1
|
Zhong C, Qu G, Wang J, Xu B, Cui B, Shi Y, Cao C. One-Pot Synthesis of Benzoxazoles and Sulfoxides: Complete Utilization of Diaryl Sulfoxides. J Org Chem 2025; 90:6208-6218. [PMID: 40300105 DOI: 10.1021/acs.joc.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Synthesis of 2-aryl benzoxazoles and aryl sulfoxide derivatives in a one-pot process has been developed via the palladium-catalyzed cross-coupling of diaryl sulfoxides with benzoxazoles, followed by trapping the remaining sulfenate anions with different electrophilic reagents. The reaction involves the C-S and C-H bond activation and the C-C and C-S bond formation. The protocol allows a broad scope of substrates, functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Chuntao Zhong
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jingdi Wang
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoshan Xu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Lan W, Meng Y, Kong X, Wang X, Nie C. Exploring the activation potential of heme for 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. Sci Rep 2024; 14:23212. [PMID: 39369066 PMCID: PMC11455900 DOI: 10.1038/s41598-024-73530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
The presence of chlorophenols in water poses a significant threat to human health and the environment. In response to this issue, a study was undertaken to evaluate the catalytic capabilities of chlorinated Heme towards common chlorophenols present in water, such as 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The study employed the B3LYP method, a sophisticated computational technique within density functional theory, to investigate the molecular interactions and transformations involved. It scrutinized structural parameters, Wiberg Bond Indices, which offer insights into the strength and nature of chemical bonds, along with spectroscopic data including infrared vibrational spectra, ultraviolet-visible absorption spectra, and molecular fluorescence spectra. Furthermore, the research analyzed molecular binding energies and orbital energy levels before and after the formation of complexes between Heme and the targeted chlorophenols. The findings indicate that Heme displays a notable activation characteristic towards these chlorophenols. This suggests that Heme could act as an effective catalyst in the degradation of chlorophenols in water, presenting a novel approach to water purification. The theoretical insights derived from this study are invaluable, potentially guiding the development of more efficient catalytic systems for treating chlorophenol-contaminated water, thereby reducing the environmental and health risks associated with these hazardous compounds.
Collapse
Affiliation(s)
- Wenbo Lan
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Yanbin Meng
- School of Basic Medicine, Xiangnan University, Chenzhou, 423000, China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421000, China
| | - Xiaofeng Wang
- School of Public Health, Xiangnan University, Chenzhou, 423000, China.
| | - Changming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421000, China.
| |
Collapse
|
3
|
Sutradhar S, Rahaman R, Bhattacharya S, Paul S, Paine TK. Oxygenolytic cleavage of 1,2-diols with dioxygen by a mononuclear nonheme iron complex: Mimicking the reaction of myo-inositol oxygenase. J Inorg Biochem 2024; 257:112611. [PMID: 38788359 DOI: 10.1016/j.jinorgbio.2024.112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
A mononuclear iron(II) complex, [(TpPh2)FeII(OTf)(CH3CN)] (1) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, OTf = triflate) has been isolated and its efficiency toward the aliphatic CC bond cleavage reaction of 1,2-diols with dioxygen has been investigated. Separate reactions between 1 and different 1,2-diolates form the corresponding iron(II)-diolate complexes in solution. While the iron(II) complex of the tetradentate TPA (tris(2-pyridylmethyl)amine) ligand is not efficient in affecting the CC cleavage of 1,2-diol with dioxygen, complex 1 displays catalytic activity to afford carboxylic acid and aldehyde. Isotope labeling studies with 18O2 reveal that one oxygen atom from dioxygen is incorporated into the carboxylic acid product. The oxygenative CC cleavage reactions occur on the 1,2-diols containing at least one α-H atom. The kinetic isotope effect value of 5.7 supports the abstraction of an α-H by an iron(III)-superoxo species to propagate the CC cleavage reactions. The oxidative cleavage of 1,2-diolates by the iron(II) complex mimics the reaction catalyzed by the nonheme diiron enzyme, myo-inositol oxygenase.
Collapse
Affiliation(s)
- Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rubina Rahaman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India; Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal 741101, India
| | - Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
Monkcom EC, Gómez L, Lutz M, Ye S, Bill E, Costas M, Klein Gebbink RJM. Synthesis, Structure and Reactivity of a Mononuclear N,N,O-Bound Fe(II) α-Keto-Acid Complex. Chemistry 2024; 30:e202302710. [PMID: 37882223 DOI: 10.1002/chem.202302710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
A bulky, tridentate phenolate ligand (ImPh2 NNOtBu ) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2 NNOtBu )(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According to NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3 /2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2 (ImPh2 NNOtBu )2 (μ2 -OBz)(μ2 -OH)2 ]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2 , converting methyl(p-tolyl)sulfide to sulfoxide.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Xiang J, Pan Y, Liu LL, Wang LX, Yang H, Cheng SC, Yiu SM, Leung CF, Ko CC, Lau KC, Lau TC. Visible Light-Induced Oxidation of Alcohols by a Luminescent Osmium(VI) Nitrido Complex: Evidence for the Generation of PhIO + as a Highly Active Oxidant in the Presence of PhIO. J Am Chem Soc 2023; 145:9129-9135. [PMID: 37053567 DOI: 10.1021/jacs.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Although alcohols are readily oxidized by a variety of oxidants, their oxidation by metal nitrido complexes is yet to be studied. We report herein visible-light-induced oxidation of primary and secondary alcohols to carbonyl compounds by a strongly luminescent osmium(VI) nitrido complex (OsN). The proposed mechanism involves initial rate-limiting hydrogen-atom transfer (HAT) from the α-carbon of the alcohol to OsN*. Attempts to develop catalytic oxidation of alcohols by OsN* using PhIO as the terminal oxidant resulted in the formation of novel osmium(IV) iminato complexes in which the nitrido ligand is bonded to a δ-carbon of the alcohol. Experimental and theoretical studies suggest that OsN* is reductively quenched by PhIO to generate PhIO+, which is a highly active oxidant that readily undergoes α- and δ-C-H activation of alcohols.
Collapse
Affiliation(s)
- Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434020, China
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Lu-Lu Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434020, China
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434020, China
| | - Huan Yang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434020, China
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po N. T., Hong Kong 00000, China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
6
|
Bera A, Sheet D, Paine TK. Iron(II)-α-keto acid complexes of tridentate ligands on gold nanoparticles: the effect of ligand geometry and immobilization on their dioxygen-dependent reactivity. Dalton Trans 2023; 52:1062-1073. [PMID: 36602242 DOI: 10.1039/d2dt02433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two mononuclear nonheme iron(II)-benzoylformate (BF) complexes [(6Me2-Me-BPA)Fe(BF)](ClO4) (1a) and [(6Me3-TPMM)Fe(BF)](ClO4) (1b) of tridentate nitrogen donor ligands, bis((6-methylpyridin-2-yl)methyl)(N-methyl)amine (6Me2-Me-BPA) and tris(2-(6-methyl)pyridyl)methoxymethane (6Me3-TPMM), were isolated and characterized. The structural characterization of iron(II)-chloro complexes indicates that the ligand 6Me2-Me-BPA binds to the iron(II) centre in a meridional fashion, whereas 6Me3-TPMM behaves as a facial ligand. Both the ligands were functionalized with terminal thiol for immobilization on gold nanoparticles (AuNPs), and the corresponding iron(II) complexes [(6Me2-BPASH)Fe(BF)(ClO4)]@C8Au (2a) and [(6Me3-TPMSH)Fe(BF)(ClO4)]@C8Au (2b) were prepared to probe the effect of immobilization on their ability to perform bioinspired oxidation reactions. All the complexes react with dioxygen to display the oxidative decarboxylation of the coordinated benzoylformate, but the complexes supported by 6Me3-TPMM and its thiol-appended ligand display faster reactivity compared to their analogues with the 6Me2-Me-BPA-derived ligands. In each case, an electrophilic iron-oxygen oxidant was intercepted as the active oxidant generated from dioxygen. The immobilized complexes (2a and 2b) display enhanced O2-dependent reactivity in oxygen-atom transfer reactions (OAT) and hydrogen-atom transfer (HAT) reactions compared to their homogeneous congeners (1a and 1b). Furthermore, the immobilized complex 2b displays catalytic OAT reactions. This study supports that the ligand geometry and immobilization on AuNPs influence the dioxygen-dependent reactivity of the complexes.
Collapse
Affiliation(s)
- Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Debobrata Sheet
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
7
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov OV. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202210525. [PMID: 36006859 PMCID: PMC9588746 DOI: 10.1002/anie.202210525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.
Collapse
Affiliation(s)
- Viet D Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Samuel G Greco
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Guna B Karki
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
9
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov O. Decarboxylative Sulfinylation Enables a Direct, Metal‐Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viet D. Nguyen
- The University of Texas at San Antonio Department of Chemistry 78249 San Antonio UNITED STATES
| | - Graham C. Haug
- The University of Texas at San Antonio Deoartment of Chemistry 1 utsa circle 78249 SAN ANTONIO UNITED STATES
| | - Samuel G. Greco
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Ramon Trevino
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Guna B. Karki
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Hadi D. Arman
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Oleg Larionov
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| |
Collapse
|
10
|
He C, Ma F, Zhang W, Tong R. Reinvestigating FeBr 3-Catalyzed Alcohol Oxidation with H 2O 2: Is a High-Valent Iron Species (HIS) or a Reactive Brominating Species (RBS) Responsible for Alcohol Oxidation? Org Lett 2022; 24:3499-3503. [PMID: 35522028 DOI: 10.1021/acs.orglett.2c01133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In 2003, Martı́n et al. reported a green alcohol oxidation with FeBr3(cat.)/H2O2 and proposed a high-valent iron species (HIS) responsible for the alcohol oxidation. Reinvestigating this FeBr3(cat.)/H2O2 method led us to propose a different mechanism that involves a reactive brominating species (RBS) for the oxidation of alcohols. The evidence to support this RBS-based mechanism includes (1) our recent findings of in situ-generated RBS from the related FeBr2/H2O2 or CeBr3/H2O2 systems, (2) our results of a series of controlled experiments, and (3) some related RBS-based precedents (NBS, NBA, or Br2) showing similar high oxidation selectivity of secondary over primary alcohols. These studies enable us to discover that a RBS from CeBr3/H2O2 is much more efficient for the oxidation of secondary and benzylic alcohols, which represents a new green protocol for selective oxidation of alcohols to carbonyls.
Collapse
Affiliation(s)
- Chenxi He
- Department of Chemistry and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, 999077 Hong Kong, China
| | - Foqing Ma
- Department of Chemistry and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, 999077 Hong Kong, China
| | - Wei Zhang
- Department of Chemistry and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, 999077 Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, 999077 Hong Kong, China
| |
Collapse
|
11
|
Arabahmadi R. Antipyrine-based Schiff base as fluorogenic chemosensor for recognition of Zn2+, Cu2+ and H2PO4− in aqueous media by comparator, half subtractor and integrated logic circuits. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
El‐Sayed NMA, Elsawy H, Adam MSS. Polar and nonpolar iron (II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hany Elsawy
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
13
|
Warm K, Kass D, Haumann M, Dau H, Ray K. Modelling the coordination environment in α‐ketoglutarate dependent oxygenases – a comparative study on the effect of N‐ vs. O‐ligation. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Dustin Kass
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Michael Haumann
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
14
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
15
|
Jeong D, Cho J. Hydride-Transfer Reaction to a Mononuclear Manganese(III) Iodosylarene Complex. Inorg Chem 2021; 60:7612-7616. [PMID: 33978417 DOI: 10.1021/acs.inorgchem.1c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal iodosylarene species have received interest because of their potential oxidative power as a catalyst. We present the first example of hydride-transfer reactions to a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1; TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), with dihydronicotinamide adenine dinucleotide (NADH) analogues. Kinetic studies show that hydride-transfer from the NADH analogues to 1 occurs via a proton-coupled electron transfer, followed by a rapid electron transfer.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
16
|
Mondal R, Chakraborty A, Ghanta R, Menéndez MI, Chattopadhyay T. Experimental and theoretical investigation of the catalytic performance of reduced Schiff base and Schiff base iron complexes: Transformation to magnetically retrievable catalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rimpa Mondal
- Department of Chemistry Diamond Harbour Women's University Sarisha India
| | - Aratrika Chakraborty
- Department of Chemistry, University College of Science University of Calcutta Kolkata India
- Department of Chemistry Lady Brabourne College Kolkata India
| | - Rinku Ghanta
- Department of Chemistry Diamond Harbour Women's University Sarisha India
| | | | | |
Collapse
|
17
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
18
|
Munshi S, Jana RD, Paine TK. Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands. Dalton Trans 2021; 50:5590-5597. [PMID: 33908934 DOI: 10.1039/d0dt04421k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of four mononuclear nonheme iron(iv)-oxo complexes supported by polydentate nitrogen donor ligands to degrade organic pollutants has been investigated. The water soluble iron(ii) complexes upon treatment with ceric ammonium nitrate (CAN) in aqueous solution are converted into the corresponding iron(iv)-oxo complexes. The hydrogen atom transfer (HAT) ability of iron(iv)-oxo species has been exploited for the oxidation of halogenated phenols and other toxic pollutants with weak X-H (X = C, O, S, etc.) bonds. The iron-oxo oxidants can oxidize chloro- and fluorophenols with moderate to high yields under stoichiometric as well as catalytic conditions. Furthermore, these oxidants perform selective oxidative degradation of several persistent organic pollutants (POPs) such as bisphenol A, nonylphenol, 2,4-D (2,4-dichlorophenoxyacetic acid) and gammaxene. This work demonstrates the utility of water soluble iron(iv)-oxo complexes as potential catalysts for the oxidative degradation of a wide range of toxic pollutants, and these oxidants could be considered as an alternative to conventional oxidation methods.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
19
|
Monkcom EC, de Bruin D, de Vries AJ, Lutz M, Ye S, Klein Gebbink RJM. Structurally Modelling the 2-His-1-Carboxylate Facial Triad with a Bulky N,N,O Phenolate Ligand. Chemistry 2021; 27:5191-5204. [PMID: 33326655 PMCID: PMC8048785 DOI: 10.1002/chem.202004633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/25/2022]
Abstract
We present the synthesis and coordination chemistry of a bulky, tripodal N,N,O ligand, ImPh2NNOtBu (L), designed to model the 2‐His‐1‐carboxylate facial triad (2H1C) by means of two imidazole groups and an anionic 2,4‐di‐tert‐butyl‐subtituted phenolate. Reacting K‐L with MCl2 (M = Fe, Zn) affords the isostructural, tetrahedral non‐heme complexes [Fe(L)(Cl)] (1) and [Zn(L)(Cl)] (2) in high yield. The tridentate N,N,O ligand coordination observed in their X‐ray crystal structures remains intact and well‐defined in MeCN and CH2Cl2 solution. Reacting 2 with NaSPh affords a tetrahedral zinc thiolate complex, [Zn(L)(SPh)] (4), that is relevant to isopenicillin N synthase (IPNS) biomimicry. Cyclic voltammetry studies demonstrate the ligand's redox non‐innocence, where phenolate oxidation is the first electrochemical response observed in K‐L, 2 and 4. However, the first electrochemical oxidation in 1 is iron‐centred, the assignment of which is supported by DFT calculations. Overall, ImPh2NNOtBu provides access to well‐defined mononuclear, monoligated, N,N,O‐bound metal complexes, enabling more accurate structural modelling of the 2H1C to be achieved.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Daniël de Bruin
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Annemiek J de Vries
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
20
|
Gunasekera PS, Abhyankar PC, MacMillan SN, Lacy DC. A Facially Coordinating Tris‐Benzimidazole Ligand for Nonheme Iron Enzyme Models. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parami S. Gunasekera
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| | - Preshit C. Abhyankar
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York 14853 United States
| | - David C. Lacy
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 United States
| |
Collapse
|
21
|
Sánchez-Eguía BN, Serrano-Plana J, Company A, Costas M. Catalytic O 2 activation with synthetic models of α-ketoglutarate dependent oxygenases. Chem Commun (Camb) 2020; 56:14369-14372. [PMID: 33150337 DOI: 10.1039/d0cc05942k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron complex bearing the facially capping tridentate 1,4,7-triazacyclononane ligand mimics structural and functional features of alpha-ketoglutarate (α-KG) dependent enzymes, and engages in enzyme-like catalytic O2 activation coupled to α-ketoacid decarboxylation, oxygenating sulfides. This system constitutes a rare case of non-enzymatic catalytic O2 activation, cycling between FeII and FeIV(O).
Collapse
Affiliation(s)
- Brenda N Sánchez-Eguía
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona. Facultat de Ciències, Campus de Montilivi, 17003, Girona, Spain.
| | | | | | | |
Collapse
|
22
|
Ros D, Gianferrara T, Crotti C, Farnetti E. Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol With Hydrogen Peroxide in Water Medium: Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity. Front Chem 2020; 8:810. [PMID: 33195031 PMCID: PMC7581906 DOI: 10.3389/fchem.2020.00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
The iron(II) complexes [Fe(bpy)3](OTf)2 (bpy = 2,2'-bipyridine; OTf = CF3SO3) (1) and [Fe(bpydeg)3](OTf)2 (bpydeg = N4,N4-bis(2-(2-methoxyethoxy)ethyl) [2,2'-bipyridine]-4,4'-dicarboxamide) (2), the latter being a newly synthesized ligand, were employed as catalyst precursors for the oxidation of 1-phenylethanol with hydrogen peroxide in water, using either microwave or conventional heating. With the same oxidant and medium the oxidation of glycerol was also explored in the presence of 1 and 2, as well as of two similar iron(II) complexes bearing tridentate ligands, i.e., [Fe(terpy)2](OTf)2 (terpy = 2, 6-di(2-pyridyl)pyridine) (3) and [Fe(bpa)2](OTf)2 (bpa = bis(2-pyridinylmethyl)amine) (4): in most reactions the major product formed was formic acid, although with careful tuning of the experimental conditions significant amounts of dihydroxyacetone were obtained. Addition of heterocyclic amino acids (e.g., picolinic acid) increased the reaction yields of most catalytic reactions. The effect of such additives on the evolution of the catalyst precursors was studied by spectroscopic (NMR, UV-visible) and ESI-MS techniques.
Collapse
Affiliation(s)
- Dimitri Ros
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Teresa Gianferrara
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Corrado Crotti
- Unità Operativa di Supporto di Trieste, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Erica Farnetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
- *Correspondence: Erica Farnetti
| |
Collapse
|
23
|
Farnetti E, Crotti C, Zangrando E. Iron complexes with polydentate phosphines as unusual catalysts for alcohol oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Sheet D, Bera A, Fu Y, Desmecht A, Riant O, Hermans S. Carbon‐Nanotube‐Appended PAMAM Dendrimers Bearing Iron(II) α‐Keto Acid Complexes: Catalytic Non‐Heme Oxygenase Models. Chemistry 2019; 25:9191-9196. [DOI: 10.1002/chem.201901735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Debobrata Sheet
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
- Department of ChemistryPresidency University, 86/1 College Street Kolkata 700073 India
| | - Abhijit Bera
- School of Chemical SciencesIndian Association for the Cultivation of Sciences 2A & 2B Raja S C Mullick Road Kolkata 700032 India
| | - Yang Fu
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
25
|
Sheet D, Bera A, Jana RD, Paine TK. Oxidizing Ability of a Dioxygen-Activating Nonheme Iron(II)-Benzilate Complex Immobilized on Gold Nanoparticles. Inorg Chem 2019; 58:4828-4841. [PMID: 30916560 DOI: 10.1021/acs.inorgchem.8b03288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An iron(II)-benzilate complex [(TPASH)FeII(benzilate)]ClO4@C8Au (2) (TPASH = 11-((6-((bis(pyridin-2-ylmethyl)amino)methyl)pyridin-2-yl)methoxy)undecane-1-thiol) immobilized on octanethiol stabilized gold nanoparticles (C8Au) of core diameter less than 5 nm has been prepared to evaluate its reactivity toward O2-dependent oxidations compared to a nonimmobilized complex [(TPA-O-Allyl)FeII(benzilate)]ClO4 (1a) (TPA-O-Allyl = N-((6-(allyloxymethyl)pyridin-2-yl)methyl)(pyridin-2-yl)- N-(pyridin-2-ylmethyl)methanamine). X-ray crystal structure of the nonimmobilized complex 1a reveals a six-coordinate iron(II) center in which the TPA-O-Allyl acts as a pentadentate ligand and the benzilate anion binds in monodentate fashion. Both the complexes (1a and 2) react with dioxygen under ambient conditions to form benzophenone as the sole product through decarboxylation of the coordinated benzilate. Interception studies reveal that a nucleophilic iron-oxygen intermediate is formed in the decarboxylation reaction. The oxidants from both the complexes are able to carry out oxo atom transfer reactions. The immobilized complex 2 not only performs faster decarboxylation but also exhibits enhanced reactivity in oxo atom transfer to sulfides. Importantly, the immobilized complex 2, unlike 1a, displays catalytic turnovers in sulfide oxidation. However, the complexes are not efficient to carry out cis-dihydroxylation of alkenes. Although the immobilized complex yields a slightly higher amount of cis-diol from 1-octene, restricted access of dioxygen and substrates at the coordinatively saturated metal centers of the complexes likely makes the resulting iron-oxygen species less active in oxygen atom transfer to alkenes. The results implicate that surface immobilized nonheme iron complexes containing accessible coordination sites would exhibit better reactivity in O2-dependent oxygenation reactions.
Collapse
Affiliation(s)
- Debobrata Sheet
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Abhijit Bera
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Rahul Dev Jana
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Tapan Kanti Paine
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
26
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
27
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
28
|
Mukherjee G, Alili A, Barman P, Kumar D, Sastri CV, de Visser SP. Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)-Oxo Complexes. Chemistry 2019; 25:5086-5098. [PMID: 30720909 DOI: 10.1002/chem.201806430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 01/05/2023]
Abstract
Iron is an essential element in nonheme enzymes that plays a crucial role in many vital oxidative transformations and metabolic reactions in the human body. Many of those reactions are regio- and stereospecific and it is believed that the selectivity is guided by second-coordination sphere effects in the protein. Here, results are shown of a few engineered biomimetic ligand frameworks based on the N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) scaffold and the second-coordination sphere effects are studied. For the first time, selective substitutions in the ligand framework have been shown to tune the catalytic properties of the iron(IV)-oxo complexes by regulating the steric and electronic factors. In particular, a better positioning of the oxidant and substrate in the rate-determining transition state lowers the reaction barriers. Therefore, an optimum balance between steric and electronic factors mediates the ideal positioning of oxidant and substrate in the rate-determining transition state that affects the reactivity of high-valent reaction intermediates.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aligulu Alili
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow, 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
29
|
Wang P, Yap GP, Riordan CG. Synthesis, characterization and O2 reactivity of a bioinspired cobalt(II)-catecholate complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes with nitrogen ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
A multi-controllable selective fluorescent turn-on chemosensor for Al3+ and Zn2+ based on a new diarylethene with a 3-(4-methylphenyl)-1H-pyrazol-5-amine Schiff base group. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Manna RN, Malakar T, Jana B, Paul A. Unraveling the Crucial Role of Single Active Water Molecule in the Oxidative Cleavage of Aliphatic C–C Bond of 2,4′-Dihydroxyacetophenone Catalyzed by 2,4′-Dihydroxyacetophenone Dioxygenase Enzyme: A Quantum Mechanics/Molecular Mechanics Investigation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tanmay Malakar
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Chatterjee S, Bhattacharya S, Paine TK. Bioinspired Olefin cis-Dihydroxylation and Aliphatic C–H Bond Hydroxylation with Dioxygen Catalyzed by a Nonheme Iron Complex. Inorg Chem 2018; 57:10160-10169. [DOI: 10.1021/acs.inorgchem.8b01353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sayanti Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shrabanti Bhattacharya
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
34
|
Gao W, Li F, Huo H, Yang Y, Wang X, Tang Y, Jiang P, Li S, Li R. Investigation of hollow bimetal oxide nanomaterial and their catalytic activity for selective oxidation of alcohol. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Zhang HJ, Schuppe AW, Pan ST, Chen JX, Wang BR, Newhouse TR, Yin L. Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air. J Am Chem Soc 2018; 140:5300-5310. [DOI: 10.1021/jacs.8b01886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Shi-Tao Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Xiang Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo-Ran Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Singh KK, Sen Gupta S. Reductive activation of O 2 by a bioinspired Fe complex for catalytic epoxidation reactions. Chem Commun (Camb) 2018; 53:5914-5917. [PMID: 28513663 DOI: 10.1039/c7cc00933j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aerobic epoxidation of olefins catalyzed by iron complexes without the use of a sacrificial coreductant is unknown. We report the reductive activation of O2 by a bioinspired [(bTAML)FeIII(H2O)]- (1) complex to catalyze the epoxidation of alkenes with TONs of up to 80. Spectroscopic and kinetic evidence indicates the involvement of FeV(O) as the active oxidant during the reaction.
Collapse
Affiliation(s)
- Kundan K Singh
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | | |
Collapse
|
37
|
Karimpour T, Safaei E, Karimi B, Lee YI. Iron(III) Amine Bis(phenolate) Complex Immobilized on Silica-Coated Magnetic Nanoparticles: A Highly Efficient Catalyst for the Oxidation of Alcohols and Sulfides. ChemCatChem 2017. [DOI: 10.1002/cctc.201701217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Elham Safaei
- Department of Chemistry; College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 South Korea
| |
Collapse
|
38
|
Gao W, Li S, Huo H, Li F, Yang Y, Li X, Wang X, Tang Y, Li R. Investigation of the crystal structure of Cu-Fe bimetal oxide and their catalytic activity for the Baeyer–Villiger oxidation reaction. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Affiliation(s)
- Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard St. Louis, MO 63121 USA
| |
Collapse
|
40
|
Bohn A, Sénéchal‐David K, Vanoutryve J, Guillot R, Rivière E, Banse F. Synthesis and Characterization of Iron(II) Complexes with a BPMEN‐Type Ligand Bearing π‐Accepting Nitro Groups. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Jonathan Vanoutryve
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| |
Collapse
|
41
|
Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J Biol Inorg Chem 2017; 22:425-452. [DOI: 10.1007/s00775-016-1434-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022]
|