1
|
Qi J, Wang C, Wang G, O'Neill P, Reddy Dubbaka S, Ting Ang H, Chen X, Wu J. Strain-Release-Driven Electrochemical Skeletal Rearrangement of Non-Biased Alkyl Cyclopropanes/Butanes. Angew Chem Int Ed Engl 2025; 64:e202413723. [PMID: 39264356 DOI: 10.1002/anie.202413723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
Capitalizing the inherent strain energy within molecules, strain-release-driven reactions have been widely employed in organic synthesis. Small cycloalkanes like cyclopropanes and cyclobutanes, with their moderate ring strain, typically require dense functionalization to induce bias or distal activation of (hetero) aromatic rings via single-electron oxidation for relieving the tension. In this study, we present a pioneering direct activation of alkyl cyclopropanes/butanes through electrochemical oxidation. This approach not only showcases the potential for ring-opening of cyclopropane/butane under electrochemical conditions but also streamlines the synthesis of diverse oxazolines and oxazines. The applicability of our method is exemplified by its broad substrate scopes. Notably, the products derived from cyclobutanes undergo a formal ring contraction to cyclopropanes, introducing an intriguing aspect to our discoveries. These discoveries mark a significant advancement in strain-release-driven skeletal rearrangement reactions of moderately strained rings, offering sustainable and efficient synthetic pathways for future endeavours.
Collapse
Affiliation(s)
- Jing Qi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Chu Wang
- Theoretical and Computational Photochemistry of the Chinese Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Gan Wang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Patrick O'Neill
- Pfizer Ireland Pharmaceuticals, Process Development Centre, Ringaskiddy, Co-Cork, Ireland, 637578
| | - Srinivas Reddy Dubbaka
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), Synapse Building, #05-17, 3 Biopolis Drive, Singapore, 138623, Republic of Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Xuebo Chen
- Theoretical and Computational Photochemistry of the Chinese Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Dean AC, Randle EH, Lacey AJD, Marczak Giorio GA, Doobary S, Cons BD, Lennox AJJ. Alkene 1,3-Difluorination via Transient Oxonium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404666. [PMID: 38695434 DOI: 10.1002/anie.202404666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 06/21/2024]
Abstract
The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.
Collapse
Affiliation(s)
- Alice C Dean
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - E Harvey Randle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Andrew J D Lacey
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Sayad Doobary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | |
Collapse
|
4
|
Karjee P, Debnath B, Mandal S, Saha S, Punniyamurthy T. One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chem Commun (Camb) 2024; 60:4068-4071. [PMID: 38506143 DOI: 10.1039/d4cc00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
One-pot C-N/C-C bond formation of donor-acceptor cyclopropanes (DACs) with tetrahydroisoquinolines (THIQs) has been achieved to furnish benzo-fused indolizines. These reactions involve a MgI2-catalyzed ring opening of DACs and oxidative annulation using Mn(OAc)3·2H2O. The substrate scope and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
5
|
Darzina M, Jirgensons A. Electrochemical Formation of Oxazolines by 1,3-Oxyfluorination of Non-activated Cyclopropanes. Org Lett 2024; 26:2158-2162. [PMID: 38456832 DOI: 10.1021/acs.orglett.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The C-C bond in non-activated cyclopropanes can be intramolecularly cleaved with an electrochemically generated amidyl radical forming oxazolines. In the presence of TBABF4, this provides 1,3-oxyfluorination products. C-C bond cleavage of cyclopropane proceeds with inversion of the configuration, suggesting an intramolecular homolytic substitution (SHi) mechanism. The performance of TBABF4 as an efficient fluoride source was explained by accumulation of the BF4- anion at the anode surface, at which a carbocation is formed by the oxidation of the C-centered radical.
Collapse
Affiliation(s)
- Madara Darzina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
6
|
Komatsuda M, Yamaguchi J. Ring-Opening Fluorination of Carbo/Heterocycles and Aromatics: Construction of Complex and Diverse Fluorine-Containing Molecules. CHEM REC 2023; 23:e202200281. [PMID: 36604947 DOI: 10.1002/tcr.202200281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Fluorine-containing molecules have attracted much attention in medicinal, agrochemical, and materials sciences because they offer unique physical and biological properties. Therefore, many efficient fluorination reactions have been developed over the years. Recent advancements in fluorination chemistry have expanded the range of substrates, and regioselectivity/stereoselectivity control has also been achieved. Ring-opening fluorination is an efficient method to construct complex fluorine-containing molecules with diversity, starting from simple cyclic compounds. This review aims to summarize developments in ring-opening fluorination, particularly with larger-sized cyclic compounds. Fluorine introduction and bond cleavage of cyclic compounds such as carbocycles, heterocycles, and aromatics provide efficient access to fluorine-containing compounds that are difficult to be synthesized by conventional methods.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| |
Collapse
|
7
|
Yang S, Wu JY, Lin S, Pu M, Huang ZS, Wang H, Li Q. Divergent Fluorinations of Vinylcyclopropanes: Ring-Opening 1,5-Hydrofluorination and Ring-Retaining 1,2-Difluorination. Chem Asian J 2023; 18:e202300476. [PMID: 37366264 DOI: 10.1002/asia.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
Organofluorine compounds have been widely used in pharmaceutical, agrochemical, and material sciences. Reported herein are divergent fluorination reactions of vinylcyclopropanes with different electrophiles, which allow the facile synthesis of homoallylic monofluorides and vicinal-difluorides through ring-opening 1,5-hydrofluorination and ring-retaining 1,2-difluorination, respectively. Both protocols feature mild conditions, simple operations, good functional group tolerance, and generally good yields. The practicality of these reactions is demonstrated by their scalability, as well as the successful conversion of the formed homoallylic monofluorides into other complex fluorinated molecules.
Collapse
Affiliation(s)
- Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jun-Yunzi Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Lozada J, Xuan Lin W, Cao-Shen RM, Astoria Tai R, Perrin DM. Salt Metathesis: Tetrafluoroborate Anion Rapidly Fluoridates Organoboronic Acids to give Organotrifluoroborates. Angew Chem Int Ed Engl 2023; 62:e202215371. [PMID: 36720697 DOI: 10.1002/anie.202215371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Tetrafluoroborate (BF4 - ) has long been used as a spectator counter anion. Herein, we report an unprecedented salt metathesis between a variety of BF4 - salts and a series of organoboronic acids yielding the corresponding organotrifluoroborates. We identified conditions for fast and efficient fluoridation (<1 h) with minimal workup. Fundamentally, this work discloses the proclivity of BF4 - to exchange fluoride atoms with organoboronates, highlighting the lability of BF4 - .
Collapse
Affiliation(s)
- Jerome Lozada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Wen Xuan Lin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Rosana M Cao-Shen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Ruyin Astoria Tai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
9
|
Yu Y, Schäfer M, Daniliuc CG, Gilmour R. Catalytic, Regioselective 1,4-Fluorodifunctionalization of Dienes. Angew Chem Int Ed Engl 2023; 62:e202214906. [PMID: 36345795 PMCID: PMC10107283 DOI: 10.1002/anie.202214906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 11/09/2022]
Abstract
A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.
Collapse
Affiliation(s)
- You‐Jie Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
10
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
11
|
Yang S, Liu C, Shangguan X, Li Y, Zhang Q. A copper-catalyzed four-component reaction of arylcyclopropanes, nitriles, carboxylic acids and N-fluorobenzenesulfonimide: facile synthesis of imide derivatives. Chem Sci 2022; 13:13117-13121. [PMID: 36425490 PMCID: PMC9667929 DOI: 10.1039/d2sc04913a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/26/2022] [Indexed: 07/21/2023] Open
Abstract
An unprecedented copper-catalyzed four-component reaction of arylcyclopropanes, nitriles, carboxylic acids and N-fluorobenzenesulfonimide (NFSI) has been successfully developed, which represents the first example of a four-component reaction of non-donor-acceptor cyclopropanes. A wide range of imide derivatives were efficiently synthesized in excellent yields under mild conditions.
Collapse
Affiliation(s)
- Shengbiao Yang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province 274000 China
| | - Chunyang Liu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xiaoyan Shangguan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yan Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Nguyen TVT, Wodrich MD, Waser J. Substrate-controlled C-H or C-C alkynylation of cyclopropanes: generation of aryl radical cations by direct light activation of hypervalent iodine reagents. Chem Sci 2022; 13:12831-12839. [PMID: 36519037 PMCID: PMC9645386 DOI: 10.1039/d2sc04344k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 09/16/2023] Open
Abstract
We report the first oxidative C-H alkynylation of arylcyclopropanes. Irradiation of ethynylbenziodoxolone (EBX) reagents with visible light at 440 nm promoted the reaction. By the choice of the aryl group on the cyclopropane, it was possible to completely switch the outcome of the reaction from the alkynylation of the C-H bond to the oxyalkynylation of the C-C bond, which proceeded without the need for a catalyst, in contrast to previous works. The oxyalkynylation could also be extended to aminocyclopropanes as well as styrenes. Computations indicated that the C-H activation became a favoured nearly barrierless process in the presence of two ortho methyl groups on the benzene ring.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| |
Collapse
|
13
|
Liu K, Wang G, Zhang ZW, Shi YY, Ye ZS. C-C Bond Activation of Cyclopropanes Enabled by Phosphine-Catalyzed In Situ Formation of High-Strain Methylenecycopropane Intermediate. Org Lett 2022; 24:6489-6493. [PMID: 36069728 DOI: 10.1021/acs.orglett.2c02201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective strategy for the ring-opening/elaboration of cyclopropanes by phosphine catalyst is documented, providing the 2,4-pentadiene sulfonamides and isoindolines in moderate to good yields. The key to the success of this reaction is phosphine-catalyzed introduction of a trigonal center into cyclopropanes, which results in the formation of higher ring strain cyclopropylidenemethyl phosphonium salt. Moreover, this methodology is employed as the key step for the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Kui Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Gang Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zhe-Wen Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Yu-Yang Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zhi-Shi Ye
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
14
|
Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Photoinduced Three-Component Difluoroalkylation of Quinoxalinones with Alkenes via Difluoroiodane(III) Reagents. Org Lett 2022; 24:3576-3581. [PMID: 35546558 DOI: 10.1021/acs.orglett.2c01358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An environmentally friendly strategy for the photocatalyzed three-component reaction between quinoxalinones, alkenes, and hypervalent iodine(III) reagents is disclosed. The new designed difluoroiodane(III) reagent shows excellent reactivity, providing a wide range of difluoroalkyl-substituted quinoxaline-2(1H)-ones in moderate to excellent yields under mild conditions. Experimental studies demonstrated that a difluoroalkyl radical intermediate was involved in this reaction.
Collapse
Affiliation(s)
- Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Chunmeng Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Komatsuda M, Ohki H, Kondo H, Suto A, Yamaguchi J. Ring-Opening Fluorination of Isoxazoles. Org Lett 2022; 24:3270-3274. [PMID: 35471036 DOI: 10.1021/acs.orglett.2c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ring-opening fluorination of isoxazoles has been developed. Upon treatment of isoxazoles with an electrophilic fluorinating agent (Selectfluor), fluorination followed by deprotonation leads to tertiary fluorinated carbonyl compounds. This method features mild reaction conditions, good functional group tolerance, and a simple experimental procedure. Diverse transformations of the resulting α-fluorocyanoketones were also demonstrated, furnishing a variety of fluorinated compounds.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hugo Ohki
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
16
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
17
|
Ren J, Jia MC, Du FH, Zhang C. A general method for one-step synthesis of monofluoroiodane(III) reagents using silver difluoride. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Yang S, Liu XB, Feng SX, Li Y, Tu FH, Huang B, Huang LL, Huang ZS, Wang H, Li Q. Hypervalent iodine( iii)-mediated ring-expansive difluorination of alkynylcyclopropanes en route to the synthesis of difluorinated alkylidenecyclobutanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a hypervalent iodine(iii)-mediated ring-expansive difluorination of alkynylcyclopropanes featuring a Wagner–Meerwein-type rearrangement to access a variety of difluorinated alkylidenecyclobutanes.
Collapse
Affiliation(s)
- Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Bin Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
19
|
Zuo Z, Daniliuc CG, Studer A. Cooperative NHC/Photoredox Catalyzed Ring‐Opening of Aryl Cyclopropanes to 1‐Aroyloxylated‐3‐Acylated Alkanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhijun Zuo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
20
|
Zuo Z, Daniliuc CG, Studer A. Cooperative NHC/Photoredox Catalyzed Ring-Opening of Aryl Cyclopropanes to 1-Aroyloxylated-3-Acylated Alkanes. Angew Chem Int Ed Engl 2021; 60:25252-25257. [PMID: 34580972 PMCID: PMC9298441 DOI: 10.1002/anie.202110304] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 12/30/2022]
Abstract
Cyclopropanes are an important class of building blocks in organic synthesis. Herein, a ring-opening/arylcarboxylation/acylation cascade reaction for the 1,3-difunctionalization of aryl cyclopropanes enabled by cooperative NHC and organophotoredox catalysis is reported. The cascade works on monosubstituted cyclopropanes that are in contrast to the heavily investigated donor-acceptor cyclopropanes more challenging to be difunctionalized. The key step is a radical/radical cross coupling of a benzylic radical generated in the photoredox catalysis cycle with a ketyl radical from the NHC catalysis cycle. The transformation features metal-free reaction conditions and tolerates a diverse range of functionalities.
Collapse
Affiliation(s)
- Zhijun Zuo
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
21
|
Ren J, Du FH, Jia MC, Hu ZN, Chen Z, Zhang C. Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane(III) Reagent. Angew Chem Int Ed Engl 2021; 60:24171-24178. [PMID: 34523779 DOI: 10.1002/anie.202108589] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Indexed: 11/08/2022]
Abstract
Herein, we report a new strategy for carbon-carbon bond scission and intramolecular ring expansion fluorination of unactivated cyclopropanes, which was accomplished with a new hypervalent fluoroiodane(III) reagent 1. This novel method delivers medicinally relevant 4-fully substituted fluoropiperidines in moderate to high yields with excellent regio- and diastereoselectivity. Reagent 1, which has an N-acetylbenziodazole framework, was readily synthesized via three steps in 76 % overall yield and was characterized by NMR spectroscopy and X-ray crystallography. Owing to the presence of a secondary I⋅⋅⋅O bonding interaction between the λ3 -iodane atom and the carbonyl oxygen of the acetyl group of the N-acetylbenziodazole framework, 1 has excellent stability and can be stored at ambient temperature for 6 months without any detectable decomposition. Density functional theory calculations and experimental studies showed that the reaction proceeds via a carbocation intermediate that readily combines with a fluoride ion to generate the product.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Feng-Huan Du
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Meng-Cheng Jia
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ze-Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ze Chen
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
22
|
Ren J, Du F, Jia M, Hu Z, Chen Z, Zhang C. Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane(III) Reagent. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Ren
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Feng‐Huan Du
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Meng‐Cheng Jia
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ze‐Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ze Chen
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
23
|
Taily IM, Saha D, Banerjee P. Arylcyclopropane yet in its infancy: the challenges and recent advances in its functionalization. Org Biomol Chem 2021; 19:8627-8645. [PMID: 34549770 DOI: 10.1039/d1ob01432c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electronically unbiased arylcyclopropane functionalization has always been a challenge to organic chemists, and the emergence of donor-acceptor cyclopropanes (DACs) has not only vehemently overshadowed them but still dominates the cyclopropane chemistry. Unlike DACs, the absence of pre-installed functional groups makes it harder for them to activate and participate in a reaction. The field has witnessed considerably slow progress since its inception due to the inherent challenges. There are only a few strategies available to open arylcyclopropanes. Therefore, this work is still in its infancy stage in spite of these materials being one of the earliest known type of cyclopropanes. This review manifests the history, endeavors, and achievements alongside the associated challenges, opportunities, and the need for concerted efforts to accomplish the long-awaited golden age of arylcyclopropanes.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
24
|
Yang S, Shi S, Chen Y, Ding Z. Synthesis of Dihydroxazines and Fluorinated Oxazepanes Using a Hypervalent Fluoroiodine Reagent. J Org Chem 2021; 86:14004-14010. [PMID: 33787277 DOI: 10.1021/acs.joc.1c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Application of a hypervalent fluoroiodane for the regiodivergent synthesis of dihydroxazines and fluorinated oxazepanes from allylaminoethanol was investigated. The reaction was carried out under mild conditions and gave the products in moderate to good yields. The selectivity of this transformation is controlled by the substituents of the allylaminoethanol.
Collapse
Affiliation(s)
- Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shoujie Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuhang Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Robidas R, Legault CY. Cyclic Haloiodanes: Syntheses, Applications and Fundamental Studies. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry Université de Sherbrooke Sherbrooke Québec J1K 2R1 Canada
| | - Claude Y. Legault
- Department of Chemistry Université de Sherbrooke Sherbrooke Québec J1K 2R1 Canada
| |
Collapse
|
26
|
Meyer S, Häfliger J, Gilmour R. Expanding organofluorine chemical space: the design of chiral fluorinated isosteres enabled by I(i)/I(iii) catalysis. Chem Sci 2021; 12:10686-10695. [PMID: 34476053 PMCID: PMC8372324 DOI: 10.1039/d1sc02880d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena. Delineating their biological origins and significance have resulted in landmark developments in synthetic organic chemistry: Arigoni's venerable synthesis of the chiral methyl group is a personal favourite. Whilst radioisotopes allow the steric footprint of the native group to be preserved, this strategy was never intended for therapeutic chemotype development. In contrast, leveraging H → F bioisosterism provides scope to complement the chiral, radioactive bioisostere portfolio and to reach unexplored areas of chiral chemical space for small molecule drug discovery. Accelerated by advances in I(i)/I(iii) catalysis, the current arsenal of achiral 2D and 3D drug discovery modules is rapidly expanding to include chiral units with unprecedented topologies and van der Waals volumes. This Perspective surveys key developments in the design and synthesis of short multivicinal fluoroalkanes under the auspices of main group catalysis paradigms.
Collapse
Affiliation(s)
- Stephanie Meyer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| | - Joel Häfliger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| |
Collapse
|
27
|
Riley W, Jones AC, Singh K, Browne DL, Stuart AM. Accessing novel fluorinated heterocycles with the hypervalent fluoroiodane reagent by solution and mechanochemical synthesis. Chem Commun (Camb) 2021; 57:7406-7409. [PMID: 34231584 DOI: 10.1039/d1cc02587b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and efficient strategy for the rapid formation of novel fluorinated tetrahydropyridazines and dihydrooxazines has been developed by fluorocyclisation of β,γ-unsaturated hydrazones and oximes with the fluoroiodane reagent. Mechanochemical synthesis delivered fluorinated tetrahydropyridazines in similar excellent yields to conventional solution synthesis, whereas fluorinated dihydrooxazines were prepared in much better yields by ball-milling.
Collapse
Affiliation(s)
- William Riley
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Andrew C Jones
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | - Alison M Stuart
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
28
|
Tanagawa K, Zhao Z, Saito N, Shibata N. AgBF 4-Mediated Chlorine-Fluorine Exchange Fluorination for the Synthesis of Pentafluorosulfanyl (Hetero)arenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kazuhiro Tanagawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd., Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, P. R. China
| |
Collapse
|
29
|
Zhang Z, Ren J, Zhang M, Xu X, Wang X. Divergent Synthesis of
N
‐Heterocycles
by Merging Borane‐Mediated Cyclopropane
Ring‐Opening
and Hydride Abstraction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zi‐Yu Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jie Ren
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ming Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xiu‐Fang Xu
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Electrochemical C-C bond cleavage of cyclopropanes towards the synthesis of 1,3-difunctionalized molecules. Nat Commun 2021; 12:3075. [PMID: 34031421 PMCID: PMC8144616 DOI: 10.1038/s41467-021-23401-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Electrochemistry has a lot of inherent advantages in organic synthesis and many redox reactions have been achieved under electrochemical condition. However, the electrochemical C-C bond cleavage and functionalization reactions are less studied. Here we develop electrochemical C-C bond cleavage and 1,3-difuntionalization of arylcyclopropanes under catalyst-free and external-oxidant-free conditions. 1,3-difluorination, 1,3-oxyfluorination and 1,3-dioxygenation of arylcyclopropanes are achieved with a high chemo- and regioselectivity by the strategic choice of nucleophiles. This protocol has good functional groups tolerance and can be scaled up. Mechanistic studies demonstrate that arylcyclopropane radical cation obtained from the anode oxidation and the subsequently generated benzyl carbonium are the key intermediates in this transformation. This development provides a scenario for constructing 1,3-difunctionalized molecules.
Collapse
|
31
|
Yang-Yang Z, Zhen-Hui W, Xue-Yun G, Bao-Hua H, Xiao-Rui C, Yan-Feng S, Ke-Yang W, Peng-Wei L, Xue-Yan L, De-Jun Z. Applications of hypervalent iodine(III) reagents in constructing ortho-iodo aromatic ethers. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211005385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A one-pot method for the synthesis of aromatic ethers using hypervalent iodine(III) reagents obtained from the corresponding iodoaryl compounds is developed. In this concise method, six diaryl ethers and three heterocyclic aromatic ethers are synthesized in good yields. Furthermore, possible mechanisms for the syntheses of the hypervalent iodine reagents and construction of the aromatic ethers are proposed.
Collapse
Affiliation(s)
- Zhai Yang-Yang
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Wang Zhen-Hui
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Gong Xue-Yun
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Hou Bao-Hua
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Cui Xiao-Rui
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Sun Yan-Feng
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Wang Ke-Yang
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Liu Peng-Wei
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Li Xue-Yan
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| | - Zhou De-Jun
- Medical School, Henan Polytechnic University, Jiaozuo, P.R. China
| |
Collapse
|
32
|
Zhang H, Xiao H, Jiang F, Fang Y, Zhu L, Li C. Copper-Catalyzed Ring-Opening 1,3-Aminotrifluoromethylation of Arylcyclopropanes. Org Lett 2021; 23:2268-2272. [PMID: 33689390 DOI: 10.1021/acs.orglett.1c00390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The copper-catalyzed reaction of arylcyclopropanes, N-fluorobis(arenesulfonyl)imides, and (bpy)Zn(CF3)2 (bpy = 2,2'-bipyridine) at room temperature affords the corresponding ring-opening 1,3-aminotrifluoromethylation products in satisfactory yields. The protocol is highly regioselective, providing a convenient entry to γ-trifluoromethylated amines. A mechanism involving the trifluoromethylation of benzyl radicals is proposed.
Collapse
Affiliation(s)
- Huan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haiwen Xiao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Feng Jiang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| | - Lin Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chaozhong Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
33
|
Kirihara M, Kikkawa Y, Nakamura R, Nakakura K, Suzuki Y, Muramatsu Y. Ring-opening fluorination of cyclopropylmethanols and cycloprpanecarbardehydes with diethylaminosulfur trifluoride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Declas N, Pisella G, Waser J. Vinylbenziodoxol(on)es: Synthetic Methods and Applications. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| |
Collapse
|
35
|
Han Z, Zhang C. Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000750] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou‐Zhou Han
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Cheng‐Pan Zhang
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
36
|
Abudken AMH, Hope EG, Singh K, Stuart AM. Fluorinations of unsymmetrical diaryliodonium salts containing ortho-sidearms; influence of sidearm on selectivity. Org Biomol Chem 2020; 18:6140-6146. [PMID: 32724955 DOI: 10.1039/d0ob01401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activated aromatics were reacted with two different fluoroidoane reagents 1 and 2 in the presence of triflic acid to prepare only the para-substituted diaryliodonium salts. With fluoroiodane 1 the unsymmetrical diaryliodonium salts contained an ortho-propan-2-ol sidearm, whereas the alcohol sidearm was eliminated to form an ortho-styrene sidearm in the reaction with fluoroiodane 2. Only the diaryliodonium salts containing a styrene sidearm were fluorinated successfully to deliver para-fluorinated aromatics in good yields.
Collapse
Affiliation(s)
- Ahmed M H Abudken
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK. and College of Pharmacy, Al-Qadisiyah University, Al-Qadisiyah, Iraq
| | - Eric G Hope
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Alison M Stuart
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
37
|
Gieuw MH, Chen S, Ke Z, Houk KN, Yeung YY. Boron tribromide as a reagent for anti-Markovnikov addition of HBr to cyclopropanes. Chem Sci 2020; 11:9426-9433. [PMID: 34094209 PMCID: PMC8161534 DOI: 10.1039/d0sc02567d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
Although radical formation from a trialkylborane is well documented, the analogous reaction mode is unknown for trihaloboranes. We have discovered the generation of bromine radicals from boron tribromide and simple proton sources, such as water or tert-butanol, under open-flask conditions. Cyclopropanes bearing a variety of substituents were hydro- and deuterio-brominated to furnish anti-Markovnikov products in a highly regioselective fashion. NMR mechanistic studies and DFT calculations point to a radical pathway instead of the conventional ionic mechanism expected for BBr3.
Collapse
Affiliation(s)
- Matthew H Gieuw
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin NT Hong Kong China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095 USA
| | - Zhihai Ke
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin NT Hong Kong China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095 USA
| | - Ying-Yeung Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin NT Hong Kong China
| |
Collapse
|
38
|
Wang M, Waser J. Oxidative Fluorination of Cyclopropylamides through Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Wang
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
39
|
Wang M, Waser J. Oxidative Fluorination of Cyclopropylamides through Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:16420-16424. [DOI: 10.1002/anie.202007864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Wang
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
40
|
Intermolecular Electrophilic Bromoesterification and Bromoetherification of Unactivated Cyclopropanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Deng R, Zhan S, Li C, Gu Z. Hypervalent‐Iodine‐Mediated Carbon–Carbon Bond Cleavage and Dearomatization of 9
H
‐Fluoren‐9‐ols. Angew Chem Int Ed Engl 2020; 59:3093-3098. [DOI: 10.1002/anie.201913373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ruixian Deng
- Department of ChemistryCenter for Excellence in Molecular SynthesisHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shuming Zhan
- Department of ChemistryCenter for Excellence in Molecular SynthesisHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chunyu Li
- Department of ChemistryCenter for Excellence in Molecular SynthesisHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Zhenhua Gu
- Department of ChemistryCenter for Excellence in Molecular SynthesisHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
42
|
Deng R, Zhan S, Li C, Gu Z. Hypervalent‐Iodine‐Mediated Carbon–Carbon Bond Cleavage and Dearomatization of 9
H
‐Fluoren‐9‐ols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruixian Deng
- Department of Chemistry Center for Excellence in Molecular Synthesis Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shuming Zhan
- Department of Chemistry Center for Excellence in Molecular Synthesis Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chunyu Li
- Department of Chemistry Center for Excellence in Molecular Synthesis Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Zhenhua Gu
- Department of Chemistry Center for Excellence in Molecular Synthesis Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
43
|
Kuboki Y, Arisawa M, Murai K. Ring-opening 1,3-arylboration of arylcyclopropanes mediated by BCl3. RSC Adv 2020; 10:37797-37799. [PMID: 35515187 PMCID: PMC9057229 DOI: 10.1039/d0ra08151e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Herein, we report a ring-opening 1,3-arylboration of aryl cyclopropanes using BCl3 in the presence of arene nucleophiles.
Collapse
Affiliation(s)
- Yuichi Kuboki
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| |
Collapse
|
44
|
Mai BK, Himo F. Mechanisms of Metal-Catalyzed Electrophilic F/CF3/SCF3 Transfer Reactions from Quantum Chemical Calculations. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Zhang G, Wang Y, Xu J, Sun J, Sun F, Zhang Y, Zhang C, Du Y. A new hypervalent iodine(iii/v) oxidant and its application to the synthesis of 2 H-azirines. Chem Sci 2019; 11:947-953. [PMID: 34084348 PMCID: PMC8145639 DOI: 10.1039/c9sc05536c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022] Open
Abstract
The reaction of o-nitroiodobenzene and mCPBA in acetic acid was found to afford a novel hypervalent iodine compound, in the structure of which both iodine(iii) and iodine(v) moieties coexist. The nitro groups at the ortho phenyl positions were found to be crucial in stabilizing this uncommon structure. This novel hypervalent iodine(iii/v) oxidant is proved to be effective in realizing the synthesis of 2-unsubstitued 2H-azirines via intramolecular oxidative azirination, which could not be efficiently achieved by the existing known hypervalent iodine reagents.
Collapse
Affiliation(s)
- Guangtao Zhang
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yuanxun Wang
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Jun Xu
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Jiyun Sun
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506-6045 USA
| | - Chenglin Zhang
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
46
|
Doobary S, Sedikides AT, Caldora HP, Poole DL, Lennox AJJ. Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron‐Rich Substrates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sayad Doobary
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alexi T. Sedikides
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Henry P. Caldora
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Darren L. Poole
- Medicines Design GSK Medicines Research Centre Gunnels Wood Rd Stevenage SG1 2NY UK
| | | |
Collapse
|
47
|
Doobary S, Sedikides AT, Caldora HP, Poole DL, Lennox AJJ. Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron-Rich Substrates. Angew Chem Int Ed Engl 2019; 59:1155-1160. [PMID: 31697872 PMCID: PMC6973232 DOI: 10.1002/anie.201912119] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Indexed: 01/16/2023]
Abstract
Fluorinated alkyl groups are important motifs in bioactive compounds, positively influencing pharmacokinetics, potency and conformation. The oxidative difluorination of alkenes represents an important strategy for their preparation, yet current methods are limited in their alkene‐types and tolerance of electron‐rich, readily oxidized functionalities, as well as in their safety and scalability. Herein, we report a method for the difluorination of a number of unactivated alkene‐types that is tolerant of electron‐rich functionality, giving products that are otherwise unattainable. Key to success is the electrochemical generation of a hypervalent iodine mediator using an “ex‐cell” approach, which avoids oxidative substrate decomposition. The more sustainable conditions give good to excellent yields in up to decagram scales.
Collapse
Affiliation(s)
- Sayad Doobary
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Alexi T Sedikides
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Henry P Caldora
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Darren L Poole
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Rd, Stevenage, SG1 2NY, UK
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
48
|
Sanz-Marco A, Martinez-Erro S, Pauze M, Gómez-Bengoa E, Martín-Matute B. An umpolung strategy to react catalytic enols with nucleophiles. Nat Commun 2019; 10:5244. [PMID: 31748504 PMCID: PMC6868166 DOI: 10.1038/s41467-019-13175-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023] Open
Abstract
The selective synthesis of α-functionalized ketones with two similar enolizable positions can be accomplished using allylic alcohols and iridium(III) catalysts. A formal 1,3-hydrogen shift on allylic alcohols generates catalytic iridium-enolates in a stereospecific manner, which are able to react with electrophiles to yield α-functionalized ketones as single constitutional isomers. However, the employment of nucleophiles to react with the nucleophilic catalytic enolates in this chemistry is still unknown. Herein, we report an umpolung strategy for the selective synthesis of α-alkoxy carbonyl compounds by the reaction of iridium enolates and alcohols promoted by an iodine(III) reagent. Moreover, the protocol also works in an intramolecular fashion to synthesize 3(2H)-furanones from γ-keto allylic alcohols. Experimental and computational investigations have been carried out, and mechanisms are proposed for both the inter- and intramolecular reactions, explaining the key role of the iodine(III) reagent in this umpolung approach. Nucleophiles cannot be directly reacted with enolates due to polarity mismatching. Here, the authors developed an umpolung strategy for the selective synthesis of α-alkoxy carbonyl compounds by reaction of iridium enolates with nucleophilic alcohols promoted by an iodine(III) reagent.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Department of Organic Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Samuel Martinez-Erro
- Department of Organic Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Martin Pauze
- Department of Organic Chemistry, Stockholm University, Stockholm, SE-10691, Sweden.,Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, Donostia - San Sebastián, 20018, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, Donostia - San Sebastián, 20018, Spain
| | - Belén Martín-Matute
- Department of Organic Chemistry, Stockholm University, Stockholm, SE-10691, Sweden.
| |
Collapse
|
49
|
Xu K, Yang R, Yang S, Jiang C, Ding Z. Hypervalent iodane mediated reactions of N-acetyl enamines for the synthesis of oxazoles and imidazoles. Org Biomol Chem 2019; 17:8977-8981. [PMID: 31576884 DOI: 10.1039/c9ob01895f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A hypervalent iodane reagent used for the intramolecular cyclization of N-acetyl enamines and intermolecular cyclocondensation of enamines and nitriles was investigated. The reaction was performed under mild conditions and gave oxazoles and imidazoles, respectively, in moderate to excellent yields. This transformation exhibits good reactivity, selectivity and functional group tolerance. The selectivity of the intra- or intermolecular reaction is dependent on the structure of N-acetyl enamines.
Collapse
Affiliation(s)
- Kang Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ruiqi Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
50
|
Photoredox-catalyzed oxo-amination of aryl cyclopropanes. Nat Commun 2019; 10:4367. [PMID: 31554813 PMCID: PMC6761154 DOI: 10.1038/s41467-019-12403-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 01/14/2023] Open
Abstract
Cyclopropanes represent a class of versatile building blocks in modern organic synthesis. While the release of ring strain offers a thermodynamic driving force, the control of selectivity for C–C bond cleavage and the subsequent regiochemistry of the functionalization remains difficult, especially for unactivated cyclopropanes. Here we report a photoredox-coupled ring-opening oxo-amination of electronically unbiased cyclopropanes, which enables the expedient construction of a host of structurally diverse β-amino ketone derivatives. Through one electron oxidation, the relatively inert aryl cyclopropanes are readily converted into reactive radical cation intermediates, which in turn participate in the ensuing ring-opening functionalizations. Based on mechanistic studies, the present oxo-amination is proposed to proceed through an SN2-like nucleophilic attack/ring-opening manifold. This protocol features wide substrate scope, mild reaction conditions, and use of dioxygen as an oxidant both for catalyst regeneration and oxygen-incorporation. Moreover, a one-pot formal aminoacylation of olefins is described through a sequential cyclopropanation/oxo-amination. The ring-opening and functionalization of electronically unbiased cyclopropanes is highly challenging to achieve in a regioselective fashion. Here, the authors report a mild photoredox-coupled oxoamination of electronically unactivated aryl cyclopropanes with simple azaarenes and molecular oxygen.
Collapse
|