1
|
Asgari S, Mohammadi Ziarani G, Naderahmadian A, Rajabinejad E, Amiri A, Badiei A. Ferrocenyl Lawesson's reagent-based porous organic polymers for efficient adsorption-assisted photocatalysis degradation of organic dyes. Heliyon 2025; 11:e42717. [PMID: 40051851 PMCID: PMC11883355 DOI: 10.1016/j.heliyon.2025.e42717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
The adsorption process followed by photodegradation, adsorption-assisted photocatalysis, is an efficient way to achieve an enhanced overall removal of pollutants from wastewater. This aim can be achieved by a new type of metallocene-based porous organic polymers, denoted as Ferrocenyl Lawesson's reagent-metal-organic porous polymers (FcLR-MOPPs), including FcLR-P1 and FcLR-P2, synthesized through 1) synthesis of ferrocene-MOPPs (ferrocene-P1 and ferrocene-P2) through a Friedel-Crafts reaction between dimethoxymethane and ferrocene at two different ratios of 3:1 and 5:1 and 2) reaction of the ferrocene-MOPPs with phosphonium pentasulfide (P2S5). The photodegradation efficiencies of methylene blue (MB) and methyl orange (MO) toward FcLR-MOPPs were higher than those of the ferrocene-MOPPs. In contrast, the adsorption efficiencies of the dyes declined after the reaction of ferrocene-MOPPs with P2S5. In both cases, a higher photocatalytic activity and adsorption affinity were observed towards MB dye. When combined degradation/adsorption of dyes was investigated, a boosted dye elimination was observed for both the MOPP-based catalysts. FcLR-P1, as the optimal catalyst with the MB degradation/adsorption efficiency of 87.0 % ± 3.0, indicated a pseudo-first-order kinetic model for degradation of MB with a degradation rate constant of 0.074 min-1, a pseudo-second-order kinetic model and Langmuir isotherm for adsorption of MB, and high reusing after three cycles of use. A band gap energy (Eg) value of +2.3 eV was determined for FcLR-P1 via Tauc plots, consistent with the Eg value obtained from the cyclic voltammetry curves (+1.98 eV). Mott-Schottky plots consistent with radical trapping experiments indicated •OH species as the critical species in the MB photodegradation.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Aylar Naderahmadian
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Elaheh Rajabinejad
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| |
Collapse
|
2
|
Buitendach BE, Erasmus E, Fourie E, Malan FP, Conradie J, Niemantsverdriet JW(H, Swarts JC. Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [Ir III(ppy) 2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy) 2(FcCOCHCORc)]. Molecules 2024; 29:5383. [PMID: 39598772 PMCID: PMC11597539 DOI: 10.3390/molecules29225383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The series of iridium(III) complexes, [Ir(ppy)2(RCOCHCOR')], with R = CH3 and R' = CH3 (1), Rc (2), and Fc (3), as well as R = Rc and R' = Rc (4) or Fc (5), and R = R' = Fc (6), ppy = 2-phenylpyridinyl, Fc = FeII(η5-C5H4)(η5-C5H5), and Rc = RuII(η5-C5H4)(η5-C5H5), has been investigated by single-crystal X-ray crystallography and X-ray photoelectron spectroscopy (XPS) supplemented by DFT calculations. Here, in the range of 3.74 ≤ ΣχR ≤ 4.68, for Ir 4f, Ru 3d and 3p and N 1s orbitals, binding energies unexpectedly decreased with increasing ΣχR (ΣχR = the sum of Gordy group electronegativities of the R groups on β-diketonato ligands = a measure of electron density on atoms), while in Fe 2p orbitals, XPS binding energy, as expected, increased with increasing ΣχR. Which trend direction prevails is a function of main quantum level, n = 1, 2, 3…, sub-quantum level (s, p, d, and f), initial state energies, and final state relaxation energies, and it may differ from compound series to compound series. Relations between DFT-calculated orbital energies and ΣχR followed opposite trend directions than binding energy/ΣχR trends. X-ray-induced decomposition of compounds was observed. The results confirmed good communication between molecular fragments. Lower binding energies of both the Ir 4f7/2 and N 1s photoelectron lines are associated with shorter Ir-N bond lengths. Cytotoxic tests showed that 1 (IC50 = 25.1 μM) and 3 (IC50 = 37.8 μM) are less cytotoxic against HeLa cells than cisplatin (IC50 = 1.1 μM), but more cytotoxic than the free β-diketone FcCOCH2COCH3 (IC50 = 66.6 μM).
Collapse
Affiliation(s)
- Blenerhassitt E. Buitendach
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa (E.E.); (E.F.); (J.C.)
| | - Elizabeth Erasmus
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa (E.E.); (E.F.); (J.C.)
| | - Eleanor Fourie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa (E.E.); (E.F.); (J.C.)
| | - Frederick P. Malan
- Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa;
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa (E.E.); (E.F.); (J.C.)
| | | | - Jannie C. Swarts
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa (E.E.); (E.F.); (J.C.)
| |
Collapse
|
3
|
Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: merits and applications. Chem Soc Rev 2023; 52:8410-8446. [PMID: 37947236 DOI: 10.1039/d3cs00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Redox flow batteries (RFBs) are promising electrochemical energy storage systems, offering vast potential for large-scale applications. Their unique configuration allows energy and power to be decoupled, making them highly scalable and flexible in design. Aqueous RFBs stand out as the most promising technologies, primarily due to their inexpensive supporting electrolytes and high safety. For aqueous RFBs, there has been a skyrocketing increase in studies focusing on the development of advanced functional materials that offer exceptional merits. They include redox-active materials with high solubility and stability, electrodes with excellent mechanical and chemical stability, and membranes with high ion selectivity and conductivity. This review summarizes the types of aqueous RFBs currently studied, providing an outline of the merits needed for functional materials from a practical perspective. We discuss design principles for redox-active candidates that can exhibit excellent performance, ranging from inorganic to organic active materials, and summarize the development of and need for electrode and membrane materials. Additionally, we analyze the mechanisms that cause battery performance decay from intrinsic features to external influences. We also describe current research priorities and development trends, concluding with a summary of future development directions for functional materials with valuable insights for practical applications.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
4
|
Tan KJ, Morikawa S, Hemmatifar A, Ozbek N, Liu Y, Hatton TA. Hydrophobicity Tuned Polymeric Redox Materials with Solution-Specific Electroactive Properties for Selective Electrochemical Metal Ion Recovery in Aqueous Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43859-43870. [PMID: 37695877 DOI: 10.1021/acsami.3c09321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Adaptable redox-active materials hold great potential for electrochemically mediated separation processes via targeted molecular recognition and reduced energy requirements. This work presents molecularly tunable vinylferrocene metallopolymers (P(VFc-co-X)) with modifiable operating potentials, charge storage capacities, capacity retentions, and analyte affinities in various electrolyte environments based on the hydrophobicity of X. The styrene (St) co-monomer impedes hydrophobic anions from ferrocene access, providing P(VFc-co-St) with specific response capabilities for and greatly improved cyclabilities in hydrophilic anions. This adjustable electrochemical stability enables preferential chromium and rhenium oxyanion separation from both hydrophobic and hydrophilic electrolytes that significantly surpasses capacitive removal by an order of magnitude, with a robust perrhenate uptake capacity of 329 mg/g VFc competitive with established metal-organic framework physisorbents and 17-fold selectivity over 20-fold excess nitrate. Pairing P(VFc-co-X) with other solution-specific electroactive macromolecules such as the pH-dependent poly(hydroquinone) (PHQ) and the cesium-selective nickel hexacyanoferrate (NiHCF) generates dual-functionalized electrosorption cells. P(VFc-co-X)//PHQ offers optimizable energetics based on X and pH for a substantial 4.6-fold reduction from 0.21 to 0.04 kWh/mol rhenium in acidic versus near-neutral media, and P(VFc-co-St)//NiHCF facilitates simultaneous extraction of rhenium, chromium, and cesium ions. Proof-of-concept reversible perrhenate separation in flow further highlights such frameworks as promising approaches for next-generation water purification technologies.
Collapse
Affiliation(s)
- Kai-Jher Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Satoshi Morikawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ali Hemmatifar
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nil Ozbek
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yayuan Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Walkowiak A, Wolski L, Ziolek M. The influence of ferrocene anchoring method on the reactivity and stability of SBA-15-based catalysts in the degradation of ciprofloxacin via photo-Fenton process. RSC Adv 2023; 13:8360-8373. [PMID: 36926012 PMCID: PMC10012415 DOI: 10.1039/d3ra00188a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
The study is aimed at evaluation of the impact of ferrocene (Fc) anchoring method on the efficiency of its incorporation on the surface of mesoporous silica SBA-15, as well as the reactivity and stability of these hybrid organic-inorganic materials in degradation of ciprofloxacin (CIP) via photocatalytic, Fenton and photo-Fenton processes. For this purpose, Fc was anchored on SBA-15 supports via three different methods: (i) Schiff base formation, (ii) Friedel-Crafts alkylation, and (iii) click reaction (azide-alkyne cycloaddition). The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, infrared spectroscopy and inductively coupled plasma optical emission spectrometry, as well as UV-visible and X-ray photoelectron spectroscopies. The highest efficiency of Fc anchoring was obtained when applying the Friedel-Crafts alkylation, while the least effective was the Schiff base formation. As concerns the catalysts activity, all materials exhibited negligible reactivity in the photocatalytic process, but were capable of degrading CIP in the presence of H2O2 (Fenton process). For all materials, the highest efficiency of CIP removal was observed for the photo-Fenton reaction. When expressed as the activity of a single Fc site, the most reactive were Fc species from the catalyst prepared by the click reaction. All materials, irrespectively of the ferrocene anchoring method, were deactivating over the reaction time because of Fc leaching. The highest stability in three subsequent reaction cycles was observed for the catalyst prepared by the azide-alkyne cycloaddition. Thus, the click reaction was found to be the best method for the preparation of Fc-containing catalysts for CIP degradation.
Collapse
Affiliation(s)
- Adrian Walkowiak
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Lukasz Wolski
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Maria Ziolek
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
6
|
Chemical exfoliation of silica filters used on methylene blue degradation by photocatalysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Krishna Murthy TP, Gowrishankar BS. Process optimisation of methylene blue sequestration onto physical and chemical treated coffee husk based adsorbent. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
9
|
Kwabi DG, Ji Y, Aziz MJ. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chem Rev 2020; 120:6467-6489. [PMID: 32053366 DOI: 10.1021/acs.chemrev.9b00599] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aqueous organic redox flow batteries (RFBs) could enable widespread integration of renewable energy, but only if costs are sufficiently low. Because the levelized cost of storage for an RFB is a function of electrolyte lifetime, understanding and improving the chemical stability of active reactants in RFBs is a critical research challenge. We review known or hypothesized molecular decomposition mechanisms for all five classes of aqueous redox-active organics and organometallics for which cycling lifetime results have been reported: quinones, viologens, aza-aromatics, iron coordination complexes, and nitroxide radicals. We collect, analyze, and compare capacity fade rates from all aqueous organic electrolytes that have been utilized in the capacity-limiting side of flow or hybrid flow/nonflow cells, noting also their redox potentials and demonstrated concentrations of transferrable electrons. We categorize capacity fade rates as being "high" (>1%/day), "moderate" (0.1-1%/day), "low" (0.02-0.1%/day), and "extremely low" (≤0.02%/day) and discuss the degree to which the fade rates have been linked to decomposition mechanisms. Capacity fade is observed to be time-denominated rather than cycle-denominated, with a temporal rate that can depend on molecular concentrations and electrolyte state of charge through, e.g., bimolecular decomposition mechanisms. We then review measurement methods for capacity fade rate and find that simple galvanostatic charge-discharge cycling is inadequate for assessing capacity fade when fade rates are low or extremely low and recommend refining methods to include potential holds for accurately assessing molecular lifetimes under such circumstances. We consider separately symmetric cell cycling results, the interpretation of which is simplified by the absence of a different counter-electrolyte. We point out the chemistries with low or extremely low established fade rates that also exhibit open circuit potentials of 1.0 V or higher and transferrable electron concentrations of 1.0 M or higher, which are promising performance characteristics for RFB commercialization. We point out important directions for future research.
Collapse
Affiliation(s)
- David G Kwabi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yunlong Ji
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael J Aziz
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Wang F, Islam S, Backler F. Probing Intramolecular Interaction of Stereoisomers Using Computational Spectroscopy. Aust J Chem 2020. [DOI: 10.1071/ch19453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several model stereoisomers such as ferrocene (Fc), methoxyphenol, and furfural conformers are discussed. It was discovered that the Fc IR spectroscopic band(s) below 500cm−1 serve as fingerprints for eclipsed (splitting 17 (471–488)cm−1) and staggered Fc (splitting is ~2 (459–461)cm−1) in the gas phase. It is revealed that in the gas phase the dominance of the eclipsed Fc (D5h) at very low temperatures changes to a mixture of both eclipsed and staggered Fc when the temperature increases. However, in solvents such as CCl4, eclipsed Fc dominates at room temperature (300K) due to the additional solvation energy. Intramolecular interactions of organic model compounds such as methoxyphenols (guaiacol (GUA) and mequinol (MEQ)) and furfural, ionization energies such as the carbon 1s (core C1s), as well as valence binding energy spectra serve this purpose well. Hydrogen bonding alters the C1s binding energies of the methoxy carbon (C(7)) of anti-syn and anti-gauche conformers of GUA to 292.65 and 291.91eV, respectively. The trans and cis MEQ conformers, on the other hand, are nearly energy degenerate, whereas their dipole moments are significantly different: 2.66 Debye for cis and 0.63 Debye for trans-MEQ. Moreover, it is found that rotation around the Cring–OH and the Cring–OCH3 bonds differ in energy barrier height by ~0.50 kcal⋅mol−1. The Dyson orbital momentum profiles of the most different ionic states, 25a′ (0.35eV) and 3a′ (−0.33eV), between cis and trans-MEQ in outer valence space (which is measurable using electron momentum spectroscopy (EMS)), exhibit quantitative differences. Finally, the molecular switch from trans and cis-furfural engages with a small energy difference of 0.74 kcal mol−1, however, at the calculated C(3)(–H⋅⋅⋅O=C) site the C1s binding energy difference is 0.105eV (2.42 kcal mol−1) and the NMR chemical shift of the same carbon site is also significant; 7.58ppm from cis-furfural without hydrogen bonding.
Collapse
|
11
|
Facile Synthesis of High Performance Iron Oxide/Carbon Nanocatalysts Derived from the Calcination of Ferrocenium for the Decomposition of Methylene Blue. Catalysts 2019. [DOI: 10.3390/catal9110948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron oxide/carbon nanocatalysts were successfully synthesized by the calcination of ferrocenium at high temperatures ranging from 500 to 900 °C. Then the synthesized nanocomposites were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy), VSM (Vibrating-Sample Magnetometry), BET (Brunauer-Emmett-Teller surface area measurements), TGA (Thermogravimetric Analysis), XPS (X-Ray Photoelectron Spectroscopy), EPR (Electron Paramagnetic Resonance), and CHN elemental analysis. The prepared nanocatalysts were applied for the decomposition of methylene blue as a model in wastewater treatment. It was unexpected to discover that the prepared nanocatalysts were highly active for the reaction with methylene blue in the dark even though no excess of hydrogen peroxide was added. The nanocatalyst calcined at 800 °C exhibited the rod shape with the best catalytic activity. The nanocatalysts could be reused for 12 times without the significant loss of the catalytic activity.
Collapse
|
12
|
Sabarinathan C, Karuppasamy P, Vijayakumar C, Arumuganathan T. Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: Kinetics, Thermodynamics and Mechanistic Study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chumkaeo P, Poonsawat T, Meechai T, Somsook E. Synergistic Activities in the Ullmann Coupling of Chloroarenes at Ambient Temperature by Pd-Supported Calcined Ferrocenated La 2
O 3. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peerapong Chumkaeo
- NANOCAST Laboratory, Center for Catalysis Science and Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahidol University; 272 Rama VI Rd., Thung Phaya Thai, Ratchathewi Bangkok 10400 Thailand
| | - Thinnaphat Poonsawat
- NANOCAST Laboratory, Center for Catalysis Science and Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahidol University; 272 Rama VI Rd., Thung Phaya Thai, Ratchathewi Bangkok 10400 Thailand
| | - Titiya Meechai
- NANOCAST Laboratory, Center for Catalysis Science and Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahidol University; 272 Rama VI Rd., Thung Phaya Thai, Ratchathewi Bangkok 10400 Thailand
| | - Ekasith Somsook
- NANOCAST Laboratory, Center for Catalysis Science and Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahidol University; 272 Rama VI Rd., Thung Phaya Thai, Ratchathewi Bangkok 10400 Thailand
| |
Collapse
|
14
|
Di Mauro A, Landström A, Concina I, Impellizzeri G, Privitera V, Epifani M. Surface modification by vanadium pentoxide turns oxide nanocrystals into powerful adsorbents of methylene blue. J Colloid Interface Sci 2019; 533:369-374. [DOI: 10.1016/j.jcis.2018.08.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
|
15
|
Ussia M, Di Mauro A, Mecca T, Cunsolo F, Nicotra G, Spinella C, Cerruti P, Impellizzeri G, Privitera V, Carroccio SC. ZnO-pHEMA Nanocomposites: An Ecofriendly and Reusable Material for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40100-40110. [PMID: 30358979 DOI: 10.1021/acsami.8b13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of new hybrid nanocomposites based on poly(2-hydroxyethylmethacrylate) (pHEMA) graphene oxide (GO) cryosponges, wherein ZnO nanolayers have been deposited to induce photocatalytic properties, is reported here. Atomic layer deposition at low temperature is specifically selected as the deposition technique to stably anchor ZnO molecules to the pendant polymer OH groups. Furthermore, to boost the pHEMA cryogel adsorption capability versus organic dyes, GO is added during the synthetic procedure. The morphology, the crystallinity, and the chemical composition of the samples are deeply investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction analyses, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Swelling properties, mechanical performance, and adsorption kinetics models of the hybrid materials are also evaluated. Finally, the adsorption and photocatalytic performance are tested and compared for all of the samples using methylene blue as a dye. Particularly, the adsorption efficiency of ZnO/pHEMA and ZnO/pHEMA-GO nanocomposites, as well as their in situ regeneration via photocatalysis, renders such devices very appealing for advanced wastewater treatment technology.
Collapse
Affiliation(s)
- Martina Ussia
- CNR-IMM , Via Santa Sofia 64 , 95123 Catania , Italy
- Department of Physics and Astronomy , University of Catania , via Santa Sofia 64 , 95123 Catania , Italy
| | | | - Tommaso Mecca
- CNR-ICB , Via Paolo Gaifami 18 , 95126 Catania , Italy
| | | | | | | | | | | | | | - Sabrina C Carroccio
- CNR-IMM , Via Santa Sofia 64 , 95123 Catania , Italy
- CNR-IPCB , Via Paolo Gaifami 18 , 95126 Catania , Italy
| |
Collapse
|
16
|
Divyapriya G, Nambi I, Senthilnathan J. Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin. CHEMOSPHERE 2018; 209:113-123. [PMID: 29920409 DOI: 10.1016/j.chemosphere.2018.05.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Ferrocene functionalized graphene based graphite felt electrode was firstly investigated for heterogeneous electro-Fenton oxidation of ciprofloxacin in neutral pH condition. Electrochemical reduction of Ferrocene functionalized graphene oxide (Fc-ErGO) was performed by cyclic voltammetry technique. At neutral pH condition, Fc-ErGO electrode (0.035 min─1) exhibited ∼3 times and ∼9 times higher removal rates in comparison with plane ErGO (0.010 min─1) and plane graphite felt (0.004 min─1) electrodes respectively. The effect of pH and applied potential were studied for the degradation of ciprofloxacin in Fc-ErGO based electrode. Higher removal rate was observed at acidic pH (0.222 min─1), whereas alkaline pH showed lower removal efficiency (0.014 min─1). > 99% removal of ciprofloxacin was achieved with in 15 min and 120 min of reactions period at pH 3.0 and pH 7.0, respectively. H2O2 generation was found to be high in plane ErGO electrode system in all of the pH conditions. Owing to the high redox ability of ferrocene, Fc-ErGO electrode generated high concentration of OH radicals (426 μM pH 3.0; 247 μM pH 7.0; 210 μM pH 9.0) than ErGO and plane graphite felt electrodes; The electrode reusability study was performed to understand the electrode stability. There was no significant change in removal efficiency even after the 5th cycle of reusability study at both acidic and neutral conditions. The possible mechanism of oxidation in Fc-ErGO based electro-Fenton process was also proposed based on the continuous monitoring of H2O2 and OH radicals generated in the system.
Collapse
Affiliation(s)
- Govindaraj Divyapriya
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Indumathi Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Jaganathan Senthilnathan
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|