1
|
Wang C, Xiao J. Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes. Acc Chem Res 2025; 58:714-731. [PMID: 39982136 PMCID: PMC11883747 DOI: 10.1021/acs.accounts.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O2. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.
Collapse
Affiliation(s)
- Chao Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface
and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
2
|
Choi H, Kim S, Kwak M, Gwak Y, Jeong K, Seo Y, Yoo D. Cu Anchored Carbon Nitride (Cu/CN) Catalyzes Selective Oxidation of Thiol by Controlling Reactive Oxygen Species Generation. ACS NANO 2024; 18:33953-33963. [PMID: 39601765 DOI: 10.1021/acsnano.4c07999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Production of H2O2 using heterogeneous semiconductor photocatalysts has emerged as an ecofriendly and practical approach across various applications, ranging from environmental detoxification to fuel cells and chemical synthesis. Extensive efforts have been devoted to engineering semiconductors to enhance their catalytic capabilities for H2O2 production. However, in chemical synthesis, the utilization of the potent oxidant H2O2 can present challenges in selectively oxidizing organic compounds. In this study, we introduce copper atoms into carbon nitride (Cu/CN), facilitating the generation of hydroperoxyl radicals (·OOH) as primary reactive oxidants and offering reaction conditions entirely devoid of H2O2 via the Fenton reaction. Cu/CN demonstrates selective oxidation of thiols to disulfides, in contrast to other current heterogeneous photocatalysts that yield undesired overoxidized side products, such as thiosulfinate and thiosulfonate. Cu/CN's controllable capacity for specific ROS generation, broad substrate scopes, and recyclability empower greener and highly selective photooxidation of organic compounds.
Collapse
Affiliation(s)
- Hyunwoo Choi
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sumin Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoon Kwak
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunki Gwak
- Missile Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Youngran Seo
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Zhao H, Ravn AK, Haibach MC, Engle KM, Johansson Seechurn CCC. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catal 2024; 14:9708-9733. [PMID: 38988647 PMCID: PMC11232362 DOI: 10.1021/acscatal.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Recent global events have led to the cost of platinum group metals (PGMs) reaching unprecedented heights. Many chemical companies are therefore starting to seriously consider and evaluate if and where they can substitute PGMs for non-PGMs in their catalytic processes. This review covers recent highly relevant applications of non-PGM catalysts in the modern pharmaceutical industry. By highlighting these selected successful examples of non-PGM-catalyzed processes from the literature, we hope to emphasize the enormous potential of non-PGM catalysis and inspire further development within this field to enable this technology to progress toward manufacturing processes. We also present some historical contexts and review the perceived advantages and challenges of implementing non-PGM catalysts in the pharmaceutical manufacturing environment.
Collapse
Affiliation(s)
- Hui Zhao
- Sinocompound
Catalysts, Building C,
Bonded Area Technology Innovation Zone, Zhangjiagang, Jiangsu 215634, China
| | - Anne K. Ravn
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael C. Haibach
- Process
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Keary M. Engle
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
4
|
Gnädinger U, Poier D, Trombini C, Dabros M, Marti R. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen. Org Process Res Dev 2024; 28:1860-1868. [PMID: 38783850 PMCID: PMC11110044 DOI: 10.1021/acs.oprd.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
The use of sustainable oxidants is of great interest to the chemical industry, considering the importance of oxidation reactions for the manufacturing of chemicals and society's growing awareness of its environmental impact. Molecular oxygen (O2), with an almost optimal atom efficiency in oxidation reactions, presents one of the most attractive alternatives to common reagents that are not only toxic in most cases but produce stoichiometric amounts of waste that must be treated. However, fire and explosion safety concerns, especially when used in combination with organic solvents, restrict its easy use. Here, we use state-of-the-art 3D printing and experimental feedback to develop a miniature continuous stirred-tank reactor (mini-CSTR) that enables efficient use of O2 as an oxidant in organic chemistry. Outstanding heat dissipation properties, achieved through integrated jacket cooling and a high surface-to-volume ratio, allow for a safe operation of the exothermic oxidation of 2-ethylhexanal, surpassing previously reported product selectivity. Moving well beyond the proof-of-concept stage, we characterize and illustrate the reactor's potential in the gas-liquid-solid triphasic synthesis of an endoperoxide precursor of antileishmanial agents. The custom-designed magnetic overhead stirring unit provides improved stirring efficiency, facilitating the handling of suspensions and, in combination with the borosilicate gas dispersion plate, leading to an optimized gas-liquid interface. These results underscore the immense potential that lies within the use of mini-CSTR in sustainable chemistry.
Collapse
Affiliation(s)
- Ursina Gnädinger
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Dario Poier
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Claudio Trombini
- Department
of Chemistry “G. Ciamician”, Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Michal Dabros
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Roger Marti
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Anwar K, Capaldo L, Wan T, Noël T, Gómez-Suárez A. Modular synthesis of congested β 2,2-amino acids via the merger of photocatalysis and oxidative functionalisations. Chem Commun (Camb) 2024; 60:1456-1459. [PMID: 38223935 DOI: 10.1039/d3cc06172h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A two-step protocol for the modular synthesis of β2- and α-quaternary β2,2-amino acid derivatives is reported. The key steps are a photocatalytic hydroalkylation reaction, followed by an oxidative functionalisation to access N-protected β-amino acids, esters, and amides. This strategy can be effectively scaled up via continuous-flow technology.
Collapse
Affiliation(s)
- Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ting Wan
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
7
|
Zhang L, Li RH, Li XX, Wang S, Liu J, Hong XX, Dong LZ, Li SL, Lan YQ. Photocatalytic aerobic oxidation of C(sp 3)-H bonds. Nat Commun 2024; 15:537. [PMID: 38225374 PMCID: PMC10789790 DOI: 10.1038/s41467-024-44833-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
In modern industries, the aerobic oxidation of C(sp3)-H bonds to achieve the value-added conversion of hydrocarbons requires high temperatures and pressures, which significantly increases energy consumption and capital investment. The development of a light-driven strategy, even under natural sunlight and ambient air, is therefore of great significance. Here we develop a series of hetero-motif molecular junction photocatalysts containing two bifunctional motifs. With these materials, the reduction of O2 and oxidation of C(sp3)-H bonds can be effectively accomplished, thus realizing efficient aerobic oxidation of C(sp3)-H bonds in e.g., toluene and ethylbenzene. Especially for ethylbenzene oxidation reactions, excellent catalytic capacity (861 mmol g cat-1) is observed. In addition to the direct oxidation of C(sp3)-H bonds, CeBTTD-A can also be applied to other types of aerobic oxidation reactions highlighting their potential for industrial applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xin Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xuan Hong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
8
|
Abstract
Electrochemistry has emerged as a powerful means to enable redox transformations in modern chemical synthesis. This tutorial review delves into the unique advantages of electrochemistry in the context of asymmetric catalysis. While electrochemistry has historically been used as a green and mild alternative for established enantioselective transformations, in recent years asymmetric electrocatalysis has been increasingly employed in the discovery of novel asymmetric methodologies based on reaction mechanisms unique to electrochemistry. This tutorial review first provides a brief tutorial introduction to electrosynthesis, then explores case studies on homogenous small molecule asymmetric electrocatalysis. Each case study serves to highlight a key advance in the field, starting with the historic electrification of known asymmetric transformations and culminating with modern methods relying on unique electrochemical mechanistic sequences. Finally, we highlight case studies in the emerging reasearch areas at the interface of asymmetric electrocatalysis with biocatalysis and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jonas Rein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samson B Zacate
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Zondag SDA, Mazzarella D, Noël T. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annu Rev Chem Biomol Eng 2023; 14:283-300. [PMID: 36913716 DOI: 10.1146/annurev-chembioeng-101121-074313] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.
Collapse
Affiliation(s)
- Stefan D A Zondag
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| | - Daniele Mazzarella
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Timothy Noël
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
10
|
Klein J, Waldvogel SR. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. CHEMSUSCHEM 2023; 16:e202202300. [PMID: 36651115 DOI: 10.1002/cssc.202202300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.
Collapse
Affiliation(s)
- Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Aerobic oxidation of hydroxymethylfurfural using a homogeneous TEMPO/TBN catalytic system in 3D-printed milli-scale porous reactors. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Ruccolo S, Brito G, Christensen M, Itoh T, Mattern K, Stone K, Strotman NA, Sun AC. Electrochemical Recycling of Adenosine Triphosphate in Biocatalytic Reaction Cascades. J Am Chem Soc 2022; 144:22582-22588. [PMID: 36449284 DOI: 10.1021/jacs.2c08955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Adenosine triphosphate (ATP) provides the driving force necessary for critical biological functions in all living organisms. In synthetic biocatalytic reactions, this cofactor is recycled in situ using high-energy stoichiometric reagents, an approach that generates waste and poses challenges with enzyme stability. On the other hand, an electrochemical recycling system would use electrons as a convenient source of energy. We report a method that uses electricity to turn over enzymes for ATP generation in a simplified cellular respiration mimic. The method is simple, robust, and scalable, as well as broadly applicable to complex enzymatic processes including a four-enzyme biocatalytic cascade in the synthesis of the antiviral molnupiravir.
Collapse
Affiliation(s)
- Serge Ruccolo
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Gilmar Brito
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Melodie Christensen
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Tetsuji Itoh
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Keith Mattern
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Kevin Stone
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Neil A Strotman
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Alexandra C Sun
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| |
Collapse
|
13
|
Michałek S, Gurba-Bryśkiewicz L, Maruszak W, Zagozda M, Maj AM, Ochal Z, Dubiel K, Wieczorek M. The design of experiments (DoE) in optimization of an aerobic flow Pd-catalyzed oxidation of alcohol towards an important aldehyde precursor in the synthesis of phosphatidylinositide 3-kinase inhibitor (CPL302415). RSC Adv 2022; 12:33605-33611. [PMID: 36505705 PMCID: PMC9682622 DOI: 10.1039/d2ra07003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we describe the development of a green, scalable flow Pd-catalyzed aerobic oxidation for the key step in the synthesis of CPL302415, which is a new PI3Kδ inhibitor. Applying this environmental-friendly, sustainable catalytic oxidation we significantly increased product yield (up to 84%) and by eliminating of workup step, we improved the waste index and E factor (up to 0.13) in comparison with the stoichiometric synthesis. The process was optimized by using the DoE approach.
Collapse
Affiliation(s)
- Stanisław Michałek
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
- Faculty of Chemistry, Warsaw University of Technology Ul. Noakowskiego 3 00-664 Warsaw Poland
| | | | | | - Marcin Zagozda
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | - Anna M Maj
- Celon Pharma S.A. Ul. Marymoncka 15 05-152 Kazuń Nowy Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology Ul. Noakowskiego 3 00-664 Warsaw Poland
| | | | | |
Collapse
|
14
|
Wang Y, Sun W, Lu R, Wen Z, Yao J, Li H. Inorganic Bases Enhanced Organocatalysis for Aerobic αHydroxylation of Aliphatic Cycloketones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongtao Wang
- Zhejiang University Department of Chemistry CHINA
| | - Wenjing Sun
- Zhejiang University Department of Chemistry CHINA
| | - Rui Lu
- Zhejiang University Department of Chemistry CHINA
| | - Zeyu Wen
- Zhejiang University Department of Chemistry CHINA
| | - Jia Yao
- Zhejiang University Department of Chemistry CHINA
| | - Haoran Li
- Zhejiang University Department of Chemistry Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
15
|
Venezia B, Morris DC, Gavriilidis A. Taylor‐vortex membrane reactor for continuous gas‐liquid reactions. AIChE J 2022. [DOI: 10.1002/aic.17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baldassarre Venezia
- Department of Chemical Engineering University College London, Torrington Place London UK
| | - David C. Morris
- Autichem Ltd, Unit 4, Gatewarth Industrial Estate Barnard Street Warrington WA5 1DD
| | - Asterios Gavriilidis
- Department of Chemical Engineering University College London, Torrington Place London UK
| |
Collapse
|
16
|
Nagy BS, Kappe CO, Ötvös SB. N
‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bence S. Nagy
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - Sándor B. Ötvös
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
17
|
Siddiquee MN, Hossain MM, Nazemifard N. Liquid Phase Oxidation of Hydrocarbons to High-Value Chemicals in Microfluidic Reactors - Prospects and Challenges. CHEM REC 2022; 22:e202200022. [PMID: 35502847 DOI: 10.1002/tcr.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Liquid phase oxidation (LPO) of hydrocarbon is an industrially important process to produce petrochemicals and pharmaceuticals. It follows a free radical path having initiation, propagation and termination. The initiation step is slow while the propagation and termination steps are fast. The main challenge of such process is to control product selectivity at an appreciable conversion level. With the advancement of microfluidic reactor technology, it is possible to control the free radical steps. The present contribution critically reviewed the reaction engineering aspects of LPO of hydrocarbon, the influence of microfluidic reactor design and operation on reaction mechanism, conversion and product selectivity. It also outlines the challenges associated with microfluidic reactor operation, and prospects to apply the understanding from microfluidic reactors in few sectors. The understanding from the free radical oxidation process can also be applied to any other free radical processes.
Collapse
Affiliation(s)
- Muhammad N Siddiquee
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Mohammad M Hossain
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Neda Nazemifard
- Department of Chemical Engineering, University of Alberta, 9211-116th Street, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
18
|
Metal-free catalyzed aerobic oxidation of 2-nitro-4-methylsulfone toluene to 2-nitro-4-methylsulfonylbenzoic acid using a continuous-flow reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Fava E, Karlsson S, Jones ML. Using Oxygen as the Primary Oxidant in a Continuous Process: Application to the Development of an Efficient Route to AZD4635. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eleonora Fava
- Early Chemical Development, Pharmaceutical Sciences, AstraZeneca, 431 83 Mölndal, Sweden
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, AstraZeneca, 431 83 Mölndal, Sweden
| | - Matthew L. Jones
- Early Chemical Development, Pharmaceutical Sciences, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
20
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Hafeez S, Harkou E, Al-Salem SM, Goula MA, Dimitratos N, Charisiou ND, Villa A, Bansode A, Leeke G, Manos G, Constantinou A. Hydrogenation of carbon dioxide (CO2) to fuels in microreactors: a review of set-ups and value-added chemicals production. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00479d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of CO2 hydrogenation to fuels and value-added chemicals in microreactors.
Collapse
Affiliation(s)
- Sanaa Hafeez
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Eleana Harkou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Sultan M. Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Maria A. Goula
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nikolaos D. Charisiou
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Atul Bansode
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Gary Leeke
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | - George Manos
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Achilleas Constantinou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| |
Collapse
|
22
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
23
|
Zhang C, Duan X, Yin J, Lou F, Zhang J. Copper/TEMPO-catalyzed continuous aerobic alcohol oxidation in a micro-packed bed reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00041e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A micro-packed bed reactor has been developed to demonstrate aerobic oxidation of alcohols to aldehydes, utilizing green oxidant O2 and effective Cu/TEMPO-catalyzed system.
Collapse
Affiliation(s)
- Chenghao Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaonan Duan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiabin Yin
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fengyan Lou
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jisong Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Dong Z, Pan H, Yang L, Fan L, Xiao Y, Chen J, Wang W. Porous organic polymer immobilized copper nanoparticles as heterogeneous catalyst for efficient benzylic C–H bond oxidation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
26
|
Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B. Liquid-Phase Cyclohexene Oxidation with O 2 over Spray-Flame-Synthesized La 1-x Sr x CoO 3 Perovskite Nanoparticles. Chemistry 2021; 27:16912-16923. [PMID: 34590747 PMCID: PMC9293428 DOI: 10.1002/chem.202103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/24/2022]
Abstract
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray‐flame synthesis and applied in the liquid‐phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state‐of‐the‐art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first‐order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex‐2‐ene‐1‐hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.
Collapse
Affiliation(s)
- Julia Büker
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nikolai Kochetov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Falk
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Dong Q, Ma Z, Hao Z, Han Z, Lin J, Lu G. Preparation of trinuclear ruthenium clusters based on piconol ligands and their application in Oppenauer‐type oxidation of secondary alcohols. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qing Dong
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zongwen Ma
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Guo‐Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
28
|
|
29
|
Hatridge TA, Wei B, Davies HML, Jones CW. Copper-Catalyzed, Aerobic Oxidation of Hydrazone in a Three-Phase Packed Bed Reactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taylor A. Hatridge
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
30
|
Yadav D, Misra S, Kumar D, Singh S, Singh AK. Cationic ruthenium(II)–NHC pincer complexes: Synthesis, characterisation and catalytic activity for transfer hydrogenation of ketones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dibya Yadav
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Shilpi Misra
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Dheeraj Kumar
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Suryabhan Singh
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Amrendra K. Singh
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
31
|
Belousov VV, Fedorov SV. Oxygen-Selective Diffusion-Bubbling Membranes with Core-Shell Structure: Bubble Dynamics and Unsteady Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8370-8381. [PMID: 34236866 DOI: 10.1021/acs.langmuir.1c00709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen is the second-largest-volume industrial gas that is mainly produced using cryogenic air separation. However, the state-of-the-art cryogenic technology thermodynamic efficiency has approached a theoretical limit as near as is practicable. Therefore, there is stimulus to develop an alternative technology for efficient oxygen separation from air. Mixed ionic electronic-conducting (MIEC) ceramic membrane-based oxygen separation technology could become this alternative, but commercialization aspects, including cost, have revealed inadequacies in ceramic membrane materials. Currently, diffusion-bubbling molten oxide membrane-based oxygen separation technology is being developed. It is a potentially disruptive technology that would propose an improvement in oxygen purity and a reduction in capital costs. Bubbles play an important role in ensuring the oxygen mass transfer in diffusion-bubbling membranes. However, there is not sufficient understanding of the bubble dynamics. This understanding is important to be able to control transport properties of these membranes and assess their potential for technological application. The aim of this feature article is to highlight the progress made in developing this understanding and specify the directions for future research.
Collapse
Affiliation(s)
- Valery V Belousov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospekt, Moscow 119334, Russian Federation
| | - Sergey V Fedorov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospekt, Moscow 119334, Russian Federation
| |
Collapse
|
32
|
Upadhyay R, Kumar S, Maurya SK. V
2
O
5
@TiO
2
Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls. ChemCatChem 2021. [DOI: 10.1002/cctc.202100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shashi Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
33
|
Aono R, Yoshihara T, Nishida H, Kino K. Screening and characterization of a novel reversible 4-hydroxyisophthalic acid decarboxylase from Cystobasidium slooffiae HTK3. Biosci Biotechnol Biochem 2021; 85:1658-1664. [PMID: 33942852 DOI: 10.1093/bbb/zbab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022]
Abstract
Owing to carboxylation activity, reversible decarboxylases can use CO2 as a C1-building block to produce useful carboxylic acids. Although many reversible decarboxylases can synthesize aromatic monocarboxylic acids, only a few reversible decarboxylases have been reported to date that catalyze the synthesis of aromatic dicarboxylic acids. In the present study, a reversible 4-hydroxyisophthalic acid decarboxylase was identified in Cystobasidium slooffiae HTK3. Furthermore, recombinant 4-hydroxyisophthalic acid decarboxylase was prepared, characterized, and used for 4-hydroxyisophthalic acid production from 4-hydroxybenzoic acid.
Collapse
Affiliation(s)
- Riku Aono
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tomoya Yoshihara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hotaka Nishida
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
34
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
35
|
Wang Y, Wen Z, Zhang Y, Wang X, Yao J, Li H. Aerobic α-hydroxylation of 2-Me-1-tetralone in 1-alkyl-3-methylimidazolium ionic liquids. Phys Chem Chem Phys 2021; 23:5864-5869. [PMID: 33687394 DOI: 10.1039/d0cp06047j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aerobic α-hydroxylation of 2-Me-1-tetralone was investigated in imidazol-based ionic liquids (ILs), where reactions in 1-alkyl-3-methylimidazolium tetrafluoroborates were found to generate considerable products. By correlating the conversion at 2 h with viscosity, relative permittivity and the ET(30) value of ILs, we found that the local polarity in ILs represented by the ET(30) value or the chemical shift of α-proton at the substrate was the critical factor influencing the reaction rate. Furthermore, two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) was used to characterize the distribution of 2-Me-1-tetralone in ILs. As a result, the mesoscopic structures in ILs were recommended to have crucial influences on the distribution of the substrate in ILs, and the caused local polarity could affect the activation of 2-Me-1-tetralone. These findings revealed the solvent effects of ILs with different structures on the α-hydroxylation of 2-Me-1-tetralone, and may encourage the explorations of more types of aerobic oxidations in ILs.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China. and Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Zeyu Wen
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China. and Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Yue Zhang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
| | - Xinyu Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China. and State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
Shimoyama Y, Kitagawa Y, Ohgomori Y, Kon Y, Hong D. Formate-driven catalysis and mechanism of an iridium-copper complex for selective aerobic oxidation of aromatic olefins in water. Chem Sci 2021; 12:5796-5803. [PMID: 34168803 PMCID: PMC8179673 DOI: 10.1039/d0sc06634f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
A hetero-dinuclear IrIII-CuII complex with two adjacent sites was employed as a catalyst for the aerobic oxidation of aromatic olefins driven by formate in water. An IrIII-H intermediate, generated through formate dehydrogenation, was revealed to activate terminal aromatic olefins to afford an Ir-alkyl species, and the process was promoted by a hydrophobic [IrIII-H]-[substrate aromatic ring] interaction in water. The Ir-alkyl species subsequently reacted with dioxygen to yield corresponding methyl ketones and was promoted by the presence of the CuII moiety under acidic conditions. The IrIII-CuII complex exhibited cooperative catalysis in the selective aerobic oxidation of olefins to corresponding methyl ketones, as evidenced by no reactivities observed from the corresponding mononuclear IrIII and CuII complexes, as the individual components of the IrIII-CuII complex. The reaction mechanism afforded by the IrIII-CuII complex in the aerobic oxidation was disclosed by a combination of spectroscopic detection of reaction intermediates, kinetic analysis, and theoretical calculations.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho Toyonaka Osaka 560-8531 Japan
| | - Yuji Ohgomori
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
37
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
38
|
Polterauer D, Roberge DM, Hanselmann P, Elsner P, Hone CA, Kappe CO. Process intensification of ozonolysis reactions using dedicated microstructured reactors. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00264c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dedicated microreactor system ensures exquisite control over mass and heat transfer for performing very fast ozonolysis.
Collapse
Affiliation(s)
- Dominik Polterauer
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | - Paul Hanselmann
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Petteri Elsner
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Christopher A. Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
39
|
Eke J, Banks L, Mottaleb MA, Morris AJ, Tsyusko OV, Escobar IC. Dual-Functional Phosphorene Nanocomposite Membranes for the Treatment of Perfluorinated Water: An Investigation of Perfluorooctanoic Acid Removal via Filtration Combined with Ultraviolet Irradiation or Oxygenation. MEMBRANES 2020; 11:membranes11010018. [PMID: 33375603 PMCID: PMC7824437 DOI: 10.3390/membranes11010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023]
Abstract
Nanomaterials with tunable properties show promise because of their size-dependent electronic structure and controllable physical properties. The purpose of this research was to develop and validate environmentally safe nanomaterial-based approach for treatment of drinking water including removal and degradation of per- and polyfluorinated chemicals (PFAS). PFAS are surfactant chemicals with broad uses that are now recognized as contaminants with a significant risk to human health. They are commonly used in household and industrial products. They are extremely persistent in the environment because they possess both hydrophobic fluorine-saturated carbon chains and hydrophilic functional groups, along with being oleophobic. Traditional drinking water treatment technologies are usually ineffective for the removal of PFAS from contaminated waters, because they are normally present in exiguous concentrations and have unique properties that make them persistent. Therefore, there is a critical need for safe and efficient remediation methods for PFAS, particularly in drinking water. The proposed novel approach has also a potential application for decreasing PFAS background levels in analytical systems. In this study, nanocomposite membranes composed of sulfonated poly ether ether ketone (SPEEK) and two-dimensional phosphorene were fabricated, and they obtained on average 99% rejection of perfluorooctanoic acid (PFOA) alongside with a 99% removal from the PFOA that accumulated on surface of the membrane. The removal of PFOA accumulated on the membrane surface achieved 99% after the membranes were treated with ultraviolet (UV) photolysis and liquid aerobic oxidation.
Collapse
Affiliation(s)
- Joyner Eke
- Center of Membrane Sciences, Department of Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046, USA; (J.E.); (L.B.)
| | - Lillian Banks
- Center of Membrane Sciences, Department of Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046, USA; (J.E.); (L.B.)
| | - M. Abdul Mottaleb
- College of Medicine, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046, USA; (M.A.M.); (A.J.M.)
- Institute of Drug & Biotherapeutic Innovation, Saint Louis University, 1100 South Grand Blvd, Saint Louis, MO 63104, USA
| | - Andrew J. Morris
- College of Medicine, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046, USA; (M.A.M.); (A.J.M.)
| | - Olga V. Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546-0091, USA;
| | - Isabel C. Escobar
- Center of Membrane Sciences, Department of Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046, USA; (J.E.); (L.B.)
- Correspondence:
| |
Collapse
|
40
|
Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Hafeez S, Aristodemou E, Manos G, Al-Salem SM, Constantinou A. Modelling of packed bed and coated wall microreactors for methanol steam reforming for hydrogen production. RSC Adv 2020; 10:41680-41692. [PMID: 35516550 PMCID: PMC9057832 DOI: 10.1039/d0ra06834a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022] Open
Abstract
A Computational Fluid Dynamics (CFD) study has been conducted to assess the performance of packed bed and coated wall microreactors for the steam reforming of methanol with a CuO/ZnO/Al2O3 based catalyst (BASF F3-01). The results obtained were compared to experimental data from the literature to assess the validity and robustness of the models, and a good validation has been obtained. The performance of the packed bed and coated wall microreactors is similar at a constant reforming temperature. It was found that methanol conversion is enhanced with increasing temperature, residence time, steam to methanol ratio, and catalyst coating thickness. Furthermore, internal and external mass transfer phenomena were investigated using the models, and it was found that there were no internal and external mass transfer resistances for this reactor configuration. Further studies demonstrated that larger catalyst pellet sizes led to the presence of internal mass transfer resistance, which in turn causes lower methanol conversions. The CFD models have exhibited a sound agreement with the experimental data, hence they can be used to predict the steam reforming of methanol in microreactors. A Computational Fluid Dynamics (CFD) study has been conducted to assess the performance of packed bed and coated wall microreactors for the steam reforming of methanol with a CuO/ZnO/Al2O3 based catalyst (BASF F3-01).![]()
Collapse
Affiliation(s)
- Sanaa Hafeez
- Division of Chemical & Energy Engineering, School of Engineering, London South Bank University London SE1 0AA UK +44 (0)20 7815 7185
| | - Elsa Aristodemou
- Division of Chemical & Energy Engineering, School of Engineering, London South Bank University London SE1 0AA UK +44 (0)20 7815 7185
| | - George Manos
- Department of Chemical Engineering, University College London London WCIE 7JE UK
| | - S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research P. O. Box: 24885 Safat 13109 Kuwait
| | - Achilleas Constantinou
- Division of Chemical & Energy Engineering, School of Engineering, London South Bank University London SE1 0AA UK +44 (0)20 7815 7185.,Department of Chemical Engineering, University College London London WCIE 7JE UK.,Department of Chemical Engineering, Cyprus University of Technology 57 Corner of Athinon and Anexartisias 3036 Limassol Cyprus
| |
Collapse
|
42
|
Ötvös SB, Llanes P, Pericàs MA, Kappe CO. Telescoped Continuous Flow Synthesis of Optically Active γ-Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Org Lett 2020; 22:8122-8126. [PMID: 33026815 PMCID: PMC7573919 DOI: 10.1021/acs.orglett.0c03100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The two-step flow asymmetric synthesis of chiral γ-nitrobutyric acids as key intermediates of the GABA analogues baclofen, phenibut, and fluorophenibut is reported on a multigram scale. The telescoped process comprises an enantioselective Michael-type addition facilitated by a polystyrene-supported heterogeneous organocatalyst under neat conditions followed by in situ-generated performic acid-mediated aldehyde oxidation. Simple access to valuable optically active substances is provided with key advances in terms of productivity and sustainability compared to those of previous batch approaches.
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
43
|
Akinnawo CA, Bingwa N, Meijboom R. Tailoring the surface properties of meso-CeO2 for selective oxidation of benzyl alcohol. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
|
45
|
Hommes A, Disselhorst B, Yue J. Aerobic oxidation of benzyl alcohol in a slug flow microreactor: Influence of liquid film wetting on mass transfer. AIChE J 2020. [DOI: 10.1002/aic.17005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arne Hommes
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Bas Disselhorst
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|
46
|
Roibu A, Van Gerven T, Kuhn S. Photon Transport and Hydrodynamics in Gas‐Liquid Flows Part 1: Characterization of Taylor Flow in a Photo Microreactor. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anca Roibu
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tom Van Gerven
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Simon Kuhn
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
47
|
Bajada MA, Vijeta A, Savateev A, Zhang G, Howe D, Reisner E. Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8176-8182. [PMID: 31962048 DOI: 10.1021/acsami.9b19718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A triphasic photocatalytic reactor employing a mesoporous carbon nitride photocatalyst and aerobic O2 was assembled to operate under continuous flow conditions. This reactor design allows for facile downstream processing and reusability in multiple flow cycles. The selective aerobic oxidation of alcohols and amines was chosen to demonstrate the applicability and performance advantage of this flow approach compared to that of conventional batch photochemistry. This precious-metal-free photocatalytic flow system operates under benign reaction conditions (visible light, low pressure, and mild temperature) and will stimulate the exploration of other oxidative reactions in a sustainable, scalable, and affordable manner.
Collapse
Affiliation(s)
- Mark A Bajada
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Arjun Vijeta
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Aleksandr Savateev
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Guigang Zhang
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Duncan Howe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Erwin Reisner
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
48
|
Waffel D, Alkan B, Fu Q, Chen YT, Schmidt S, Schulz C, Wiggers H, Muhler M, Peng B. Towards Mechanistic Understanding of Liquid-Phase Cinnamyl Alcohol Oxidation with tert-Butyl Hydroperoxide over Noble-Metal-Free LaCo 1-x Fe x O 3 Perovskites. Chempluschem 2020; 84:1155-1163. [PMID: 31943951 DOI: 10.1002/cplu.201900429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Indexed: 11/09/2022]
Abstract
Noble-metal-free perovskite oxides are promising and well-known catalysts for high-temperature gas-phase oxidation reactions, but their application in selective oxidation reactions in the liquid phase has rarely been studied. We report the liquid-phase oxidation of cinnamyl alcohol over spray-flame synthesized LaCo1-x Fex O3 perovskite nanoparticles with tert-butyl hydroperoxide (TBHP) as the oxidizing agent under mild reaction conditions. The catalysts were characterized by XRD, BET, EDS and elemental analysis. LaCo0.8 Fe0.2 O3 showed the best catalytic properties indicating a synergistic effect between cobalt and iron. The catalysts were found to be stable against metal leaching as proven by hot filtration, and the observed slight deactivation is presumably due to segregation as determined by EDS. Kinetic studies revealed an apparent activation energy of 63.6 kJ mol-1 . Combining kinetic findings with TBHP decomposition as well as control experiments revealed a complex reaction network.
Collapse
Affiliation(s)
- Daniel Waffel
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Qi Fu
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Yen-Ting Chen
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Schmidt
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
49
|
Aka EC, Wimmer E, Barré E, Cortés-Borda D, Ekou T, Ekou L, Rodriguez-Zubiri M, Felpin FX. Comparing Gas–Liquid Segmented and Tube-in-Tube Setups for the Aerobic Dimerization of Desmethoxycarpacine with an Automated Flow Platform. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ehu Camille Aka
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Eric Wimmer
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Elvina Barré
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Daniel Cortés-Borda
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Tchirioua Ekou
- Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, 02 BP
801 Abidjan 02, Côte d’Ivoire
| | - Lynda Ekou
- Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, 02 BP
801 Abidjan 02, Côte d’Ivoire
| | - Mireia Rodriguez-Zubiri
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - François-Xavier Felpin
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| |
Collapse
|
50
|
Zhang J, Teixeira AR, Zhang H, Jensen KF. Determination of fast gas–liquid reaction kinetics in flow. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00390h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A flow concept is developed to measure fast gas–liquid reaction kinetics based on a tube-in-tube reactor.
Collapse
Affiliation(s)
- Jisong Zhang
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Andrew R. Teixeira
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemical Engineering
| | - Haomiao Zhang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|