
Collapse
|
19
|
He Y, Tian F, Zhou J, Jiao B. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Mikrochim Acta 2019; 186:199. [PMID: 30796615 DOI: 10.1007/s00604-019-3314-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
A fluorescence enhancement method is presented for the determination of ochratoxin A (OTA). The interaction of OTA with its aptamer causes structural changes which, in turn, change fluorescence of enzymatically generated polythymine-coated copper nanoparticles (CuNPs) (with excitation/emission maxima at 340/625 nm). The OTA-binding aptamer was immobilized on magnetic beads. When it binds OTA, it is partially released and exposes a region with a partly complimentary DNA strand (cDNA). After magnetic separation, the cDNA was employed as a primer to trigger the terminal deoxynucleotidyl transferase-mediated polymerization. This process generates polythymine which act as a template for synthesis of the CuNPs. The method is sensitive in having a 2.0 nM detection limit for OTA. It was successfully applied to the determination of OTA in spiked diluted red wine. Graphical abstract Schematic presentation of a fluorometric enhancement method for ochratoxin A assay based on ochratoxin A inducing structure switching of its aptamer and enzymatically generated polythymine for copper nanoparticles formation.
Collapse
Affiliation(s)
- Yue He
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China. .,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Chongqing, 400712, People's Republic of China. .,College of Food Science, Southwest University, Chongqing, 400712, People's Republic of China.
| | - Fengyu Tian
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Chongqing, 400712, People's Republic of China.,College of Food Science, Southwest University, Chongqing, 400712, People's Republic of China
| | - Jing Zhou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Chongqing, 400712, People's Republic of China.,College of Food Science, Southwest University, Chongqing, 400712, People's Republic of China
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China. .,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Chongqing, 400712, People's Republic of China. .,College of Food Science, Southwest University, Chongqing, 400712, People's Republic of China.
| |
Collapse
|
20
|
Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification. Mikrochim Acta 2019; 186:158. [DOI: 10.1007/s00604-019-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
21
|
Kang TS, Zhang JT, Vellaisamy K, Ma DL, Leung CH. Recent progress and developments of iridium-based compounds as probes for environmental analytes. Dalton Trans 2018; 47:13314-13317. [DOI: 10.1039/c8dt01167b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metal complexes based on iridium metal centers have attracted attention as probes due to their tunable biological and chemical characteristics.
Collapse
Affiliation(s)
- Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Jia-Tong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | | | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| |
Collapse
|
22
|
Mao X, Chen G, Wang Z, Zhang Y, Zhu X, Li G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem Sci 2017; 9:811-818. [PMID: 29629148 PMCID: PMC5873223 DOI: 10.1039/c7sc03716c] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Surface-immobilized pure DNA hydrogels were formed using a surficial primer-induced strategy and adopted as scaffold materials for biosensing applications.
Hydrogels are of great interest in the field of biosensing for their good biocompatibility, plasticity, and capability of providing 3D scaffolds. Nevertheless, the application of hydrogels has not been linked with broad surface biosensing systems yet. To overcome the limitations, here for the first time, surface-immobilized pure DNA hydrogels were synthesized using a surficial primer-induced strategy and adopted for biosensing applications. The DNA hydrogel 3D scaffold is successfully constructed on a transparent ITO electrode, which facilitates both colourimetric and electrochemical measurements. Results show that the hydrogel is able to wrap enzymes solidly and exhibits favourable stability under different conditions. Owing to the free diffusion of the micromolecular targets throughout the hydrogel, while isolating the enzymes from the macromolecular interferences outside the hydrogel, the direct colourimetric and electrochemical detection of hydrogen peroxide and bilirubin in serum is achieved. The detection limit of hydrogen peroxide in serum is 22 nM by colourimetric analysis and 13 nM by electrochemical measurement. The detection limit of bilirubin is 32 nM, a favourable limit that could be used in jaundice diagnosis. In addition, the enzyme@hydrogel can be easily regenerated and the catalytic activity is retained for a few cycles, thus allowing the recycling of the hydrogel-based biosensing system. The successful integration of DNA hydrogels with surface biosensing systems will greatly expand the applications of hydrogels for diagnostic and environmental monitoring purposes.
Collapse
Affiliation(s)
- Xiaoxia Mao
- Center for Molecular Recognition and Biosensing , School of Life Sciences , Shanghai University , Shanghai 200444 , China . .,School of Life Sciences , Anqing Normal University , Anqing 246011 , China.,Institute of Biomedical Engineering , School of Communication and Information Engineering , Shanghai University , Shanghai 200444 , China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing , School of Life Sciences , Shanghai University , Shanghai 200444 , China .
| | - Zihan Wang
- Center for Molecular Recognition and Biosensing , School of Life Sciences , Shanghai University , Shanghai 200444 , China .
| | - Yuanguang Zhang
- Anhui Key Laboratory of Functional Coordination Compounds , School of Chemistry and Engineering , Anqing Normal University , Anqing 246011 , China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing , School of Life Sciences , Shanghai University , Shanghai 200444 , China .
| | - Genxi Li
- Center for Molecular Recognition and Biosensing , School of Life Sciences , Shanghai University , Shanghai 200444 , China . .,State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , China .
| |
Collapse
|