1
|
Cao X, Zhu J, Zhang C, Xian J, Li M, Nath Varma S, Qin Z, Deng Q, Zhang X, Yang W, Liu C. Magnesium-Rich Calcium Phosphate Derived from Tilapia Bone Has Superior Osteogenic Potential. J Funct Biomater 2023; 14:390. [PMID: 37504885 PMCID: PMC10381238 DOI: 10.3390/jfb14070390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
We extracted magnesium-rich calcium phosphate bioceramics from tilapia bone using a gradient thermal treatment approach and investigated their chemical and physicochemical properties. X-ray diffraction showed that tilapia fish bone-derived hydroxyapatite (FHA) was generated through the first stage of thermal processing at 600-800 °C. Using FHA as a precursor, fish bone biphasic calcium phosphate (FBCP) was produced after the second stage of thermal processing at 900-1200 °C. The beta-tricalcium phosphate content in the FBCP increased with an increasing calcination temperature. The fact that the lattice spacing of the FHA and FBCP was smaller than that of commercial hydroxyapatite (CHA) suggests that Mg-substituted calcium phosphate was produced via the gradient thermal treatment. Both the FHA and FBCP contained considerable quantities of magnesium, with the FHA having a higher concentration. In addition, the FHA and FBCP, particularly the FBCP, degraded faster than the CHA. After one day of degradation, both the FHA and FBCP released Mg2+, with cumulative amounts of 4.38 mg/L and 0.58 mg/L, respectively. Furthermore, the FHA and FBCP demonstrated superior bone-like apatite formation; they are non-toxic and exhibit better osteoconductive activity than the CHA. In light of our findings, bioceramics originating from tilapia bone appear to be promising in biomedical applications such as fabricating tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiaxin Cao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Jiaqi Zhu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Changze Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Jiaru Xian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA7 4LP, UK
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qiaoyuan Deng
- Key Laboratory of Advanced Material of Tropical Island Resources of Educational Ministry School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyue Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Wei Yang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
- Hainan Xiangtai Fishery Co., Ltd., South of Yutang Road, Industrial Avenue, Laocheng Development Zone, Chengmai City 571924, China
| | - Chaozong Liu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA7 4LP, UK
| |
Collapse
|
2
|
Lipid-assisted synthesis of magnesium-loaded hydroxyapatite as a potential bone healing material. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Song Q, Prabakaran S, Duan J, Jeyaraj M, Mickymaray S, Paramasivam A, Rajan M. Enhanced bone tissue regeneration via bioactive electrospun fibrous composite coated titanium orthopedic implant. Int J Pharm 2021; 607:120961. [PMID: 34333026 DOI: 10.1016/j.ijpharm.2021.120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract. Fibrous composite's functionality, phase characteristics, and morphology were evaluated by FT-IR, XRD, and SEM techniques, respectively. The average fiber diameter of MHAP/PVA had decreased from ~274 to ~255 nm after incorporating PEG polymer. That further increased from ~255 to ~275 nm after adding CQ extract. Besides the bioactivity in SBF solution, the degradable nature was confirmed by immersing the fibrous composite in Tris-HCL solution. The degradable studies evaluate that the composite was degraded depending on time, and it degrades about 9.42% after 7 days of immersion. Osteoblasts like MG-63 cells differentiation, proliferation, and calcium deposition were also determined. These results show that this new fibrous composite exhibits advanced osteoblasts properties. Thus, we concluded that this new fibrous scaffold coated Ti implant could act as a better implant to mimic ECM of bone structure and to improve osteogenesis during bone regeneration.
Collapse
Affiliation(s)
- Qichun Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
| | - Jiafeng Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology Xi'an Jiaotong University, Xi'an 710004, China
| | | | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
4
|
Prabakaran S, Rajan M, Geng Z, Liu Y. Fabrication of substituted hydroxyapatite-starch-clay bio-composite coated titanium implant for new bone formation. Carbohydr Polym 2021; 271:118432. [PMID: 34364572 DOI: 10.1016/j.carbpol.2021.118432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
The clay/polymeric matrices have much attention from researchers in bio-medical applications due to their numerous uses. This study introduces new orthopedic titanium (Ti) implant with increasing bio-activity by treating the surface of the Ti implant with bio-compatible composite coating. Wollastonite (WST) clay combined minerals (Mg2+and Gd3+) substituted hydroxyapatite (HAP)/Starch composite was prepared using in-situ co-precipitation method. It was successfully coated on the orthopedic grade Ti plate by the Electrophoretic Deposition (EPD) method. The functionality, phase, morphology, and bio-activity analysis of the composite were evaluated by FT-IR, XRD, HR-TEM, and SEM analysis, respectively. The mechanical property, i.e., Vickers microhardness value of the MHAP/Starch/WST composite coated Ti plate, showed 242 ± 1.92 Hv. The in-vitro MG-63 osteoblast cells viability, differentiation, and Ca mineralization of MHAP/Starch/WST composite suggests that this new implant will be used for bone regeneration application after careful evaluation of in-vivo and clinical studies.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
5
|
Trubitsyn MA, Hung HV, Furda LV, Hong NTT. Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621050211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Stojkovska J, Zvicer J, Andrejevic M, Janackovic D, Obradovic B, Veljovic DN. Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions. J Biomed Mater Res B Appl Biomater 2021; 109:2079-2090. [PMID: 33955159 DOI: 10.1002/jbm.b.34856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 11/07/2022]
Abstract
In the present study, we synthesized hydroxyapatite (HAP) powders followed by the production of alginate based macroporous scaffolds with the aim to imitate the natural bone structure. HAP powders were synthesized by using a hydrothermal method, and after calcination, dominant phases in the powders, undoped and doped with Mg2+ were HAP and β-tricalcium phosphate, respectively. Upon mixing with Na-alginate, followed by gelation and freeze-dying, highly macroporous composite scaffolds were obtained with open and connected pores and uniformly dispersed mineral phase as determined by scanning electron microscopy. Mechanical properties of the scaffolds were influenced by the composition of calcium phosphate fillers being improved as Ca2+ concentration increased while Mg2+ concentration decreased. HAP formation within all scaffolds was investigated in simulated body fluid (SBF) during 28 days under static conditions while the best candidate (Mg substituted HAP filler, precursor solution with [Ca + Mg]/P molar ratio of 1.52) was investigated under more physiological conditions in a biomimetic perfusion bioreactor. The continuous SBF flow (superficial velocity of 400 μm/s) induced the formation of abundant HAP crystals throughout the scaffolds leading to improved mechanical properties to some extent as compared to the initial scaffolds. These findings indicated potentials of novel biomimetic scaffolds for use in bone tissue engineering.
Collapse
Affiliation(s)
- Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia.,Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Jovana Zvicer
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | - Milica Andrejevic
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | | | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | | |
Collapse
|
7
|
Huang J, Chen C, Huang Z, Yao D, Wu C, Cheng Y. Self-assembly pore-forming mechanism of foam boundary templates and the preparation of porous strontium hydroxyapatite microspheres by homogeneous precipitation. CrystEngComm 2019. [DOI: 10.1039/c9ce00704k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of porous SrHAp microspheres, and the self-assembly pore-forming process and mechanism of a foam boundary template were systematically presented.
Collapse
Affiliation(s)
- Jiangsheng Huang
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
- School of Biological and Chemical Engineering
| | - Changlian Chen
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Zhiliang Huang
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Donghui Yao
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Changsheng Wu
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Yilin Cheng
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| |
Collapse
|
8
|
Padmanabhan VP, T. S. N. SN, Sagadevan S, Hoque ME, Kulandaivelu R. Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj03735g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, pure hydroxyapatite (HAP) and lithium substituted hydroxyapatite (Li-HAP) nanoparticles were synthesized by a sonochemical synthesis process and investigated for their antimicrobial and hemolytic activities.
Collapse
Affiliation(s)
| | | | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre
- University of Malaya
- Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering
- Military Institute of Science and Technology (MIST)
- Dhaka
- Bangladesh
| | | |
Collapse
|
9
|
Xu T, He X, Chen Z, He L, Lu M, Ge J, Weng J, Mu Y, Duan K. Effect of magnesium particle fraction on osteoinduction of hydroxyapatite sphere-based scaffolds. J Mater Chem B 2019; 7:5648-5660. [PMID: 31465084 DOI: 10.1039/c9tb01162e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
HAs-30Mg (incorporation of 30% Mg into HA sphere-based scaffolds) induced the optimum new bone formation.
Collapse
Affiliation(s)
- Taotao Xu
- Key Lab of Advanced Technologies of Materials (MOE)
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Xu He
- Key Lab of Advanced Technologies of Materials (MOE)
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Zhenghui Chen
- Department of Stomatology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Lei He
- Key Lab of Advanced Technologies of Materials (MOE)
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Mengjie Lu
- Sichuan Provincial Lab of Orthopaedic Engineering
- Department of Bone and Joint Surgery
- Affiliated Hospital of Southwest Medical University
- Luzhou
- China
| | - Jianhua Ge
- Sichuan Provincial Lab of Orthopaedic Engineering
- Department of Bone and Joint Surgery
- Affiliated Hospital of Southwest Medical University
- Luzhou
- China
| | - Jie Weng
- Key Lab of Advanced Technologies of Materials (MOE)
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Yandong Mu
- Department of Stomatology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering
- Department of Bone and Joint Surgery
- Affiliated Hospital of Southwest Medical University
- Luzhou
- China
| |
Collapse
|
10
|
Murugan N, Murugan C, Sundramoorthy AK. In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Mansour SF, El-dek SI, Dorozhkin SV, Ahmed MK. Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. NEW J CHEM 2017; 41:13773-13783. [DOI: 10.1039/c7nj01777d] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Co-Substituted hydroxyapatite Mg–Ag-HAP/chitosan biocomposites were synthesized successfully using a simple chemical method, and the compressive strength progressed up to 15.2 MPa atx= 0.8.
Collapse
Affiliation(s)
- S. F. Mansour
- Physics Department
- Faculty of Science
- Zagazig University
- Egypt
| | - S. I. El-dek
- Materials Science and Nanotechnology Department
- Faculty of Postgraduate Studies for Advanced Sciences
- Beni-Suef University
- Egypt
| | | | - M. K. Ahmed
- Physics Department
- Faculty of Science
- Zagazig University
- Egypt
| |
Collapse
|