1
|
Ji S, Zhao S, Qiao D, Xu Y, Niu M, Zhang B. A quasi-periodic two-nanophase structure within starch-based hydrogels containing acetylated starch: An insight of small angle X-ray scattering. J Colloid Interface Sci 2025; 690:137289. [PMID: 40101627 DOI: 10.1016/j.jcis.2025.137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The inclusion of acetylated starch (AS) tunes the nanoscale characteristics of starch-based hydrogels, thereby enhancing their performance in biological, pharmaceutical, and material fields. Hence, quantitively analyzing the nanostructures of such hydrogels is conducive to guiding further improvements in their mechanical and functional properties. Through a small angle X-ray scattering (SAXS) analysis, we substantiated a quasi-periodic two-nanophase arrangement in starch-based hydrogels, and accordingly developed a comprehensive model consisting of Debye-Bueche, Teubner-Strey, and Beaucage functions. The result manifested that the incorporation of AS reduced the quasi-period of two-nanophase structure and the radius of gyration (Rg) of supramolecular clusters, augmented the degree of large inhomogeneities, and inhibited the phase segregation. These changes were attributable to the weakened hydrogen bonds and lessened helical ordering, as revealed by the Fourier transform infrared (FTIR) and 13C nuclear magnetic resonance (NMR) evaluations. Further, the variations in their nanostructures led to an enhanced water migration and an increased leached amylose content. Especially for the hydrogel containing 10% AS, the quasi-period and correlation length fell by 4.6 nm and 0.8 nm, respectively, with the relaxation time for interstitial water being delayed by 45.9 ms. This study provides a methodological reference to analyze the nanoscale features of bio-based hydrogels.
Collapse
Affiliation(s)
- Shengsong Ji
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Southwest University, Chongqing 400715, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Southwest University, Chongqing 400715, China
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Xu Y, Chen H, Liu X, Sun L, Fang Y. Enzymatic demulsification of long-chain alkanoylcholine-based oil-in-water emulsions and microemulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Matthews L, Narayanan T. High-resolution structural elucidation of extremely swollen lyotropic phases. J Colloid Interface Sci 2021; 610:359-367. [PMID: 34923273 DOI: 10.1016/j.jcis.2021.11.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
Self-assembled lyotropic phases are important in a variety of applications, in particular microemulsions are essential for formulation science. A spectacular situation arises when microemulsions are made to swell by systematically increasing the bending modulus of the surfactant film separating the oil and water regions. In an attempt to realize such extremely swollen microemulsion phases, Peter et al. [Phys. Rev. Lett., 76 (1996) 3866] found a variety of lyotropic phases including a long-range ordered three-dimensional cubic phase over a narrow section of the complex phase diagram of a pseudo-quaternary system composed of decane, brine, octanol, and sodium dodecyl sulfate. In this work, the same region of the phase diagram was reinvestigated using high-resolution small-angle X-ray scattering (HR-SAXS) and rheo-SAXS, which is an important technical aspect for homogenizing the sample and orienting the structural units. Whilst the formation of a swollen two-dimensional hexagonal phase was observed, the structural features of a cubic phase were not detected. The long correlation lengths noted prior were also seen here, over 2000 nm for the hexagonal phase, taken from rheo-SAXS measurements. Based on the measurements covering more than three orders of magnitude in scattering vector, the structure appeared to be an organization of elongated swollen emulsion droplets, which could form an interconnected structure, dense liquid-like order, or further order into a hexagonal morphology with unusually large lattice spacings for a surfactant system.
Collapse
|
5
|
Kato D, Yamamoto J, Suzuki Y, Kamata T, Hashimoto H, Kunitake M. Lipophilic Vitamin E Diffusion through Bicontinuous Microemulsions. Anal Chem 2021; 93:14231-14237. [PMID: 34644048 DOI: 10.1021/acs.analchem.1c03174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We studied the diffusion properties of lipophilic vitamin E (VE) through bicontinuous microemulsions (BME) using both electrochemical and fluorescence correlation spectroscopy (FCS) measurements. We investigated the effect of different composition ratios of micro-water and micro-oil phases in BMEs (W/OBME). When we employed the BME with a lower W/OBME value of 40/60 (oil-rich BME) as an electrolyte solution, we obtained a larger current response from VE at a fluorinated nanocarbon film electrode. Further voltammetric studies revealed that a higher VE diffusion coefficient was observed in the oil-rich BME. The FCS results also exhibited faster diffusion through the oil-rich BME, which played a significant role in accelerating the VE diffusion probably due to the widening of the micro-oil phase pathway in the BME. Moreover, the effect of increasing the VE diffusion was pronounced at the interface between the electrode surface and the BME solution. These results indicate that controlling the conditions of the BME as the measurement electrolyte is very effective for achieving superior electrochemical measurements in a BME.
Collapse
Affiliation(s)
- Dai Kato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Johtaro Yamamoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Yoshio Suzuki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomoyuki Kamata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hinako Hashimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.,Graduate School of Science and Technology and Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Masashi Kunitake
- Graduate School of Science and Technology and Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
7
|
Sabri A, Xu X, Krapf D, Weiss M. Elucidating the Origin of Heterogeneous Anomalous Diffusion in the Cytoplasm of Mammalian Cells. PHYSICAL REVIEW LETTERS 2020; 125:058101. [PMID: 32794890 DOI: 10.1103/physrevlett.125.058101] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largely elusive. To tackle this problem, we performed extensive single-particle tracking experiments on quantum dots in the cytoplasm of living mammalian cells at varying conditions. Analyses of the trajectories reveal a strong, microtubule-dependent subdiffusion with antipersistent increments and a substantial heterogeneity. Furthermore, particles stochastically switch between different mobility states, most likely due to transient associations with the cytoskeleton-shaken endoplasmic reticulum network. Comparison to simulations highlight that all experimental observations can be fully described by an intermittent fractional Brownian motion, alternating between two states of different mobility.
Collapse
Affiliation(s)
- Adal Sabri
- Experimental Physics I, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Xinran Xu
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
8
|
Song M, Wang Q, Liu W, Wang J, Chai J. Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios. TENSIDE SURFACT DET 2020. [DOI: 10.3139/113.110671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The composition and solubilization of the optimum microemulsion systems containing Triton X-100/pentan-1-ol/aliphatic hydrocarbon/water were studied with the ∊-β fishlike phase diagram method. The solubilities of the alkanol (S
A), the mass fractions of the alkanol in the interfacial layer (AS
) and the optimum solubilization parameters (SP∗) of the microemulsion systems with different aqueous phases (salt, acid, alkali) and with different α values were obtained and discussed. The SP∗ values increase significantly with the cation radius of the chlorides (NaCl, KCl, CsCl), but decrease slightly with the anion radius of the sodium halides (NaCl, NaBr, NaI). However, SP∗ values decrease with the increased salinities and NaOH contents. The trend was reversed for the acid systems. When the oil-water ratio (α) increases, the S
A and A
S values significantly increase, while the SP∗ values increase slowly. As the length of the carbon chain of the alkane molecules increases, both the S
A and A
S values increase, while the SP∗ values decrease significantly.
Collapse
|
9
|
Varadharajan R, Leermakers FAM. The physics of microemulsions extracted from modeling balanced tensionless surfactant-loaded liquid-liquid interfaces. J Chem Phys 2020; 152:094902. [PMID: 33480717 DOI: 10.1063/1.5133155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microemulsions are explored using the self-consistent field approach. We consider a balanced model that features two solvents of similar size and a symmetric surfactant. Interaction parameter χ and surfactant concentration φs b complement the model definition. The phase diagram in χ-φs b coordinates is known to feature two lines of critical points, the Scott and Leibler lines. Only upon imposing a finite distance between the interfaces, we observe that the Scott line meets the Leibler line. We refer to this as a Lifshitz point (LP) for real systems. We add regions that are relevant for microemulsions to this phase diagram by considering the saturation line, which connects (χ, φs b)-points for which the interface becomes tensionless. Crossing this line implies a first-order phase transition as internal interfaces develop, characteristic for one-phase microemulsions. The saturation line ends at the so-called microemulsion point (MP). The MP is shown to connect with the LP by a line of MP-like critical points, found by searching for a "MP" while the distance between interfaces is fixed. A pair of binodal lines that envelop the three-phase (Winsor III) microemulsion region is shown to connect to the MP. The cohesiveness of the middle phase in Winsor III is related to non-monotonic, inverse DLVO-type interaction curves between the surfactant-loaded tensionless interfaces. The mean and Gaussian bending modulus, relevant for the shape fluctuations and the topology of interfaces, respectively, are evaluated along the saturation line. Near the MP, both rigidities are positive and vanish in a power-law fashion with coefficient unity at the MP. Overseeing these results proves that the MP has a pivoting role in the physics of microemulsions.
Collapse
Affiliation(s)
- Ramanathan Varadharajan
- Physical Chemistry and Soft Matter, Wageningen University and Research Center, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University and Research Center, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
10
|
Dong S, Tang X, Wang J, Zhang Z, Chen J, Lin Y, Xie S, Wang Z, Yang H. Self-assembly of lipid rafts revealed by fluorescence correlation spectroscopy in living breast cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201900214. [PMID: 31675171 DOI: 10.1002/jbio.201900214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Lipids and proteins in the plasma membrane are laterally heterogeneous and formalised as lipid rafts featuring unique biophysical properties. However, the self-assembly mechanism of lipid raft cannot be revealed even its physical properties and components were determined in specific physiological processes. In this study, two-photon generalised polarisation imaging and fluorescence correlation spectroscopy were used to study the fusion of lipid rafts through the membrane phase and the lateral diffusion of lipids in living breast cancer cells. A self-assembly model of lipid rafts associated with lipid diffusion and membrane phase was proposed to demonstrate the lipid sorting ability of lipid rafts in the plasma membrane. The results showed that the increased proportion of slow subdiffusion of GM1 -binding cholera toxin B-subunit (CT-B) was accompanied with an increased liquid-ordered domain during the β-estradiol-induced fusion of lipid rafts. And slow subdiffusion of CT-B was vanished with the depletion of lipid rafts. Whereas the dialkylindocarbocyanine (DiIC18 ) diffusion was not specifically regulated by lipid rafts. This study will open up a new insight for uncovering the self-assembly of lipid rafts in specific pathophysiological processes.
Collapse
Affiliation(s)
- Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jiao Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Yao Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shusen Xie
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Wrede O, Großkopf S, Seidel T, Hellweg T. Dynamics of proteins confined in non-ionic bicontinuous microemulsions: a FCS study. Phys Chem Chem Phys 2019; 21:6725-6731. [PMID: 30860213 DOI: 10.1039/c8cp06419a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our present work we present an approach which allows one to confine proteins in structurally nearly identical bicontinuous microemulsions with systematically decreasing water domain size. It is shown that sub-diffusive behaviour occurs already at water domain sizes below 13 nm. However, above 13 nm normal diffusion is seen. Moreover, we compare protein diffusion in microemulsions to the transport of a much smaller fluorescent dye.
Collapse
Affiliation(s)
- Oliver Wrede
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| | - Sören Großkopf
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| | - Thorsten Seidel
- Plant Biochemistry and Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
12
|
Sharma VK, Hayes DG, Urban VS, O'Neill HM, Tyagi M, Mamontov E. Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein. SOFT MATTER 2017. [PMID: 28631792 DOI: 10.1039/c7sm00875a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. Here we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates that surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants' hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. This study demonstrates the utility of QENS for evaluating dynamics of BμEs in nanoscopic region, and that proteins directly affect the microscopic dynamics, which is of relevance for evaluating release kinetics of encapsulated drugs from BμE delivery systems and the use of BμEs as biomembrane mimetic systems for investigating membrane protein-biomembrane interactions.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | | | | | | | | | |
Collapse
|