1
|
Dijkstra M, Gutmann M, Gradl M, Federa A, Jaunecker C, Breitenstein JV, Vician P, Pirker C, Valcanover D, Heffeter P, Keppler BK, Berger W, Kowol CR. Albumin-targeted oxaliplatin(iv) prodrugs bearing STING agonists. Inorg Chem Front 2025:d5qi00433k. [PMID: 40191696 PMCID: PMC11969438 DOI: 10.1039/d5qi00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The anticancer platinum complex oxaliplatin exerts its activity through DNA damage and immune-stimulatory mechanisms, but is associated with adverse treatment side effects. Platinum(iv) complexes represent a promising prodrug strategy to improve tolerability and to enhance antitumor efficacy via attachment of additional bioactive ligands or tumor-targeting moieties. In the present study, oxaliplatin(iv) complexes containing immune-stimulatory STING agonists SR-717 or MSA-2 were synthesized and their biological properties were studied. Whereas the Pt-SR-717 compound was fast reduced, Pt-MSA-2 complexes displayed significantly higher reductive stability reflected by low in vitro cytotoxicity. Although the platinum(iv) complexes activated interferon regulatory factor (IRF) and NF-κB signaling pathways less effectively compared to the free STING agonists, reducing conditions elevated cytotoxicity and STING downstream signaling, particularly for MSA-2-containing prodrugs. Rapid albumin binding of a maleimide-containing Pt-MSA-2 derivative resulted in elevated plasma levels, prolonged blood circulation, and enhanced tumor accumulation of platinum in CT-26 tumor-bearing mice. The Pt-MSA-2 complexes triggered immune activation and cytokine secretion without hematotoxicity usually associated with free oxaliplatin. The albumin-targeted Pt-MSA-2 drug significantly inhibited tumor growth after intravenous application, while the non-maleimide complex was effective only when applied peritumorally. However, the effects were not enhanced compared to mono-treatment with oxaliplatin or MSA-2, indicating a lack of synergism between the two simultaneously released agents. Our results demonstrate that oxaliplatin(iv) complexes represent a valuable strategy for enhanced tumor-targeting and adverse effect reduction, but question the simultaneous release of STING agonists and free oxaliplatin as a potent strategy towards synergistic antineoplastic activity.
Collapse
Affiliation(s)
- Martijn Dijkstra
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Mathias Gradl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Anja Federa
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Carola Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - John Vasco Breitenstein
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Daniel Valcanover
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
2
|
Caban M, Fronik P, Terenzi A, Federa A, Bormio Nunes JH, Pitek R, Kirchhofer D, Schueffl HH, Berger W, Keppler BK, Kowol CR, Heffeter P. A new fluorescent oxaliplatin(iv) complex with EGFR-inhibiting properties for the treatment of drug-resistant cancer cells. Inorg Chem Front 2025; 12:1538-1552. [PMID: 39801772 PMCID: PMC11715172 DOI: 10.1039/d4qi03025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment. To enhance the tolerability of this combination, we designed a novel multi-action oxaliplatin-based platinum(iv) complex with an EGFR-inhibiting moiety (KP2749). KP2749 releases two independent cytotoxic agents upon reduction: oxaliplatin and the EGFR inhibitor KP2187, which was selected for its strong intrinsic fluorescence that became quenched upon complexation to metal ions. In particular, KP2749 demonstrated high stability and specific KP2187 release, with quenched fluorescent properties in its intact form, facilitating the investigation of its intracellular reduction. Notably, by exploiting its fluorescence, we demonstrated that intact KP2749 itself exhibited EGFR-inhibitory properties. Furthermore, subsequent experiments indicated that our complex was able to overcome resistance to oxaliplatin and EGFR inhibitors in vitro and in xenograft models in vivo. These effects were not only based on EGFR inhibition and DNA damage, but also improved cellular drug uptake. Finally, in silico docking analysis confirmed that the intact KP2749 complex had EGFR-binding properties, which were different from free KP2187. Consequently, these data suggested that the coordination of EGFR inhibitors to metal cores (like platinum) allow the fine-tuning of their EGFR-targeting properties. In conclusion, this study not only presents a new potential anticancer drug but also offers a novel fluorescent tool to study the intracellular drug release kinetics of platinum(iv) complexes.
Collapse
Affiliation(s)
- Monika Caban
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze Ed. 17 90128 Palermo Italy
| | - Anja Federa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Vienna Doctoral School in Chemistry, University of Vienna Waehringer Strasse 42 1090 Vienna Austria
| | - Julia H Bormio Nunes
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Rastislav Pitek
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Hemma H Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| |
Collapse
|
3
|
Dijkstra M, Schueffl H, Federa A, Kast C, Unterlercher A, Keppler BK, Heffeter P, Kowol CR. Novel Maleimide Linkers Based on a Piperazine Motif for Strongly Increased Aqueous Solubility. ACS OMEGA 2025; 10:5047-5063. [PMID: 39959040 PMCID: PMC11822723 DOI: 10.1021/acsomega.4c10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Maleimides remain very popular conjugation moieties in the fields of bio(in)organic chemistry and biotechnology. They are particularly interesting for endogenous albumin binding in the bloodstream to exploit the enhanced permeability and retention (EPR) effect and to increase tumor accumulation of anticancer drugs. However, during drug development, insufficient aqueous solubility is frequently a limiting factor. In the present study, four new maleimide linkers were synthesized containing a water-soluble piperazine scaffold. Respective maleimide-platinum(IV)-acetato complexes demonstrated similar hydrolytic stability, albumin-binding kinetics, in vivo serum pharmacokinetics and tissue distribution compared to a reference platinum(IV)-PEG4-maleimide complex. To test the aqueous solubility, platinum(IV)-maleimide complexes containing the highly lipophilic drug ibuprofen were synthesized. Indeed, the compounds containing the new piperazine linkers displayed increased solubility (up to 370 mM) in different aqueous media, whereas the PEG4-maleimide reference was only marginally soluble. Finally, the synthetic toolbox of the new piperazine maleimides was also expanded to pure organic derivatives by conjugation to valine-citrulline-para-aminobenzyl-OH derivatives via peptide and thiourea bonds.
Collapse
Affiliation(s)
- Martijn Dijkstra
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry
(DoSChem), Waehringer
Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Anja Federa
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry
(DoSChem), Waehringer
Str. 42, 1090 Vienna, Austria
| | - Caroline Kast
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
| | - Alexander Unterlercher
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
4
|
Dijkstra M, Schueffl H, Adamova B, Baumfried O, Kastner A, Berger W, Keppler BK, Heffeter P, Kowol CR. Exploring the Structure-Activity Relationships of Albumin-Targeted Picoplatin-Based Platinum(IV) Prodrugs. Inorg Chem 2025; 64:2554-2566. [PMID: 39878587 DOI: 10.1021/acs.inorgchem.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval. Interestingly, the anticancer potential of prodrugs based on picoplatin is widely underexplored, and even less so the respective tumor-targeting approaches. We synthesized two new "hybrid" picoplatin(II) derivatives with an oxalate or cyclobutane dicarboxylate leaving group and their corresponding platinum(IV) prodrugs with an albumin-targeting maleimide moiety or a succinimide as reference. Picoplatin(II) and its derivatives indeed reacted much slower with GSH compared to the respective analogs cisplatin, carboplatin, or oxaliplatin. While PicoCarbo(IV) and PicoOxali(IV) were reduced slowly in the presence of ascorbic acid, picoplatin(IV) was extremely unstable. All three prodrugs were widely inactive in the MTT assays. The platinum(IV)-maleimide complexes rapidly bound to albumin with stable conjugates for >25 h. Albumin-binding resulted in elevated platinum plasma levels, prolonged blood circulation, and enhanced tumor accumulation of the prodrugs in mice bearing CT26 tumors. However, only maleimide-functionalized PicoCarbo(IV) and picoplatin(II) significantly inhibited tumor growth. One possible explanation is that for albumin-binding platinum(IV) prodrugs, the bulky 2-picoline moiety prevents sufficient activation/reduction to unlock their full anticancer potential.
Collapse
Affiliation(s)
- Martijn Dijkstra
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Barbora Adamova
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Oliver Baumfried
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Bernhard K Keppler
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Christian R Kowol
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| |
Collapse
|
5
|
Bhute L, Dighe S, Katari O, Yadav V, Jain S. Bifunctional Oxaliplatin (IV) Prodrug Based pH-Sensitive PEGylated Liposomes for Synergistic Anticancer Action Against Triple Negative Breast cancer. AAPS PharmSciTech 2024; 26:2. [PMID: 39633214 DOI: 10.1208/s12249-024-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) exhibits higher susceptibility towards oxaliplatin (OXA) due to a faulty DNA damage repair system. However, the unfavorable physicochemical properties and risk of toxicities limit the clinical utility of OXA. Therefore, to impart kinetic inertness, site-specific delivery, and multidrug action, an octahedral Pt(IV) prodrug was developed by using chlorambucil (CBL) as a choice of ligand. The combination of OXA and CBL exhibited synergistic anti-cancer action in TNBC cell lines. Further, to maximize tumor-specific delivery, intracellular accumulation, and in-vivo performance, the developed prodrug (OXA-CBL) was encapsulated in pH-sensitive PEGylated liposomes into (OXA-CBL/PEG-Liposomes). The fabricated liposomes had smaller particle size < 200 nm and higher drug loading (~ 4.26 ± 0.18%). In-vitro release displayed pH-dependent sustained release for up to 48 h. Cellular internalization revealed maximal uptake via clathrin-mediated endocytosis. The cytotoxicity assay showed reduced IC50 in the 4T1 (~ 1.559-fold) and MDA-MB-231 (~ 1.539-fold) cell lines than free OXA-CBL. In-vivo efficacy in 4T1-induced TNBC model revealed a marked increase in % tumor inhibition rate, while diminished % tumor burden in OXA-CBL/BSA-NPs treated animals. Toxicity assessment displayed no signs of systemic and hemolytic toxicity. Overall, delivery of Pt (IV) prodrug as a pH-sensitive PEGylated liposomes offers a safer and efficient system to manage TNBC.
Collapse
Affiliation(s)
- Lavkesh Bhute
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
6
|
Wang Y, Su L, Hu Z, Peng S, Li N, Fu H, Wang B, Wu H. Resveratrol suppresses liver cancer progression by downregulating AKR1C3: targeting HCC with HSA nanomaterial as a carrier to enhance therapeutic efficacy. Apoptosis 2024; 29:1429-1453. [PMID: 39023830 DOI: 10.1007/s10495-024-01995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.
Collapse
Affiliation(s)
- Ying Wang
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhansheng Hu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Shuang Peng
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Baoquan Wang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Huiping Wu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
7
|
McAdam AD, Batchelor LK, Romano-deGea J, Vasilyev D, Dyson PJ. Thermoresponsive carboplatin-releasing prodrugs. J Inorg Biochem 2024; 254:112505. [PMID: 38377623 DOI: 10.1016/j.jinorgbio.2024.112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Platinum-based anticancer drugs, while potent, are associated with numerous and severe side effects. Hyperthermia therapy is an effective adjuvant in anticancer treatment, however, clinically used platinum drugs have not been optimised for combination with hyperthermia. The derivatisation of existing anticancer drugs with appropriately chosen thermoresponsive moieties results in drugs being activated only at the heated site. Perfluorinated chains of varying lengths were installed on carboplatin, a clinically approved drug, leading to the successful synthesis of a series of mono- and di- substituted platinum(IV) carboplatin prodrugs. Some of these complexes display relevant thermosensitivity on ovarian cancer cell lines, i.e., being inactive at 37 °C while having comparable activity to carboplatin under mild hyperthermia (42 °C). Nuclear magnetic resonance spectroscopy and mass spectrometry indicated that carboplatin is likely the active platinum(II) anticancer agent upon reduction and cyclic voltammetry revealed that the length of the fluorinated alkyl chain has a strong influence on the rate of carboplatin formation, regulating the subsequent cytotoxicity.
Collapse
Affiliation(s)
- Aemilia D McAdam
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucinda K Batchelor
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dmitry Vasilyev
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Guo C, Wang KKA, Nolan EM. Investigation of Siderophore-Platinum(IV) Conjugates Reveals Differing Antibacterial Activity and DNA Damage Depending on the Platinum Cargo. ACS Infect Dis 2024; 10:1250-1266. [PMID: 38436588 DOI: 10.1021/acsinfecdis.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kwo-Kwang A Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Gao P, Ha-Duong T, Nicolas J. Coarse-Grained Model-Assisted Design of Polymer Prodrug Nanoparticles with Enhanced Cytotoxicity: A Combined Theoretical and Experimental Study. Angew Chem Int Ed Engl 2024; 63:e202316056. [PMID: 38345287 DOI: 10.1002/anie.202316056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/12/2024]
Abstract
To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
10
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
11
|
Wang R, Li H, Han L, Han B, Bao Y, Fan H, Sun C, Qian R, Ma L, Zhang J. Combining photodynamic therapy and cascade chemotherapy for enhanced tumor cytotoxicity: the role of CTT 2P@B nanoparticles. Front Bioeng Biotechnol 2024; 12:1361966. [PMID: 38410166 PMCID: PMC10895035 DOI: 10.3389/fbioe.2024.1361966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm-2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Rongyi Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongsen Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Han
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Boao Han
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yiting Bao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongwei Fan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chaoyue Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ruijie Qian
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liying Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiajing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Kastner A, Mendrina T, Babu T, Karmakar S, Poetsch I, Berger W, Keppler BK, Gibson D, Heffeter P, Kowol CR. Stepwise optimization of tumor-targeted dual-action platinum(iv)-gemcitabine prodrugs. Inorg Chem Front 2024; 11:534-548. [PMID: 38235273 PMCID: PMC10790623 DOI: 10.1039/d3qi02032k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
While platinum-based chemotherapeutic agents have established themselves as indispensable components of anticancer therapy, they are accompanied by a variety of side effects and the rapid occurrence of drug resistance. A promising strategy to address these challenges is the use of platinum(iv) prodrugs, which remain inert until they reach the tumor tissue, thereby mitigating detrimental effects on healthy cells. Typically, platinum drugs are part of combination therapy settings. Consequently, a very elegant strategy is the development of platinum(iv) prodrugs bearing a second, clinically relevant therapeutic in axial position. In the present study, we focused on gemcitabine as an approved antimetabolite, which is highly synergistic with platinum drugs. In addition, to increase plasma half-life and facilitate tumor-specific accumulation, an albumin-binding maleimide moiety was attached. Our investigations revealed that maleimide-cisplatin(iv)-gemcitabine complexes cannot carry sufficient amounts of gemcitabine to induce a significant effect in vivo. Consequently, we designed a carboplatin(iv) analog, that can be applied at much higher doses. Remarkably, this novel analog demonstrated impressive in vivo results, characterized by significant improvements in overall survival. Notably, these encouraging results could also be transferred to an in vivo xenograft model with acquired gemcitabine resistance, indicating the high potential of this approach.
Collapse
Affiliation(s)
- Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Theresa Mendrina
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Isabella Poetsch
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
13
|
Kastner A, Schueffl H, Yassemipour PA, Keppler BK, Heffeter P, Kowol CR. Einbau von (Bioaktiven) Äquatorialen Liganden in Platin(IV)-Komplexe. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202311468. [PMID: 38516539 PMCID: PMC10952677 DOI: 10.1002/ange.202311468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 03/23/2024]
Abstract
AbstractPlatin(IV)‐Prodrugs sind aufgrund ihrer erhöhten Tumorselektivität und geringeren Nebenwirkungen äußerst interessante Alternativen zu Platin(II)‐Antitumortherapeutika. Im Gegensatz zur gängigen Theorie haben wir kürzlich beobachtet, dass äquatoriale Liganden von z. B. Oxaliplatin(IV)‐Komplexen unter Bildung von [(DACH)Pt(OHeq)2(OAcax)2] hydrolysiert werden können. In der hier vorgestellten Arbeit untersuchten wir die Reaktivität und synthetische Verwendbarkeit dieses Komplexes, als Vorstufe für die Entwicklung neuartiger Platin(IV)‐Komplexe, welche mit herkömmlichen Methoden nicht zugänglich sind. Tatsächlich war es möglich die äquatorialen Hydroxidoliganden z. B. durch ein oder zwei monodentate Biotin‐Liganden, die unter Standardmethoden oxidiert werden würden, zu ersetzen. Die gebildeten Komplexe erwiesen sich als sehr stabil und zeigten auch nach der Reduktion eine langsame Ligandenfreisetzung, eine ideale Eigenschaft für lang zirkulierende zielgerichtete Strategien. Daraufhin wurden zwei Platin(IV)‐Komplexe mit äquatorialen Maleimiden, für die Bindung an Serumalbumin als natürlichen Nanocarrier, synthetisiert. Die Komplexe zeigten im Vergleich zu Oxaliplatin eine stark verlängerte Plasmahalbwertszeit und eine deutlich verbesserte Antitumoraktivität in vivo. Zusammenfassend ermöglicht diese neu entwickelte Syntheseplattform den einfachen und gezielten Einbau äquatorialer Liganden in Platin(IV)‐Komplexe. Des Weiteren können verschiedene (bioaktive) Einheiten koordiniert werden, wodurch sogar zielgerichtete dreifach‐wirksame Platin(IV)‐Prodrugs mit nur einem Platinzentrum möglich wären.
Collapse
Affiliation(s)
- Alexander Kastner
- Universität WienFakultät für ChemieInstitut für Anorganische ChemieWähringer Str. 421090WienÖsterreich
- Universität WienVienna Doctoral School in Chemistry (DoSChem)Währinger Str. 421090WienÖsterreich
| | - Hemma Schueffl
- Zentrum für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
| | - Patrick A. Yassemipour
- Universität WienFakultät für ChemieInstitut für Anorganische ChemieWähringer Str. 421090WienÖsterreich
| | - Bernhard K. Keppler
- Universität WienFakultät für ChemieInstitut für Anorganische ChemieWähringer Str. 421090WienÖsterreich
- Research Cluster “Translational Cancer Therapy Research”1090WienÖsterreich
| | - Petra Heffeter
- Zentrum für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
- Research Cluster “Translational Cancer Therapy Research”1090WienÖsterreich
| | - Christian R. Kowol
- Universität WienFakultät für ChemieInstitut für Anorganische ChemieWähringer Str. 421090WienÖsterreich
- Research Cluster “Translational Cancer Therapy Research”1090WienÖsterreich
| |
Collapse
|
14
|
Kastner A, Schueffl H, Yassemipour PA, Keppler BK, Heffeter P, Kowol CR. Insertion of (Bioactive) Equatorial Ligands into Platinum(IV) Complexes. Angew Chem Int Ed Engl 2023; 62:e202311468. [PMID: 37703130 PMCID: PMC10952260 DOI: 10.1002/anie.202311468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Platinum(IV) prodrugs are highly interesting alternatives to platinum(II) anticancer therapeutics due to their increased tumor selectivity and reduced side effects. In contrast to the established theory, we recently observed that the equatorial ligand(s) of e.g. oxaliplatin(IV) complexes can be hydrolyzed with formation of [(DACH)Pt(OHeq )2 (OAcax )2 ]. In the work presented here, we investigated the reactivity and synthetic usability of this complex to be exploited as a precursor for the development of novel platinum(IV) complexes, not able to be synthesized by conventional protocols. Indeed, we could substitute the equatorial hydroxido ligand(s) e.g. by one or two monodentate biotin ligands (which would be oxidized under standard methods). The formed complexes turned out to be very stable with slow ligand release after reduction, ideal for long-circulating tumor-targeting strategies. Therefore, two platinum(IV) complexes with equatorial maleimides, capable of exploiting serum albumin as a natural nanocarrier, were synthesized as well. The complexes showed massively prolonged plasma half-life and distinctly improved anticancer activity in vivo compared to oxaliplatin. Taken together, the newly developed synthetic platform allows the simple and specific insertion of equatorial ligands into platinum(IV) complexes. This will enable the attachment of three different (bioactive) moieties generating targeted triple-action platinum(IV) prodrugs within one single platinum complex.
Collapse
Affiliation(s)
- Alexander Kastner
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Str. 421090ViennaAustria
- University of ViennaVienna Doctoral School in Chemistry (DoSChem)Waehringer Str. 421090ViennaAustria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
| | - Patrick A. Yassemipour
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Str. 421090ViennaAustria
| | - Bernhard K. Keppler
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”1090ViennaAustria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”1090ViennaAustria
| | - Christian R. Kowol
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”1090ViennaAustria
| |
Collapse
|
15
|
Levina A, Uslan C, Murakami H, Crans DC, Lay PA. Substitution Kinetics, Albumin and Transferrin Affinities, and Hypoxia All Affect the Biological Activities of Anticancer Vanadium(V) Complexes. Inorg Chem 2023; 62:17804-17817. [PMID: 37858311 DOI: 10.1021/acs.inorgchem.3c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 μM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 μM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 μM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heide Murakami
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Debbie C Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Arojojoye AS, Walker B, Dewahare JC, Afrifa MAO, Parkin S, Awuah SG. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43607-43620. [PMID: 37698293 PMCID: PMC11264193 DOI: 10.1021/acsami.3c10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
Collapse
Affiliation(s)
| | - Breyanna Walker
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - James C. Dewahare
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
17
|
Kastner A, Mendrina T, Bachmann F, Berger W, Keppler BK, Heffeter P, Kowol CR. Tumor-targeted dual-action NSAID-platinum(iv) anticancer prodrugs. Inorg Chem Front 2023; 10:4126-4138. [PMID: 37440920 PMCID: PMC10334471 DOI: 10.1039/d3qi00968h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Platinum(iv) prodrugs are a promising class of anticancer agents designed to overcome the limitations of conventional platinum(ii) therapeutics. In this work, we present oxaliplatin(iv)-based complexes, which upon reduction, release acetylsalicylic acid (aspirin), known for its antitumor activity against colon cancer and currently investigated in combination with oxaliplatin in a phase III clinical study. Comparison with a recently reported cisplatin analog (asplatin) revealed a massive increase in reduction stability for the oxaliplatin complex in mouse serum. This was in line with the cell culture data indicating the desired prodrug properties for the newly synthesized complex. For in vivo studies, a new derivative containing an albumin-binding maleimide unit was synthesized. Indeed, distinctly longer plasma half-life as well as higher tumor accumulation in comparison to asplatin and oxaliplatin were observed, also leading to significantly higher antitumor activity and overall survival of CT26 tumor-bearing mice.
Collapse
Affiliation(s)
- Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Theresa Mendrina
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Florian Bachmann
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
18
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Liang Z, Sun Y, Zeng H, Qin H, Yang R, Qu L, Zhang K, Li Z. Broad-Specificity Screening of Pyrethroids Enabled by the Catalytic Function of Human Serum Albumin on Coumarin Hydrolysis. Anal Chem 2023; 95:5678-5686. [PMID: 36952638 DOI: 10.1021/acs.analchem.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sensing systems based on cholinesterase and carboxylesterase coupled with different transduction technologies have emerged for pesticide screening owing to their simple operation, fast response, and suitability for on-site analysis. However, the broad spectrum and specificity screening of pyrethroids over organophosphates and carbamates remains an unmet challenge for current enzymatic sensors. Human serum albumin (HSA), a multifunctional protein, can promote various chemical transformations and show a high affinity for pyrethroids, which offer a route for specific and broad-spectrum pyrethroid screening. Herein, for the first time, we evaluated the catalytic hydrolysis function of human serum albumin (HSA) on the coumarin lactone bond and revealed that HSA can act as an enzyme to catalyze the hydrolysis of the coumarin lactone bond. Molecular docking and chemical modifications indicate that lysine 199 and tyrosine 411 serve as the catalytic general base and contribute to most of the catalytic activity. Utilizing this enzymatic activity, a broad specific ratiometric fluorescence pyrethroids sensing system was developed. The binding energetics and binding constants of pesticides and HSA show that pyrethroids bind to HSA more easily than organophosphates and carbamates, which is responsible for the specificity of the sensing system. This study provides a general sensor platform and strategy for screening pesticides and reveals the catalytic activity of HSA on the hydrolysis of the coumarin lactone bond, which may open innovative horizons for the chemical sensing and biomedical applications of HSA.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haimei Qin
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Yao H, Zhu G. Blood Components as Carriers for Small-Molecule Platinum Anticancer Drugs. ChemMedChem 2022; 17:e202200482. [PMID: 36178204 DOI: 10.1002/cmdc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Indexed: 02/01/2023]
Abstract
The efficacy of platinum drugs is limited by severe side effects, drug resistance, and poor pharmacokinetic properties. Utilizing long-lasting blood components as drug carriers is a promising strategy to improve the circulation half-lives and tumor accumulation of platinum drugs. Non-immunogenic blood cells such as erythrocytes and blood proteins such as albumins, which have long lifespans, are suitable for the delivery of platinum drugs. In this concept, we briefly summarize the strategies of applying blood components as promising carriers to deliver small-molecule platinum drugs for cancer treatment. Examples of platinum drugs that are encapsulated, non-covalently attached, and covalently bound to erythrocytes and plasma proteins such as albumin and apoferritin are introduced. The potential methods to increase the stability of platinum-based thiol-maleimide conjugates involved in these delivery systems are also discussed. This concept may enlighten researchers with more ideas on the future development of novel platinum drugs that have excellent pharmacokinetic properties and antitumor performance in vivo.
Collapse
Affiliation(s)
- Houzong Yao
- School of Health, Jiangxi Normal University, Nanchang, 330022, P. R. China.,Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
22
|
Yao H, Wang Z, Wang N, Deng Z, Liu G, Zhou J, Chen S, Shi J, Zhu G. Enhancing Circulation and Tumor Accumulation of Carboplatin via an Erythrocyte-Anchored Prodrug Strategy. Angew Chem Int Ed Engl 2022; 61:e202203838. [PMID: 35352863 DOI: 10.1002/anie.202203838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 01/04/2023]
Abstract
The short circulatory half-lives and low tumor accumulation of carboplatin greatly limit the drug's efficacy in vivo. Herein, we address these challenges by using a prodrug strategy and present the rational design of a novel platinum(IV) anticancer prodrug that can hitchhike on erythrocytes. This prodrug, designated as ERY1-PtIV , can bind to erythrocytes efficiently and stably, possessing a circulatory half-life 18.5 times longer than that of carboplatin in mice. This elongated circulatory half-life enables platinum to accumulate at levels 7.7 times higher than with carboplatin, with steady levels in the tumors. As a consequence, the ERY1-PtIV prodrug is proved to exhibit significantly enhanced antitumor activity and reduced side effects compared with carboplatin. Collectively, our novel approach highlights an efficient strategy to utilize intrinsic erythrocytes as auto-binding carriers to enhance the tumor accumulation and subsequent antitumor efficacy of platinum drugs.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Na Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jianghong Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
23
|
The Release of a Highly Cytotoxic Paullone Bearing a TEMPO Free Radical from the HSA Hydrogel: An EPR Spectroscopic Characterization. Pharmaceutics 2022; 14:pharmaceutics14061174. [PMID: 35745747 PMCID: PMC9227768 DOI: 10.3390/pharmaceutics14061174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
This study shows the potential of a thermally induced human serum albumin (HSA) hydrogel to serve as a drug depot for sustained release of a highly cytotoxic modified paullone ligand bearing a TEMPO free radical (HL). The binding of HL to HSA was studied by electron paramagnetic resonance (EPR) spectroscopy and imaging. The EPR protocol was also implemented for the study of matrix degradation, and ligand diffusion rate, in two additional spin-labeled hydrogels, containing 5-doxylstearate and 3-carbamoyl-proxyl. The results showed that the hydrogel is an efficient HL reservoir as it retained 60% of the ligand during 11 days of dialysis in physiological saline. Furthermore, upon incubation with Colo 205 human colon adenocarcinoma cells for 3 days, the HL/HSA hydrogel did not exhibit cytotoxic activity, demonstrating that it is also an efficient ligand depot in the presence of living cells. It was observed that the percentage of HL release is independent of its initial concentration in the hydrogel, suggesting that HSA possesses a specific binding site for the ligand, most likely Sudlow site 2, as predicted by molecular docking. The intrinsic property of albumin to bind and transport various substances, including hydrophobic drugs, may be fine-tuned by appropriate physical/chemical hydrogel preparation procedures, providing optimal drug delivery.
Collapse
|
24
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
26
|
Fronik P, Gutmann M, Vician P, Stojanovic M, Kastner A, Heffeter P, Pirker C, Keppler BK, Berger W, Kowol CR. A platinum(IV) prodrug strategy to overcome glutathione-based oxaliplatin resistance. Commun Chem 2022; 5:46. [PMID: 36697790 PMCID: PMC9814792 DOI: 10.1038/s42004-022-00661-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Clinical efficacy of oxaliplatin is frequently limited by severe adverse effects and therapy resistance. Acquired insensitivity to oxaliplatin is, at least in part, associated with elevated levels of glutathione (GSH). In this study we report on an oxaliplatin-based platinum(IV) prodrug, which releases L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase, the rate-limiting enzyme in GSH biosynthesis. Two complexes bearing either acetate (BSO-OxOAc) or an albumin-binding maleimide (BSO-OxMal) as second axial ligand were synthesized and characterized. The in vitro anticancer activity of BSO-OxOAc was massively reduced in comparison to oxaliplatin, proving its prodrug nature. Nevertheless, the markedly lower intracellular oxaliplatin uptake in resistant HCT116/OxR cells was widely overcome by BSO-OxOAc resulting in distinctly reduced resistance levels. Platinum accumulation in organs of a colorectal cancer mouse model revealed higher tumor selectivity of BSO-OxMal as compared to oxaliplatin. This corresponded with increased antitumor activity, resulting in significantly enhanced overall survival. BSO-OxMal-treated tumors exhibited reduced GSH levels, proliferative activity and enhanced DNA damage (pH2AX) compared to oxaliplatin. Conversely, pH2AX staining especially in kidney cells was distinctly increased by oxaliplatin but not by BSO-OxMal. Taken together, our data provide compelling evidence for enhanced tumor specificity of the oxaliplatin(IV)/BSO prodrug.
Collapse
Affiliation(s)
- Philipp Fronik
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Michael Gutmann
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Petra Vician
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Christine Pirker
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| |
Collapse
|
27
|
Barth MC, Lange S, Häfner N, Ueberschaar N, Görls H, Runnebaum IB, Weigand W. Synthesis and characterization of thiocarbonato-linked platinum(IV) complexes. Dalton Trans 2022; 51:5567-5576. [PMID: 35311885 DOI: 10.1039/d2dt00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show the formation of new oxaliplatin-based platinum(IV) complexes by reaction with DSC-activated thiols via thiocarbonate linkage. Three model complexes based on aliphatic and aromatic thiols, as well as one complex with N-acetylcysteine as biologically active thiol were synthesized. This synthetic strategy affords the expansion of biologically active compounds other than those containing carboxylic, amine or hydroxy groups for coupling to the platinum(IV) center. The complexes were characterized by high-resolution mass spectrometry, NMR spectroscopy (1H, 13C, 195Pt) and elemental analysis. Their biological behavior was evaluated against two ovarian carcinoma cell lines and their cisplatin-resistant analogues. Remarkably, the platinum(IV) samples show modest in vitro cytotoxicity against A2780 cells and comparable effects against A2780cis cells. Two complexes in particular demonstrate improved activity against SKOV3cis cells. The reduction experiment of complex 8, investigated by UHPLC-HRMS, provides evidence of interesting platinum-species formed during reaction with ascorbic acid.
Collapse
Affiliation(s)
- Marie-Christin Barth
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Stefanie Lange
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
28
|
Yao H, Wang Z, Wang N, Deng Z, Liu G, Zhou J, Chen S, Shi J, Zhu G. Enhancing Circulation and Tumor Accumulation of Carboplatin via an Erythrocyte‐Anchored Prodrug Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Houzong Yao
- City University of Hong Kong Chemistry HONG KONG
| | - Zhigang Wang
- Shenzhen University Pharmaceutical Sciences CHINA
| | - Na Wang
- City University of Hong Kong Chemistry HONG KONG
| | - Zhiqin Deng
- City University of Hong Kong Chemistry HONG KONG
| | - Gongyuan Liu
- City University of Hong Kong Chemistry HONG KONG
| | | | - Shu Chen
- City University of Hong Kong Chemistry HONG KONG
| | - Jiahai Shi
- City University of Hong Kong Biomedical Sciences HONG KONG
| | - Guangyu Zhu
- City University of Hong Kong Department of Biology and Chemistry 83 Tat Chee Ave 99907 Hong Kong HONG KONG
| |
Collapse
|
29
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
30
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. Pt(IV) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans 2022; 51:2121-2134. [PMID: 35015025 DOI: 10.1039/d1dt03886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platinum(II)-based drugs are widely used for the treatment of solid tumors, especially in combination protocols. Severe side effects and occurrence of resistance are the major limitations to their clinical use. To overcome these drawbacks, a plethora of Pt(IV) derivatives, acting as anticancer prodrugs, have been designed, synthesized and preclinically (often only in vitro) tested. Here, we summarize the recent progress in the development and understanding of the chemical properties and biochemical features of these Pt(IV) prodrugs, especially those containing bioactive molecules as axial ligands, acting as multi-functional agents. Even though no such prodrugs have been yet approved for clinical use, many show encouraging pharmacological profiles. Thus, a better understanding of their features is a promising approach towards improving the available Pt-based anticancer agents.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| | | | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, Alessandria, Italy.
| |
Collapse
|
31
|
Jayawardhana AMDS, Zheng YR. Interactions between mitochondria-damaging platinum(IV) prodrugs and cytochrome c. Dalton Trans 2022; 51:2012-2018. [PMID: 35029256 PMCID: PMC8838881 DOI: 10.1039/d1dt03875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, we present the first study about the interactions of mitochondria-damaging Pt(IV) prodrugs with cytochrome c. We synthesized a cisplatin-based Pt(IV) prodrug bearing a lipophilic hydrocarbon tail and anionic dansyl head group. The amphiphilic structure facilitates its accumulation in the mitochondria of cancer cells, which was validated using graphite furnace atomic absorption spectroscopy (GFAAS) and fluorescence imaging. Accordingly, this Pt(IV) prodrug is able to trigger mitochondrial damage and apoptosis. Overall, the Pt(IV) prodrug exhibits superior therapeutic effects against a panel of human cancer cells compared to cisplatin. It also overcomes drug resistance in ovarian cancer. Notably, HPLC analysis indicates that cytochrome c accelerates reduction (or activation) of the Pt(IV) prodrug in the presence of the electron donor nicotinamide adenine dinucleotide (NADH). More interestingly, additional studies indicate that cytochrome c was platinated by the reduced product of Pt(IV) prodrugs, and that empowers the proapoptotic peroxidase activity.
Collapse
Affiliation(s)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, Ohio 44242, USA
| |
Collapse
|
32
|
Cheng Z, Huang Y, Shao P, Wang L, Zhu S, Yu J, Lu W. Hypoxia-Activated Albumin-Binding Exatecan Prodrug for Cancer Therapy. ACS OMEGA 2022; 7:1082-1089. [PMID: 35036771 PMCID: PMC8757358 DOI: 10.1021/acsomega.1c05671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
As an effective drug delivery strategy for traditional antitumor drugs, the stimulus-responsive albumin-based prodrugs are getting more and more attention. These prodrugs only release drugs in specific tumor microenvironments, which can prevent premature release of the drug in the circulation. Tumor hypoxia is a fundamental feature of the solid tumor microenvironment. As a hypoxia-activated linker, the 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole can be a trigger for albumin-based prodrugs. In this study, we report the synthesis and biological evaluation of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan. After intravenous administration, the maleimide on the side chain can rapidly bind to endogenous albumin, enabling the prodrugs to accumulate in tumors, where tumor-associated hypoxia microenvironments trigger the selective release of Exatecan. The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole as a cleavable linker has high plasma stability and does not cause Exatecan release from HSA-azo-Exatecan during circulation in vivo, avoiding systemic side effects caused by Exatecan.
Collapse
|
33
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
34
|
Schueffl H, Theiner S, Hermann G, Mayr J, Fronik P, Groza D, van Schonhooven S, Galvez L, Sommerfeld NS, Schintlmeister A, Reipert S, Wagner M, Mader RM, Koellensperger G, Keppler BK, Berger W, Kowol CR, Legin A, Heffeter P. Albumin-targeting of an oxaliplatin-releasing platinum(iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem Sci 2021; 12:12587-12599. [PMID: 34703544 PMCID: PMC8494022 DOI: 10.1039/d1sc03311e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin is a very potent platinum(ii) drug which is frequently used in poly-chemotherapy schemes against advanced colorectal cancer. However, its benefit is limited by severe adverse effects as well as resistance development. Based on their higher tolerability, platinum(iv) prodrugs came into focus of interest. However, comparable to their platinum(ii) counterparts they lack tumor specificity and are frequently prematurely activated in the blood circulation. With the aim to exploit the enhanced albumin consumption and accumulation in the malignant tissue, we have recently developed a new albumin-targeted prodrug, which supposed to release oxaliplatin in a highly tumor-specific manner. In more detail, we designed a platinum(iv) complex containing two maleimide moieties in the axial position (KP2156), which allows selective binding to the cysteine 34. In the present study, diverse cell biological and analytical tools such as laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS), isotope labeling, and nano-scale secondary ion mass spectrometry (NanoSIMS) were employed to better understand the in vivo distribution and activation process of KP2156 (in comparison to free oxaliplatin and a non-albumin-binding succinimide analogue). KP2156 forms very stable albumin adducts in the bloodstream resulting in a superior pharmacological profile, such as distinctly prolonged terminal excretion half-life and enhanced effective platinum dose (measured by ICP-MS). The albumin-bound drug is accumulating in the malignant tissue, where it enters the cancer cells via clathrin- and caveolin-dependent endocytosis, and is activated by reduction to release oxaliplatin. This results in profound, long-lasting anticancer activity of KP2156 against CT26 colon cancer tumors in vivo based on cell cycle arrest and apoptotic cell death. Summarizing, albumin-binding of platinum(iv) complexes potently enhances the efficacy of oxaliplatin therapy and should be further developed towards clinical phase I trials.
Collapse
Affiliation(s)
- Hemma Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Josef Mayr
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sushilla van Schonhooven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, University Biology Building (UBB) Djerassiplatz 1 A-1030 Vienna Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Robert M Mader
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Medical University of Vienna Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| |
Collapse
|
35
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Sung YS, Wu W, Ewbank MA, Utterback RD, Marty MT, Tomat E. Albumin Conjugates of Thiosemicarbazone and Imidazole-2-thione Prochelators: Iron Coordination and Antiproliferative Activity. ChemMedChem 2021; 16:2764-2768. [PMID: 33974730 PMCID: PMC8448912 DOI: 10.1002/cmdc.202100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/19/2022]
Abstract
The central role of iron in tumor progression and metastasis motivates the development of iron-binding approaches in cancer chemotherapy. Disulfide-based prochelators are reductively activated upon cellular uptake to liberate thiol chelators responsible for iron sequestration. Herein, a trimethyl thiosemicarbazone moiety and the imidazole-2-thione heterocycle are incorporated in this prochelator design. Iron binding of the corresponding tridentate chelators leads to the stabilization of a low-spin ferric center in 2 : 1 ligand-to-metal complexes. Native mass spectrometry experiments show that the prochelators form stable disulfide conjugates with bovine serum albumin, thus affording novel bioconjugate prochelator systems. Antiproliferative activities at sub-micromolar levels are recorded in a panel of breast, ovarian and colorectal cancer cells, along with significantly lower activity in normal fibroblasts.
Collapse
Affiliation(s)
- Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Wangbin Wu
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Megan A Ewbank
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Rachel D Utterback
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| |
Collapse
|
37
|
Tao J, Jia S, Wang M, Huang Z, Wang B, Zhang W, Wei Y, Li W, Jiang H, Du Z. Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method. J Proteome Res 2021; 20:4553-4565. [PMID: 34427088 DOI: 10.1021/acs.jproteome.1c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cisplatin is widely used for the treatment of various solid tumors. It is mainly administered by intravenous injection, and a substantial amount of the drug will bind to plasma proteins, a feature that is closely related to its pharmacokinetics, activity, toxicity, and side effects. However, due to the unique properties of platinum complexes and the complexity of the blood proteome, existing methods cannot systematically identify the binding proteome of cisplatin in blood. In this study, high-abundance protein separation and an ion mobility mass spectrometry-based 4D proteomic method were combined to systematically and comprehensively identify the binding proteins of cisplatin in blood. The characteristic isotope patterns of platinated peptides and a similarity algorithm were utilized to eliminate false-positive identification. Finally, 39 proteins were found to be platinated. Bioinformatics analysis showed that the identified proteins were mainly involved in the complement and coagulation cascade pathways. The binding ratio of some peptides with cisplatin was measured based on the area ratio of the free peptide using the parallel reaction monitoring method. This study provides a new method for systematically identifying binding proteins of metal drugs in blood, and the identified proteins might be helpful for understanding the toxicity of platinum anticancer drugs.
Collapse
Affiliation(s)
- Jianmei Tao
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Shuailong Jia
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430030, Hubei Province, PR China
| | - Meiqin Wang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Zhuobin Huang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Bo Wang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Wenwen Zhang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Yinyu Wei
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Wenzhuo Li
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Hongliang Jiang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Zhifeng Du
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| |
Collapse
|
38
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Fronik P, Poetsch I, Kastner A, Mendrina T, Hager S, Hohenwallner K, Schueffl H, Herndler-Brandstetter D, Koellensperger G, Rampler E, Kopecka J, Riganti C, Berger W, Keppler BK, Heffeter P, Kowol CR. Structure-Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. J Med Chem 2021; 64:12132-12151. [PMID: 34403254 PMCID: PMC8404199 DOI: 10.1021/acs.jmedchem.1c00770] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.
Collapse
Affiliation(s)
- Philipp Fronik
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Isabella Poetsch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Theresa Mendrina
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Sonja Hager
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Katharina Hohenwallner
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Joanna Kopecka
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Walter Berger
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
40
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Imberti C, Lermyte F, Friar EP, O'Connor PB, Sadler PJ. Facile protein conjugation of platinum for light-activated cytotoxic payload release. Chem Commun (Camb) 2021; 57:7645-7648. [PMID: 34250984 PMCID: PMC8330822 DOI: 10.1039/d1cc02722k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. and Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt 64287, Germany
| | - Emily P Friar
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
42
|
Schmidt C, Babu T, Kostrhunova H, Timm A, Basu U, Ott I, Gandin V, Brabec V, Gibson D. Are Pt(IV) Prodrugs That Release Combretastatin A4 True Multi-action Prodrugs? J Med Chem 2021; 64:11364-11378. [PMID: 34342437 DOI: 10.1021/acs.jmedchem.1c00706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Multi-action" Pt(IV) derivatives of cisplatin with combretastatin A4 (CA4) bioactive ligands that are conjugated to Pt(IV) by carbonate are unique because the ligand (IC50 < 10 nM) is dramatically 1000-folds more cytotoxic than cisplatin in vitro. The Pt(IV)-CA4 prodrugs were as cytotoxic as CA4 itself, indicating that the platinum moiety probably plays an insignificant role in triggering cytotoxicity, suggesting that the Pt(IV)-CA4 complexes act as prodrugs for CA4 rather than as true multi-action prodrugs. In vivo tests (Lewis lung carcinoma) show that ctc-[Pt(NH3)2(PhB)(CA4)Cl2] inhibited tumor growth by 93% compared to CA4 (67%), cisplatin (84%), and 1:1:1 cisplatin/CA4/PhB (85%) while displaying <5% body weight loss compared to cisplatin (20%) or CA4 (10%). In this case, and perhaps with other extremely potent bioactive ligands, platinum(IV) acts merely as a self-immolative carrier triggered by reduction in the cancer cell with only a minor contribution to cytotoxicity.
Collapse
Affiliation(s)
- Claudia Schmidt
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Annika Timm
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic.,Department of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| |
Collapse
|
43
|
Wu CR, Huang YD, Hong YH, Liu YH, Narwane M, Chang YH, Dinh TK, Hsieh HT, Hseuh YJ, Wu PC, Pao CW, Chan TS, Hsu IJ, Chen Y, Chen HC, Chin TY, Lu TT. Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS AU 2021; 1:998-1013. [PMID: 34467346 PMCID: PMC8395708 DOI: 10.1021/jacsau.1c00160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)2], in this study, a reversible and dynamic interaction between the biomimetic [(NO)2Fe(μ-SCH2CH2OH)2Fe(NO)2] (DNIC-1) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1. On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1. A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO)2] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.
Collapse
Affiliation(s)
- Cheng-Ru Wu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yi-Da Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yong-Huei Hong
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Ya-Hsin Liu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Manmath Narwane
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yu-Hsiang Chang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Trinh Kieu Dinh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Hsin-Tzu Hsieh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yi-Jen Hseuh
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Ching Wu
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei, Taiwan
| | - Yunching Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Hung-Chi Chen
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department
of Medicine, College of Medicine, Chang
Gung University, Taoyuan, Taiwan
| | - Ting-Yu Chin
- Department
of Bioscience Technology, Chung Yuan Christian
University, Taoyuan, Taiwan
| | - Tsai-Te Lu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Sarpong-Kumankomah S, Gailer J. Application of a Novel Metallomics Tool to Probe the Fate of Metal-Based Anticancer Drugs in Blood Plasma: Potential, Challenges and Prospects. Curr Top Med Chem 2021; 21:48-58. [PMID: 32600232 DOI: 10.2174/1568026620666200628023540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Although metallodrugs are used to treat a variety of human disorders and exhibit a remarkable diversity of therapeutic properties, they constitute only a tiny minority of all medicinal drugs that are currently on the market. This undesirable situation must be partially attributed to our general lack of understanding the fate of metallodrugs in the extremely ligand-rich environment of the bloodstream. The challenge of gaining insight into these bioinorganic processes can be overcome by the application of 'metallomics tools', which involve the analysis of biological fluids (e.g., blood plasma) with a separation method in conjunction with multi-element specific detectors. To this end, we have developed a metallomics tool that is based on size-exclusion chromatography (SEC) hyphenated to an inductively coupled plasma atomic emission spectrometer (ICP-AES). After the successful application of SEC-ICPAES to analyze plasma for endogenous copper, iron and zinc-metalloproteins, it was subsequently applied to probe the metabolism of a variety of metal-based anticancer drugs in plasma. The versatility of this metallomics tool is exemplified by the fact that it has provided insight into the metabolism of individual Pt-based drugs, the modulation of the metabolism of cisplatin by sulfur-containing compounds, the metabolism of two metal-based drugs that contain different metals as well as a bimetallic anticancer drug, which contained two different metals. After adding pharmacologically relevant doses of metallodrugs to plasma, the temporal analysis of aliquots by SEC-ICP-AES allows to observe metal-protein adducts, metallodrug-derived degradation products and the parent metallodrug(s). This unique capability allows to obtain comprehensive insight into the fate of metal-based drugs in plasma and can be extended to in vivo studies. Thus, the application of this metallomics tool to probe the fate of novel metalcomplexes that exert the desired biological activity in plasma has the potential to advance more of these to animal/preclinical studies to fully explore the potential that metallodrugs inherently offer.
Collapse
Affiliation(s)
| | - Jürgen Gailer
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, Canada
| |
Collapse
|
45
|
Lou X, Zhang D, Ling H, He Z, Sun J, Sun M, Liu D. Pure redox-sensitive paclitaxel-maleimide prodrug nanoparticles: Endogenous albumin-induced size switching and improved antitumor efficiency. Acta Pharm Sin B 2021; 11:2048-2058. [PMID: 34386337 PMCID: PMC8343193 DOI: 10.1016/j.apsb.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
A commercial albumin-bound paclitaxel nano-formulation has been considered a gold standard against breast cancer. However, its application still restricted unfavorable pharmacokinetics and the immunogenicity of exogenous albumin carrier. Herein, we report an albumin-bound tumor redox-responsive paclitaxel prodrugs nano-delivery strategy. Using diverse linkages (thioether bond and disulfide bond), paclitaxel (PTX) was conjugated with an albumin-binding maleimide (MAL) functional group. These pure PTX prodrugs could self-assemble to form uniform and spherical nanoparticles (NPs) in aqueous solution without any excipients. By immediately binding to blood circulating albumin after intravenous administration, NPs are rapidly disintegrated into small prodrug/albumin nanoaggregates in vivo, facilitating PTX prodrugs accumulation in the tumor region via albumin receptor-mediated active targeting. The tumor redox dual-responsive drug release property of prodrugs improves the selectivity of cytotoxicity between normal and cancer cells. Moreover, disulfide bond-containing prodrug/albumin nanoaggregates exhibit long circulation time and superior antitumor efficacy in vivo. This simple and facile strategy integrates the biomimetic characteristic of albumin, tumor redox-responsive on-demand drug release, and provides new opportunities for the development of the high-efficiency antitumor nanomedicines.
Collapse
|
46
|
Bagheri S, Saboury AA. Hypothesis of using albumin to improve drug efficacy in cancers accompanied by hypoalbuminemia. Xenobiotica 2021; 51:778-785. [PMID: 33979263 DOI: 10.1080/00498254.2021.1929557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A common problem in many cancers is the resistance of some patients to common drugs or relapse. Hypoalbuminemia has been reported in some of resistant cancer patients.This article evaluates the usefulness of albumin in the treatment of drug-resistant cancers with hypoalbuminemia based on available evidences.Rapid metabolism and drug excretion from the body is one of the causes of drug resistance. Albumin is the major plasma protein to which almost all drugs are bound. There is some evidence that increasing drug binding to albumin has beneficial effects on drug efficacy in some cancers and cancer cells. On the other hand, some reports have shown that cancer cells can use albumin as the energy and amino acid source.We have hypothesized that in this particular group of cancers, adding albumin to a treatment regimen could have a beneficial effect on drug efficacy and dosage. In fact, excess albumin can prevent rapid metabolism of drug by increasing the fraction of albumin-bound drug, and can increase drug delivery to cancer cells due to the absorption of drug-albumin complex by cancer cells.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
47
|
Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T. Evidence for Delivery of Abraxane via a Denatured-Albumin Transport System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19736-19744. [PMID: 33881292 DOI: 10.1021/acsami.1c03065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
Collapse
Affiliation(s)
- Maichi Hama
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
48
|
Sen S, Perrin MW, Sedgwick AC, Lynch VM, Sessler JL, Arambula JF. Covalent and non-covalent albumin binding of Au(i) bis-NHCs via post-synthetic amide modification. Chem Sci 2021; 12:7547-7553. [PMID: 34163845 PMCID: PMC8171490 DOI: 10.1039/d1sc01055g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/24/2021] [Indexed: 12/21/2022] Open
Abstract
Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Mark W Perrin
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| |
Collapse
|
49
|
The Protein-Binding Behavior of Platinum Anticancer Drugs in Blood Revealed by Mass Spectrometry. Pharmaceuticals (Basel) 2021; 14:ph14020104. [PMID: 33572935 PMCID: PMC7911130 DOI: 10.3390/ph14020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin and its analogues are widely used as chemotherapeutic agents in clinical practice. After being intravenously administrated, a substantial amount of platinum will bind with proteins in the blood. This binding is vital for the transport, distribution, and metabolism of drugs; however, toxicity can also occur from the irreversible binding between biologically active proteins and platinum drugs. Therefore, it is very important to study the protein-binding behavior of platinum drugs in blood. This review summarizes mass spectrometry-based strategies to identify and quantitate the proteins binding with platinum anticancer drugs in blood, such as offline high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC–ICP-MS) combined with electrospray ionization mass spectrometry (ESI-MS/MS) and multidimensional LC–ESI-MS/MS. The identification of in vivo targets in blood cannot be accomplished without first studying the protein-binding behavior of platinum drugs in vitro; therefore, relevant studies are also summarized. This knowledge will further our understanding of the pharmacokinetics and toxicity of platinum anticancer drugs, and it will be beneficial for the rational design of metal-based anticancer drugs.
Collapse
|
50
|
Liu Z, Li Z, Du T, Chen Y, Wang Q, Li G, Liu M, Zhang N, Li D, Han J. Design, synthesis and biological evaluation of dihydro-2-quinolone platinum(iv) hybrids as antitumor agents displaying mitochondria injury and DNA damage mechanism. Dalton Trans 2021; 50:362-375. [PMID: 33319888 DOI: 10.1039/d0dt03194a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of novel platinum(iv) complexes with mitochondria injury competence, besides the DNA damage mechanism, is a promising way to develop new platinum drugs. Herein, dihydro-2-quinolone (DHQLO) as a mitocan was incorporated into the platinum(iv) system for the first time to prepare a new series of DHQLO platinum(iv) compounds. Complex 1b could effectively inhibit the proliferation of tumor cells in vitro and in vivo. It accumulated at higher levels in both whole cells and DNA, and easily underwent intercellular reduction to release platinum(ii) and DHQLO moieties. The released platinum(ii) complex caused serious DNA damage by covalent conjunction with the DNA duplex, and remarkably increased the expression of the γ-H2AX protein. Moreover, 1b also caused serious mitochondria injury to induce mitochondrial membrane depolarization and increase ROS generation. Such actions upon DNA and mitochondria activate the p53 apoptotic pathway synergetically in tumor cells by upregulating the protein p53 and apoptotic proteins caspase9 and caspase3, which efficiently promoted the apoptotic death of tumor cells. Compound 1b with such synergic mechanism exhibited great potential in reversing cisplatin resistance and improving antitumor efficacies.
Collapse
Affiliation(s)
- Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|