1
|
Tomar R, Ghodke PP, Patra A, Smyth E, Pontarelli A, Copp W, Guengerich FP, Chaput JC, Wilds CJ, Stone MP, Egli M. DNA Replication across α-l-(3'-2')-Threofuranosyl Nucleotides Mediated by Human DNA Polymerase η. Biochemistry 2024; 63:2425-2439. [PMID: 39259676 PMCID: PMC11447838 DOI: 10.1021/acs.biochem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
α-l-(3'-2')-Threofuranosyl nucleic acid (TNA) pairs with itself, cross-pairs with DNA and RNA, and shows promise as a tool in synthetic genetics, diagnostics, and oligonucleotide therapeutics. We studied in vitro primer insertion and extension reactions catalyzed by human trans-lesion synthesis (TLS) DNA polymerase η (hPol η) opposite a TNA-modified template strand without and in combination with O4-alkyl thymine lesions. Across TNA-T (tT), hPol η inserted mostly dAMP and dGMP, dTMP and dCMP with lower efficiencies, followed by extension of the primer to a full-length product. hPol η inserted dAMP opposite O4-methyl and -ethyl analogs of tT, albeit with reduced efficiencies relative to tT. Crystal structures of ternary hPol η complexes with template tT and O4-methyl tT at the insertion and extension stages demonstrated that the shorter backbone and different connectivity of TNA compared to DNA (3' → 2' versus 5' → 3', respectively) result in local differences in sugar orientations, adjacent phosphate spacings, and directions of glycosidic bonds. The 3'-OH of the primer's terminal thymine was positioned at 3.4 Å on average from the α-phosphate of the incoming dNTP, consistent with insertion opposite and extension past the TNA residue by hPol η. Conversely, the crystal structure of a ternary hPol η·DNA·tTTP complex revealed that the primer's terminal 3'-OH was too distant from the tTTP α-phosphate, consistent with the inability of the polymerase to incorporate TNA. Overall, our study provides a better understanding of the tolerance of a TLS DNA polymerase vis-à-vis unnatural nucleotides in the template and as the incoming nucleoside triphosphate.
Collapse
Affiliation(s)
- Rachana Tomar
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Pratibha P. Ghodke
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Amritraj Patra
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Elizabeth Smyth
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Alexander Pontarelli
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - William Copp
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - F. Peter Guengerich
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - John C. Chaput
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Christopher J. Wilds
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
3
|
Ghodke PP, Mali JR, Patra A, Rizzo CJ, Guengerich FP, Egli M. Enzymatic bypass and the structural basis of miscoding opposite the DNA adduct 1,N 2-ethenodeoxyguanosine by human DNA translesion polymerase η. J Biol Chem 2021; 296:100642. [PMID: 33839151 PMCID: PMC8121704 DOI: 10.1016/j.jbc.2021.100642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
Etheno (ε)-adducts, e.g., 1,N2-ε−guanine (1,N2-ε-G) and 1,N6-ε−adenine (1,N6-ε-A), are formed through the reaction of DNA with metabolites of vinyl compounds or with lipid peroxidation products. These lesions are known to be mutagenic, but it is unknown how they lead to errors in DNA replication that are bypassed by DNA polymerases. Here we report the structural basis of misincorporation frequencies across from 1,N2-ε-G by human DNA polymerase (hpol) η. In single-nucleotide insertions opposite the adduct 1,N2-ε-G, hpol η preferentially inserted dGTP, followed by dATP, dTTP, and dCTP. This preference for purines was also seen in the first extension step. Analysis of full-length extension products by LC-MS/MS revealed that G accounted for 85% of nucleotides inserted opposite 1,N2-ε-G in single base insertion, and 63% of bases inserted in the first extension step. Extension from the correct nucleotide pair (C) was not observed, but the primer with A paired opposite 1,N2-ε-G was readily extended. Crystal structures of ternary hpol η insertion-stage complexes with nonhydrolyzable nucleotides dAMPnPP or dCMPnPP showed a syn orientation of the adduct, with the incoming A staggered between adducted base and the 5’-adjacent T, while the incoming C and adducted base were roughly coplanar. The formation of a bifurcated H-bond between incoming dAMPnPP and 1,N2-ε-G and T, compared with the single H-bond formed between incoming dCMPnPP and 1,N2-ε-G, may account for the observed facilitated insertion of dGTP and dATP. Thus, preferential insertion of purines by hpol η across from etheno adducts contributes to distinct outcomes in error-prone DNA replication.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jyotirling R Mali
- Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Amritraj Patra
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Carmelo J Rizzo
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Wang LJ, Lu YY, Zhang CY. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chem Sci 2020; 11:587-595. [PMID: 32206275 PMCID: PMC7069502 DOI: 10.1039/c9sc04738g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA damage and repair are involved in multiple fundamental biological processes, including metabolism, disease, and aging. Inspired by the natural repair mechanism in vivo, we demonstrate for the first time the construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. The presence of DNA glycosylase can catalyze the excision repair of the damaged base, successively autostarting the self-directed replication through recycling polymerization extension and strand-displacement DNA synthesis for the generation of exponentially amplified dsDNAs. The resultant dsDNA products can be label-free and real-time monitored with SYBR Green I as the fluorescent indicator. Owing to the high efficiency of self-directed exponential replication and the absolute zero background resulting from the efficient inhibition of nonspecific amplification induced by multiple primer-dependent amplification, this strategy exhibits high sensitivity with a detection limit of 1 × 10-8 U μL-1 in vitro and 1 cell in vivo, and it can be further used to screen inhibitors, quantify DNA glycosylase from diverse cancer cells, and even monitor various repair enzymes by simply changing the specific damaged base in the DNA template. Importantly, this assay can be performed in a label-free, real-time and isothermal manner with the involvement of only a single type of polymerase, providing a simple, robust and universal platform for repair enzyme-related biomedical research and clinical therapeutics.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Ying-Ying Lu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| |
Collapse
|
5
|
Bhutani P, Nikkel DJ, Wilson KA, Wetmore SD. Computational Insight into the Differential Mutagenic Patterns of O-Methylthymine Lesions. Chem Res Toxicol 2019; 32:2107-2117. [DOI: 10.1021/acs.chemrestox.9b00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Priya Bhutani
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J. Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
6
|
Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E7082-E7091. [PMID: 28784758 DOI: 10.1073/pnas.1708748114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, interfere with the efficiency and accuracy of DNA replication and transcription. However, the molecular mechanisms of DNA alkylation-induced transcriptional stalling and mutagenesis remain unknown. In this study, we systematically investigated how RNA polymerase II (pol II) recognizes and bypasses regioisomeric O2-, N3-, and O4-ethylthymidine (O2-, N3-, and O4-EtdT) lesions. We observed distinct pol II stalling profiles for the three regioisomeric EtdT lesions. Intriguingly, pol II stalling at O2-EtdT and N3-EtdT sites is exacerbated by TFIIS-stimulated proofreading activity. Assessment for the impact of the EtdT lesions on individual fidelity checkpoints provided further mechanistic insights, where the transcriptional lesion bypass routes for the three EtdT lesions are controlled by distinct fidelity checkpoints. The error-free transcriptional lesion bypass route is strongly favored for the minor-groove O2-EtdT lesion. In contrast, a dominant error-prone route stemming from GMP misincorporation was observed for the major-groove O4-EtdT lesion. For the N3-EtdT lesion that disrupts base pairing, multiple transcriptional lesion bypass routes were found. Importantly, the results from the present in vitro transcriptional studies are well correlated with in vivo transcriptional mutagenesis analysis. Finally, we identified a minor-groove-sensing motif from pol II (termed Pro-Gate loop). The Pro-Gate loop faces toward the minor groove of RNA:DNA hybrid and is involved in modulating the translocation of minor-groove alkylated DNA template after nucleotide incorporation opposite the lesion. Taken together, this work provides important mechanistic insights into transcriptional stalling, lesion bypass, and mutagenesis of alkylated DNA lesions.
Collapse
|
7
|
Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. Structural basis of interstrand cross-link repair by O6-alkylguanine DNA alkyltransferase. Org Biomol Chem 2017; 15:8361-8370. [DOI: 10.1039/c7ob02093g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformation of the alkylene lesion may play a role in interstrand cross-link repair by O6-alkylguanine DNA alkyltransferases.
Collapse
Affiliation(s)
- Alexey Y. Denisov
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Francis P. McManus
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | | - Anne M. Noronha
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | |
Collapse
|
8
|
Patra A, Politica DA, Chatterjee A, Tokarsky EJ, Suo Z, Basu AK, Stone MP, Egli M. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η. Chembiochem 2016; 17:2033-2037. [PMID: 27556902 PMCID: PMC5172388 DOI: 10.1002/cbic.201600420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 12/31/2022]
Abstract
The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.
Collapse
Affiliation(s)
- Amritraj Patra
- Department of Biochemistry, Vanderbilt University, School of Medicine, 868A Robinson Research Building, Nashville, TN, 37232, USA
| | - Dustin A Politica
- Department of Chemistry, Vanderbilt University, College of Arts & Science, Station B, Box 1822, Nashville, TN, 37235, USA
| | - Arindom Chatterjee
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd, Storrs, CT, 06269, USA
| | - E John Tokarsky
- Department of Chemistry and Biochemistry, Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd, Storrs, CT, 06269, USA
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, College of Arts & Science, Station B, Box 1822, Nashville, TN, 37235, USA.
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, 868A Robinson Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Patra A, Zhang Q, Guengerich FP, Egli M. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η. J Biol Chem 2016; 291:24304-24313. [PMID: 27694439 DOI: 10.1074/jbc.m116.755462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/26/2016] [Indexed: 01/15/2023] Open
Abstract
O6-Methyl-2'-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η.
Collapse
Affiliation(s)
- Amitraj Patra
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Qianqian Zhang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|