1
|
Ikeda T, Kobayashi Y, Yamakawa M. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. J Chem Phys 2024; 161:024901. [PMID: 38973760 DOI: 10.1063/5.0216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have also shown that mesoscopic structural properties, such as an average cluster size M and orientational order, in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to differences in cluster shape among patch arrangements. Although many studies have been conducted on the self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-patch particles and two different slit widths H to determine the degree of confinement in constant volume fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased with decreasing H, whereas that of the fractal-like aggregates remained constant. Under weak shear with strong confinement, the rod-like aggregates maintained a larger M than the fractal-like aggregates, which were more rigid and maintained a larger M than the rod-like aggregates under bulk conditions.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masashi Yamakawa
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
3
|
Karmakar R, Chakrabarti J. Hot crystals of thermo-responsive particles with temperature dependent diameter in the presence of a temperature gradient. J Chem Phys 2023; 159:034904. [PMID: 37466232 DOI: 10.1063/5.0157604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Structure formation under non-equilibrium steady state conditions is poorly understood. A non-equilibrium steady state can be achieved in a system by maintaining a temperature gradient. A class of cross-linked microgel particles, such as poly-N-iso-propylacrylamide, is reported to increase in size due to the adsorption of water as the temperature decreases. Here, we study thermo-responsive particles with a temperature sensitive diameter in the presence of a temperature gradient, using molecular dynamics simulations with the Langevin thermostat. We find long-ranged structural order using bond order parameters in both cold and hot regions of the system beyond a certain diameter ratio of the cold and hot particles. This is due to an increase in packing and pressure in both regions. Our observations might be useful in understanding ordered structures under extreme conditions of a non-equilibrium steady state.
Collapse
Affiliation(s)
- Rahul Karmakar
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake Kolkata 700106, India
| | - J Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake Kolkata 700106, India
| |
Collapse
|
4
|
Lei T, Zhao C, Yan R, Zhao N. Collective behavior of chiral active particles with anisotropic interactions in a confined space. SOFT MATTER 2023; 19:1312-1329. [PMID: 36723153 DOI: 10.1039/d2sm01402e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive studies so far have indicated that chirality, anisotropic interactions and spatial confinement play important roles in collective dynamics in active matter systems. However, how the overall interplay of these crucial factors affects the novel phases and macroscopic properties remains less explored. Here, using Langevin dynamics simulations, we investigate the self-organization of a chiral active system composed of amphiphilic Janus particles, where the embedded anisotropic interaction orientation is assumed to be either the same or just opposite to the direction of active force. A wealth of dynamic phases are observed including formation of phase separation, clustering state, homogeneous state, spiral vortex flow, swarm and spatiotemporal oscillation. By tuning self-propelled angular speed and anisotropic interaction strength, we identify the non-equilibrium phase diagrams, and reveal the very non-trivial modulation of both vortex and swarm patterns. Intriguingly, we find that strong chirality-alignment-confinement coupling yields a self-driven spatial and temporal organization periodically oscillating between a counterclockwise vortex and a clockwise one. Our work provides a new understanding of the novel self-assembly arising in such a confined system and enables new strategies for achieving ordered dynamic structures.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Jain V, Patel VB, Singh B, Varade D. Microfluidic Device Based Molecular Self-Assembly Structures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Lei T, Yan R, Zhao N. Biased-angle effect on diffusion dynamics and phase separation in anisotropic active particle system. J Chem Phys 2022; 156:204901. [DOI: 10.1063/5.0090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A deep understanding for collective behavior in an active matter system with complex interactions has far-reaching impact in biology. In the present work, we adopt Langevin dynamics simulations to investigate diffusion dynamics and phase separation in an anisotropic active particle system with a tunable biased angle α defined as the deviation between the active force direction and anisotropic orientation. Our results demonstrate that the biased angle can induce super-rotational diffusion dynamics characterized by a power-law relationship between the mean square angle displacement (MSAD) and the time interval Δ t in the form of MSAD ∼ Δ t β with β > 1 and also result in non-trivial phase separation kinetics. As activity is dominant, nucleation time shows a non-monotonic dependence on the biased angle. Moreover, there arises a distinct transition of phase separation, from spinodal decomposition without apparent nucleation time to binodal decomposition with prominent nucleation delay. A significant inhibition effect occurs at right and obtuse angles, where the remarkable super-rotational diffusion prevents particle aggregation, leading to a slow nucleation process. As active force is competitive to anisotropic interactions, the system is almost homogeneous, while, intriguingly, we observe a re-entrant phase separation as a small acute angle is introduced. The prominent super-rotational diffusion under small angles provides an optimum condition for particle adsorption and cluster growth and, thus, accounts for the re-entrance of phase separation. A consistent scenario for the physical mechanism of our observations is achieved by properly considering the modulation of the biased angle on the interplay between activity and anisotropic interactions.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Karmakar R, Chakrabarti J. A long-range order in a thermally driven system with temperature-dependent interactions. SOFT MATTER 2022; 18:867-876. [PMID: 35001096 DOI: 10.1039/d1sm01379c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aggregation of macro-molecules under an external force is far from being understood. An important driving situation is achieved by temperature difference. Inter-particle interactions in metallic nanoparticles with ligand capping are reported to be sensitive to temperature and the zeta potential of the particles being reduced in the cold region. Such particles form aggregates in the cold region of the system in the presence of temperature difference. Here we study the aggregation of particles in the presence of temperature difference with temperature-dependent interaction parameters using Brownian dynamics simulation. The particle interaction and particle diffusion are considered to be sensitive to the local temperature. We identify a long-range structural order in the cold region of the system using the Avrami equation for crystal growth kinetics. Our observations might be useful in designing ordered structures with macro-molecules under non-equilibrium steady-state conditions.
Collapse
Affiliation(s)
- Rahul Karmakar
- Department of Chemical, Biological and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
| | - J Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
8
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
9
|
Khoeini D, Scott TF, Neild A. Microfluidic enhancement of self-assembly systems. LAB ON A CHIP 2021; 21:1661-1675. [PMID: 33949588 DOI: 10.1039/d1lc00038a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic, kinetically-controlled, self-assembly processes are commonly observed in nature and are capable of creating intricate, functional architectures from simple precursors. However, notably, much of the research into molecular self-assembly has been performed using conventional bulk techniques where the resultant species are dictated by thermodynamic stability to yield relatively simple assemblies. Whereas, the environmental control offered by microfluidic systems offers methods to achieve non-equilibrium reaction conditions capable of increasingly sophisticated self-assembled structures. Alterations to the immediate microenvironment during the assembly of the molecules is possible, providing the basis for kinetically-controlled assembly. This review examines the key mechanism offered by microfluidic systems and the architectures required to access them. The mechanisms include diffusion-led mixing, shear gradient alignment, spatial and temporal confinement, and structural templates in multiphase systems. The works are selected and categorised in terms of the microfluidic approaches taken rather than the chemical constructs which are formed.
Collapse
Affiliation(s)
- Davood Khoeini
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Timothy F Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia and Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Das A, Limmer DT. Variational design principles for nonequilibrium colloidal assembly. J Chem Phys 2021; 154:014107. [DOI: 10.1063/5.0038652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94609, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94609, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| |
Collapse
|
11
|
Ahmadi M, Siavashy S, Ayyoubzadeh SM, Kecili R, Ghorbani-Bidkorbeh F. Controllable Synthesis of Polymeric Micelles by Microfluidic Platforms for Biomedical Applications: A Systematic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:229-240. [PMID: 34567158 PMCID: PMC8457734 DOI: 10.22037/ijpr.2021.114226.14769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric micelles (PMs) are one of Nanoscale delivery systems with high stability, loading capacity, and biocompatibility. PMs are nano-sized and spherical particles with a hydrophilic shell and hydrophobic core or reverse depending on their applications. Polymeric micelles could be synthesized by different methods, such as direct dissolution, dialysis method, and lyophilization. Microfluidics is also a relatively modern approach for this purpose, in which chemical reactions are carried out in the microchannels. Compared with conventional preparation methods, the microfluidic technique produces homogeneous polymeric micelles with desirable features, tunable particle size, and relatively high drug loading. These advantages are originated from the ability of microfluidics in precise control over the streamlines of reactants without chaotic turbulence. Although the synthesis of polymeric micelles by the microfluidic platform is advantageous, little or no review has been conducted to provide a clear image of the different PMs preparation by the microfluidic approach. Thus, in this review, the production of the PMs, utilizing microfluidic procedures to enhance their favorable characteristics is investigated. For this purpose, an electronic search is conducted on PubMed, Web of Science, Scopus, and Embase databases for retrieval of relevant papers. Seven papers are included in this systematic review. Preparation of PMs by the microfluidic approach and the effect of different parameters, such as the flow rate ratio, channel dimensions, drug concentration, and organic solvent type on PMs characteristics is obtained from the included papers.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rustem Kecili
- Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, Anadolu University, Eskişehir, Turkey.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Gou YL, Jiang HJ, Hou ZH. Emergent swarming states in active particles system with opposite anisotropic interactions. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2003037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yong-liang Gou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Hui-jun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-huai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Kobayashi Y, Arai N, Nikoubashman A. Structure and Shear Response of Janus Colloid-Polymer Mixtures in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14214-14223. [PMID: 33207880 DOI: 10.1021/acs.langmuir.0c02308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the structure and rheological properties of dilute colloid-polymer mixtures at rest and under shear via molecular simulations that take into account hydrodynamic interactions. Mixtures of amphiphilic Janus colloids (JCs) and hydrophobic/amphiphilic polymers are considered for various solvent qualities and polymer concentrations. Free polymers, small polymer droplets, and hybrid aggregates coexist in mixtures with slightly hydrophobic homopolymers. As the solvent quality worsens, all polymers aggregate into small droplets, covered and stabilized by the JCs. In mixtures with amphiphilic polymers, we observe the coexistence of free polymers, purely polymeric micelles, and hybrid aggregates. At low shear rates, all mixtures exhibit a Newtonian-like response with intrinsic shear viscosities that are up to 2 times as large as of pure suspensions of nonadsorbing colloids at the same concentration. Furthermore, the mean aggregation number increases slightly due to the flow-enhanced collision of aggregates. At larger shear rates, however, the aggregates break up, the polymers align in the flow direction, and the mixtures exhibit shear-thinning. This shear-induced breakup occurs at stronger shear compared to pure JC suspensions, indicating that the adsorbed polymers reinforce the hybrid aggregates.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
| | - Arash Nikoubashman
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
14
|
Kobayashi Y, Arai N, Nikoubashman A. Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear. SOFT MATTER 2020; 16:476-486. [PMID: 31803898 DOI: 10.1039/c9sm01937e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We study the structure formation and flow properties of colloidal dispersions comprised of Janus spheres, Janus spherocylinders, and their mixtures, using hybrid molecular dynamics simulations that take into account hydrodynamic interactions. We systematically vary the Janus balance and the shape anisotropy of the particles, and explore a range of colloid volume fractions in the liquid regime of the phase diagram. At rest, Janus spheres with small hydrophobic patches form spherical micelles for all investigated colloid concentrations. In contrast, Janus spheres with an entirely hydrophobic hemisphere aggregate to larger worm-like micelles and network-like structures. Janus spherocylinders exhibit a similar self-assembly behavior. At small and intermediate shear, we observe deformation and rearrangement of the micelles, accompanied by a Newtonian-like rheology with slightly higher shear viscosity compared to homoparticle dispersions at the same concentration. As the shear rate is increased further, the micelles eventually break up into small dimers and free particles, causing a distinct shear-thinning of the dispersions. The network-like structures exhibit a similar flow behavior at high shear rates, but for weak shear we find an almost threefold increase of the shear viscosity and a distinct shear-thinning behavior due to the fracturing of the intertwined networks. In general, we identify a strong correlation between the size of the aggregates and the rheology of the dispersions, allowing for the determination of dynamic properties solely based on structural information.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Kohoku-ku, Yokohama, Japan.
| | | | | |
Collapse
|
15
|
Gou Y, Jiang H, Hou Z. Assembled superlattice with dynamic chirality in a mixture of biased-active and passive particles. SOFT MATTER 2019; 15:9104-9110. [PMID: 31660576 DOI: 10.1039/c9sm00551j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a general model of biased-active particles (BAPs) with anisotropic interactions, where the direction of the active force has a nonzero biased angle from the principal orientation of the anisotropic interaction between particles, and investigate the self-assembly behaviors of a mixture of BAPs with passive particles by using Langevin dynamics simulations. Remarkably, a highly ordered superlattice consisting of small hexagonal clusters with dynamic chirality emerges within a proper range of active force, given that the biased angle is not too small. In addition, there exists an optimal level of particle activity, being dependent on the biased-angle, which is the most favorable for both the long-range order and global dynamic chirality of the system. Our results demonstrate that fascinating collective behaviors can be explored through a proper design of new active particle models.
Collapse
Affiliation(s)
- Yongliang Gou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
16
|
Marschelke C, Diring O, Synytska A. Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains. NANOSCALE ADVANCES 2019; 1:3715-3726. [PMID: 36133568 PMCID: PMC9418436 DOI: 10.1039/c9na00522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 05/30/2023]
Abstract
Understanding the dynamic and reversible assembly of colloids and particles into complex constructs, inspired by natural phenomena, is of fundamental significance for the fabrication of multi-scale responsive and reconfigurable materials. In this work, we investigate the pH-triggered and reconfigurable assembly of structures composed of binary mixtures of oppositely charged polyacrylic acid (PAA)-modified non-Janus and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)/poly(N-isopropylacrylamide) (PNIPAM)-modified Janus particles driven by electrostatic interactions. Three different target structures are visible both in dispersions and in dry state: half-raspberry structures, colloidal clusters and colloidal chains depending on the mass, numerical and particle size ratio. All formed structures are well-defined and stable in a certain pH range. Half-raspberry-like structures are obtained at pH 6 and numerical ratios N JP/PAA-HP of 1 : 500 (for 200-PAA-HP), 1 : 44 (for 450-PAA-HP) and 1 : 15 (for 650-PAA-HP), respectively, due to electrostatic interactions between the central JP and the excessive PAA-HP. Colloidal chains and cluster-like structures are generated at numerical ratios N JP/PAA-HP of 4 : 5 (for 200-PAA-HP), 4 : 3 (for 450-PAA-HP), and 4 : 1 (for 650-PAA-HP). Moreover, the smaller the size of a "connecting" PAA colloid, the larger is the average length of a colloidal chain. Depending on the particle size ratio S JP/PAA-HP, some of the observed structures can be disassembled on demand by changing the pH value either close to the IEP of the PDMAEMA (for half-raspberries) or PAA (for colloidal clusters and chains) and then reassembled into new stable structures many times. The obtained results open a pathway to pH-controlled reconfigurable assembly of a binary mixture composed of polymeric-modified non-Janus and Janus particles, which allow the reuse of particle building blocks.
Collapse
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| | - Olga Diring
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| |
Collapse
|
17
|
Howard MP, Nikoubashman A, Palmer JC. Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Bao Y, Deng Q, Li Y, Zhou S. Engineering docetaxel-loaded micelles for non-small cell lung cancer: a comparative study of microfluidic and bulk nanoparticle preparation. RSC Adv 2018; 8:31950-31966. [PMID: 35547502 PMCID: PMC9086256 DOI: 10.1039/c8ra04512g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
Bulk preparation of micelles has the drawbacks of facile formation of large aggregates and heterogeneous particle size distribution. Microfluidic technology has shown clear potential to address these challenges for robust nanomedicine applications. In this study, docetaxel-loaded PLGA-PEG-Mal-based micelles were prepared by microfluidics and dialysis methods and their physicochemical properties were analyzed. The biological behaviors of these micelles were also investigated in the non-small cell lung cancer (NSCLC) cell line A549 in vitro as well as in vivo. Encouragingly, the mean particle size of the micelles prepared by microfluidics (DMM) was smaller, with an average size of 72 ± 1 nm and a narrow size distribution with a polydispersity index (PDI) of 0.072; meanwhile, micelles prepared by the dialysis method (DMD) had larger particle sizes (range, 102 to 144 nm) and PDIs (up to 0.390). More importantly, significantly high drug loading was achieved using the microfluidic process. The IC50 value of DMM was lower than that of DMD. Whole-body fluorescence imaging of live mice showed that DMM achieved higher accumulation in tumors compared with DMD. DMM showed superior antitumor efficacy, with a tumor inhibition rate of 91.5%. Moreover, pathological histology analysis revealed that no evident biological toxicity was caused by the micelles. In addition, Arg-Gly-Asp (RGD) was employed as a targeting agent on the basis of DMM to prepare targeting micelles, and the targeting micelles exhibited stronger cytotoxicity and obvious antitumor efficacy. In conclusion, DMM may have obvious clinical advantages for the treatment of NSCLC due to its optimized physiochemical properties. Therefore, microfluidic technology-based micelles are a promising platform as an effective drug delivery system for incorporating anticancer agents.
Collapse
Affiliation(s)
- Yuchen Bao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai 200433 China +86-021-65115006
| | - Qinfang Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai 200433 China +86-021-65115006
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nanoscience, Tongji University School of Medicine Shanghai 200092 China +86-021-65988029
| | - Songwen Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai 200433 China +86-021-65115006
| |
Collapse
|
19
|
Chen R, Poling-Skutvik R, Nikoubashman A, Howard MP, Conrad JC, Palmer JC. Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Renjie Chen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Michael P. Howard
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
20
|
DeLaCruz-Araujo RA, Beltran-Villegas DJ, Larson RG, Córdova-Figueroa UM. Shear-Induced Alignment of Janus Particle Lamellar Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1051-1060. [PMID: 29077413 DOI: 10.1021/acs.langmuir.7b02921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Control over the alignment of colloidal structures plays a crucial role in advanced reconfigurable materials. In this work, we study the alignment of Janus particle lamellar structures under shear flow via Brownian dynamics simulations. Lamellar alignment (orientation relative to flow direction) is measured as a function of the Péclet number (Pe)-the ratio of the viscous shear to the Brownian forces-the particle volume fraction, and the strength of the anisotropic interaction potential made dimensionless with thermal energy. Under conditions where lamellar structures are formed, three orientation regimes are observed: (1) random orientation for very small Pe, (2) parallel orientation-lamellae with their normals parallel to the direction of the velocity gradient-for intermediate values of Pe, and (3) perpendicular orientation-lamellae with their normals parallel to the vorticity direction-for large Pe. To understand the alignment mechanism, we carry out a scaling analysis of competing torques between a pair of particles in the lamellar structure. Our results suggest that the change of parallel to perpendicular orientation is independent of the particle volume fraction and is caused by the hydrodynamic and Brownian torques on the particles overcoming the torques resulting from the interparticle interactions. This initial study of shear-induced alignment on lamellar structures formed by Janus colloidal particles also opens the door for future applications where a reversible actuator for structure orientation is required.
Collapse
Affiliation(s)
- Ronal A DeLaCruz-Araujo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez , Mayagüez, Puerto Rico 00681, United States
| | - Daniel J Beltran-Villegas
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ubaldo M Córdova-Figueroa
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez , Mayagüez, Puerto Rico 00681, United States
| |
Collapse
|