1
|
Kono Y, Sugaya T, Yasudome H, Ogiso H, Ogawara KI. Preparation of stable and monodisperse paclitaxel-loaded bovine serum albumin nanoparticles via intermolecular disulfide crosslinking. Biochem Biophys Rep 2024; 38:101713. [PMID: 38681670 PMCID: PMC11047288 DOI: 10.1016/j.bbrep.2024.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Paclitaxel (PTX) is one of the most used anti-cancer drugs worldwide. Due to its insolubility in water, the clinically available liquid formulation of PTX contains Cremophor EL that is responsible for severe hypersensitivity. Albumin-based nanoparticles have emerged as a promising carrier for anti-cancer drugs because albumin nanoparticles have high capacity to not only load lipophilic drugs without solubilizer but also accumulate in tumor by both passive and active mechanisms. In this study, we attempted to prepare solvent-free formulation of PTX-loaded bovine serum albumin (BSA) nanoparticles with high stability, and the in vitro stability in serum were comparatively assessed between our PTX-loaded BSA nanoparticles and clinically used nanoparticulate albumin-bound PTX (Abraxane®). PTX-loaded BSA nanoparticles were prepared by intermolecular disulfide crosslinking. When BSA molecules were used without denaturation by guanidinium, the obtained BSA nanoparticles showed broad size distribution. On the other hand, the nanoparticles composed of denatured BSA by guanidinium had a uniform size around 100 nm. The PTX encapsulation efficiency of BSA nanoparticles were approximately 30-40 %. In addition, in vitro gel filtration analysis and dialysis study demonstrated that PTX-loaded BSA nanoparticles had higher colloidal stability and sustained PTX release property than Abraxane® in serum. These results suggest that BSA nanoparticles is a promising drug carrier for improving therapeutic efficacy of PTX and reducing its adverse effects.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tomoyuki Sugaya
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hikaru Yasudome
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hideo Ogiso
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikoyama, Imizu, 939-0363, Japan
| | - Ken-ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| |
Collapse
|
2
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
3
|
Shinoda H, Higano R, Oizumi T, Nakamura AJ, Kamijo T, Takahashi M, Nagaoka M, Sato Y, Yamaguchi A. Albumin Hydrogel-Coated Mesoporous Silica Nanoparticle as a Carrier of Cationic Porphyrin and Ratiometric Fluorescence pH Sensor. ACS APPLIED BIO MATERIALS 2024; 7:1204-1213. [PMID: 38211352 DOI: 10.1021/acsabm.3c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Here, we report that a mesoporous silica nanoparticle (MSN) coated with a fluoresceine-labeled bovine serum albumin (F-BSA) hydrogel layer works as a temperature-responsive nanocarrier for tetrakis-N-methylpyridyl porphyrin (TMPyP) and as a fluorescence ratiometric pH probe. F-BSA hydrogel-coated MSN containing TMPyP (F-BSA/MSN/TMPyP) was synthesized by thermal gelation of denatured F-BSA on the external surface of MSN. The F-BSA hydrogel layer was composed of an inner hard corona layer and an outer soft layer and was stable under physiological conditions. F-BSA/MSN/TMPyP exhibited temperature-dependent exponential release of TMPyP. In this release profile, the MSN was found to be a suitable host for stable encapsulation of tetracationic TMPyP by electrostatic interactions, and the F-BSA hydrogel layer mediated the diffusion of TMPyP from the MSN pore interior into the solution phase. Increasing temperature promoted partitioning of TMPyP from the pore interior to the F-BSA hydrogel layer, from where it was spontaneously released into the bulk solution phase by cation exchange. F-BSA/MSN/TMPyP also gave a linear ratiometric fluorescence response (1.3 per pH unit) in the pH range from 6.1 to 8.9.
Collapse
Affiliation(s)
- Hidetoshi Shinoda
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Raiha Higano
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Takashi Oizumi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Asako J Nakamura
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Toshio Kamijo
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
| | - Mio Takahashi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Masaaki Nagaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
4
|
Janssen ML, Liu T, Özel M, Bril M, Prasad Thelu HV, E Kieltyka R. Dynamic Exchange in 3D Cell Culture Hydrogels Based on Crosslinking of Cyclic Thiosulfinates. Angew Chem Int Ed Engl 2024; 63:e202314738. [PMID: 38055926 DOI: 10.1002/anie.202314738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Dynamic polymer materials are highly valued substrates for 3D cell culture due to their viscoelasticity, a time-dependent mechanical property that can be tuned to resemble the energy dissipation of native tissues. Herein, we report the coupling of a cyclic thiosulfinate, mono-S-oxo-4-methyl asparagusic acid, to a 4-arm PEG-OH to prepare a disulfide-based dynamic covalent hydrogel with the addition of 4-arm PEG-thiol. Ring opening of the cyclic thiosulfinate by nucleophilic substitution results in the rapid formation of a network showing a viscoelastic fluid-like behaviour and relaxation rates modulated by thiol content through thiol-disulfide exchange, whereas its viscoelastic behaviour upon application as a small molecule linear crosslinker is solid-like. Further introduction of 4-arm PEG-vinylsulfone in the network yields a hydrogel with weeks-long cell culture stability, permitting 3D culture of cell types that lack robust proliferation, such as human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). These cells display native behaviours such as cell elongation and spontaneous beating as a function of the hydrogel's mechanical properties. We demonstrate that the mode of dynamic cyclic thiosulfinate crosslinker presentation within the network can result in different stress relaxation profiles, opening the door to model tissues with disparate mechanics in 3D cell culture.
Collapse
Affiliation(s)
- Merel L Janssen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Tingxian Liu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Mertcan Özel
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Maaike Bril
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Hari Veera Prasad Thelu
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
5
|
Thapa K, FitzSimons TM, Otakpor MU, Siller MM, Crowell AD, Zepeda JE, Torres E, Roe LN, Arts J, Rosales AM, Betancourt T. Photothermal Modulation of Dynamic Covalent Poly(ethylene glycol)/PEDOT Composite Hydrogels for On-Demand Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37924292 DOI: 10.1021/acsami.3c11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Hydrogels are cross-linked three-dimensional polymer networks that have tissue-like properties. Dynamic covalent bonds (DCB) can be utilized as hydrogel cross-links to impart injectability, self-healing ability, and stimuli responsiveness to these materials. In our research, we utilized dynamic thiol-Michael bonds as cross-links in poly(ethylene glycol) (PEG)-based hydrogels. Because the equilibrium of the reversible, exothermic thiol-Michael reaction can be modulated by temperature, we investigated the possibility of using thermal and photothermal stimuli to modulate the gel-to-sol transition of these materials with the aim of developing an on-demand pulsatile cargo release system. For this purpose, we incorporated poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles within the hydrogel to facilitate photothermal modulation using near-infrared light. PEDOT nanoparticles of 50 nm in diameter and with strong near-infrared absorption were prepared by oxidative emulsion polymerization. We then used Michael addition of thiol-ene pairs from 4-arm PEG-thiol (PEG-SH) and 4-arm PEG-benzylcyanoacetamide (PEG-BCA) to form dynamically cross-linked hydrogels. PEDOT nanoparticles were entrapped in situ to form Gel/PEDOT composites. Rheology and inverted tube test studies showed that the gel-to-sol transition occurred at 45-50 °C for 5 wt % gels and that this transition could be tailored by varying the wt % of the polymer precursors. The hydrogels were found to be capable of self-healing and being injected with a clinically relevant injection force. Bovine serum albumin-fluorescein isothiocyanate (BSA-FITC), a fluorescently labeled protein, was then loaded into the Gel/PEDOT as a therapeutic mimic. Increased release of BSA-FITC upon direct thermal stimulation and photothermal stimulation with an 808 nm laser was observed. Pulsatile release of BSA-FITC over seven cycles was demonstrated. MTS and live-dead assays demonstrated that Gel/PEDOT was cytocompatible in MDA-MB-231 breast cancer and 3T3 fibroblast cell lines. Further studies demonstrated that the encapsulation and laser-triggered release of the chemotherapeutic agent doxorubicin (DOX) could also be achieved. Altogether, this work advances our understanding of the temperature-dependent behavior of a dynamic covalent hydrogel, Gel/PEDOT, and leverages that understanding for application as a photothermally responsive biomaterial for controlled release.
Collapse
Affiliation(s)
- Kushal Thapa
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666-4684, United States
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Mackenzie U Otakpor
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Mckenzie M Siller
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Anne D Crowell
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Joanna E Zepeda
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Edgar Torres
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Lillian N Roe
- Department of Biology, Texas State University, San Marcos, Texas 78666, United States
| | - Jorge Arts
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, The University of Texas, Austin, Texas 78712, United States
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666-4684, United States
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| |
Collapse
|
6
|
Gomes MC, Pinho AR, Custódio C, Mano JF. Self-Assembly of Platelet Lysates Proteins into Microparticles by Unnatural Disulfide Bonds for Bottom-Up Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304659. [PMID: 37354139 DOI: 10.1002/adma.202304659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Indexed: 06/26/2023]
Abstract
There is a demand to design microparticles holding surface topography while presenting inherent bioactive cues for applications in the biomedical and biotechnological fields. Using the pool of proteins present in human-derived platelet lysates (PLs), the production of protein-based microparticles via a simple and cost-effective method is reported, exploring the prone redox behavior of cysteine (Cy-SH) amino acid residues. The forced formation of new intermolecular disulfide bonds results in the precipitation of the proteins as spherical, pompom-like microparticles with adjustable sizes (15-50 µm in diameter) and surface topography consisting of grooves and ridges. These PL microparticles exhibit extraordinary cytocompatibility, allowing cell-guided microaggregates to form, while also working as injectable systems for cell support. Early studies also suggest that the surface topography provided by these PL microparticles can support osteogenic behavior. Consequently, these PL microparticles may find use to create live tissues via bottom-up procedures or injectable tissue-defect fillers, particularly for bone regeneration, with the prospect of working under xeno-free conditions.
Collapse
Affiliation(s)
- Maria C Gomes
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana Rita Pinho
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina Custódio
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
7
|
Nnyigide OS, Hyun K. Charge-induced low-temperature gelation of mixed proteins and the effect of pH on the gelation: A spectroscopic, rheological and coarse-grained molecular dynamics study. Colloids Surf B Biointerfaces 2023; 230:113527. [PMID: 37659199 DOI: 10.1016/j.colsurfb.2023.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
We report the gelation of mixed proteins consisting of oppositely charged lysozyme and serum albumins at various pH. The results from rheological tests showed that at a pH of 7, the gelation temperature (Tgel) of the oppositely charged proteins was lower than the melting temperature (Tm) of the individual protein. To ascertain the conformational state of the proteins at the observed Tgel, the attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectra of the proteins were acquired. The recorded spectra showed that the proteins were predominantly alpha helical, suggesting that the observed gelation was electrostatically triggered. However, as the solution pH was changed to acid or alkaline regime, all the proteins became similarly charged and showed Tgel < Tm which was attributed to pH-induced denaturation. Surprisingly, however, the serum albumins were remarkably stable at the alkaline pH of 9 and 10 but very labile at the acidic pH. In contrast, the LYZ was more stable at the acidic than alkaline pH. To understand the role of the opposite charges in the gelation, coarse-grained molecular dynamics (CGMD) simulations revealed an increase in the aggregation of the oppositely charged proteins compared with the pure or similarly charged protein mixture.
Collapse
Affiliation(s)
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
8
|
Cook KR, Head D, Dougan L. Modelling network formation in folded protein hydrogels by cluster aggregation kinetics. SOFT MATTER 2023; 19:2780-2791. [PMID: 36988480 DOI: 10.1039/d3sm00111c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Globular folded protein-based hydrogels are becoming increasingly attractive due to their specific biological functionality, as well as their responsiveness to stimuli. By modelling folded proteins as colloids, there are rich opportunities to explore network formation mechanisms in protein hydrogels that negate the need for computationally expensive simulations which capture the full complexity of proteins. Here we present a kinetic lattice-based model which simulates the formation of irreversibly chemically crosslinked, folded protein-based hydrogels. We identify the critical point of gel percolation, explore the range of network regimes covering diffusion-limited to reaction-limited cluster aggregation (DLCA and RLCA, respectively) network formation mechanisms and predict the final network structure, fractal dimensions and final gel porosity. We reveal a crossover between DLCA and RLCA mechanisms as a function of protein volume fraction and show how the final network structure is governed by the structure at the percolation point, regardless of the broad variation of non-percolating cluster masses observed across all systems. An analysis of the pore size distribution in the final network structures reveals that, approaching RLCA, gels have larger maximal pores than the DLCA counterparts for both volume fractions studied. This general kinetic model and the analysis tools generate predictions of network structure and concurrent porosity over a broad range of experimentally controllable parameters that are consistent with current expectations and understanding of experimental results.
Collapse
Affiliation(s)
- Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - David Head
- School of Computing, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Giri P, Verma D. Dual crosslinked injectable protein-based hydrogels with cell anti-adhesive properties. Biomed Mater 2023; 18. [PMID: 36716499 DOI: 10.1088/1748-605x/acb74e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Currently, one of the most severe clinical concerns is post-surgical tissue adhesions. Using films or hydrogel to separate the injured tissue from surrounding tissues has proven the most effective method for minimizing adhesions. Therefore, by combining dual crosslinking with calcium ions (Ca2+) and tetrakis(hydroxymethyl) phosphonium chloride, we were able to create a novel, stable, robust, and injectable dual crosslinking hydrogel using albumin (BSA). This dual crosslinking has preserved the microstructure of the hydrogel network during the degradation process, which contributes to the hydrogel's mechanical strength and stability in a physiological situation. At 60% strain, compressive stress was 48.81 kPa obtained. It also demonstrated excellent self-healing characteristics (within 25 min), tissue adhesion, excellent cytocompatibility, and a quick gelling time of 27 ± 6 s. Based on these features, the dual crosslinked injectable hydrogels might find exciting applications in biomedicine, particularly for preventing post-surgical adhesions.
Collapse
Affiliation(s)
- Pijush Giri
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
11
|
Liu D, Zhao S, Jiang Y, Gao C, Wu Y, Liu Y. Biocompatible Dual Network Bovine Serum Albumin-Loaded Hydrogel-Accelerates Wound Healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Quadrado RF, Macagnan KL, Moreira AS, Fajardo AR. Redox-responsive hydrogels of thiolated pectin as vehicles for the smart release of acetaminophen. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wang LS, Gopalakrishnan S, Gupta A, Banerjee R, Lee YW, Rotello VM. Porous Polymerized High Internal Phase Emulsions Prepared Using Proteins and Essential Oils for Antimicrobial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11675-11682. [PMID: 36098991 DOI: 10.1021/acs.langmuir.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High internal phase emulsions (HIPEs) provide a versatile platform for encapsulating large volumes of therapeutics that are immiscible in water. A stable scaffold is obtained by polymerizing the external phase, resulting in polyHIPEs. However, fabrication of polyHIPEs usually requires using a considerable quantity of surfactants along with nonbiocompatible components, which hinders their biological applications, e.g., drug-eluting devices. We describe here a straightforward method for generating porous biomaterials by using proteins as both the emulsifier and the building blocks for the fabrication of polyHIPEs. We demonstrate the versatility of this method by using different essential oils as the internal phase. After the gelation of protein building blocks is triggered by the addition of reducing agents, a stable protein hydrogel containing essential oils can be formed. These oils can be either extracted to obtain protein-based porous scaffolds or slowly released for antimicrobial applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Injectable redox albumin-based hydrogel with in-situ loaded dihydromyricetin. Colloids Surf B Biointerfaces 2022; 220:112871. [PMID: 36174492 DOI: 10.1016/j.colsurfb.2022.112871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Albumin is widely used in clinics due to its demonstrated biological safety and functional flexibility. Hydrogels derived from natural albumin possess high moisture retention ability and good biodegradability, making albumin ideal biomaterials compared with synthetic polymers. Herein, by reducing disulfide bonds in bovine serum albumin molecules with glutathione and re-oxidizing the free thiols using dimethyl sulfoxide (DMSO) as additional oxidant, three-dimensional network was assembled, leading to the formation of hydrogel. Meanwhile, DMSO is also an excellent solvent for many drugs, and the hydrophobic drug dihydromyricetin (DMY) can be well dissolved in DMSO. During the crosslinking reaction, DMSO participated in fabricating a porous albumin hydrogel network. At the same time, increased loading of DMY and sustained release of DMY were achieved, improving bioavailability of hydrophobic drug DMY. Rheological test and cytotoxicity assay proved excellent elasticity and biocompatibility of the hydrogel. Self-healing property and narrow-needle injection provided potential application of the hydrogel as biomedical materials. This method for formation hydrogels and in situ loading of drugs may expand to preparing other drug loaded hydrogels and find wide applications.
Collapse
|
16
|
Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201115. [PMID: 35315233 PMCID: PMC9463088 DOI: 10.1002/smll.202201115] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Indexed: 05/14/2023]
Abstract
Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.
Collapse
Affiliation(s)
- Victoria G Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shoshana Weintraub
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryan O Torres Maldonado
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
17
|
Facile Fabrication of Transparent and Opaque Albumin Methacryloyl Gels with Highly Improved Mechanical Properties and Controlled Pore Structures. Gels 2022; 8:gels8060367. [PMID: 35735711 PMCID: PMC9222780 DOI: 10.3390/gels8060367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
For porous protein scaffolds to be employed in tissue-engineered structures, the development of cost-effective, macroporous, and mechanically improved protein-based hydrogels, without compromising the original properties of native protein, is crucial. Here, we introduced a facile method of albumin methacryloyl transparent hydrogels and opaque cryogels with adjustable porosity and improved mechanical characteristics via controlling polymerization temperatures (room temperature and −80 °C). The structural, morphological, mechanical, and physical characteristics of both porous albumin methacryloyl biomaterials were investigated using FTIR, CD, SEM, XRD, compression tests, TGA, and swelling behavior. The biodegradation and biocompatibility of the various gels were also carefully examined. Albumin methacryloyl opaque cryogels outperformed their counterpart transparent hydrogels in terms of mechanical characteristics and interconnecting macropores. Both materials demonstrated high mineralization potential as well as good cell compatibility. The solvation and phase separation owing to ice crystal formation during polymerization are attributed to the transparency of hydrogels and opacity of cryogels, respectively, suggesting that two fully protein-based hydrogels could be used as visible detectors/sensors in medical devices or bone regeneration scaffolds in the future.
Collapse
|
18
|
Sharifi S, Saei AA, Gharibi H, Mahmoud NN, Harkins S, Dararatana N, Lisabeth EM, Serpooshan V, Végvári Á, Moore A, Mahmoudi M. Mass Spectrometry, Structural Analysis, and Anti-Inflammatory Properties of Photo-Cross-Linked Human Albumin Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2643-2663. [PMID: 35544705 DOI: 10.1021/acsabm.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shannon Harkins
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Naruphorn Dararatana
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Preparation and properties of the decomposable thermoreversible hydrogels based on novel dendritic crosslinkers derived from cystamine. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Han Y, Liu C, Xu H, Cao Y. Engineering reversible hydrogels for
3D
cell culture and release using diselenide catalyzed fast disulfide formation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| |
Collapse
|
21
|
Tang Z, He H, Zhu L, Liu Z, Yang J, Qin G, Wu J, Tang Y, Zhang D, Chen Q, Zheng J. A General Protein Unfolding-Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102557. [PMID: 34939355 PMCID: PMC8844490 DOI: 10.1002/advs.202102557] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Protein-based hydrogels have attracted great attention due to their excellent biocompatible properties, but often suffer from weak mechanical strength. Conventional strengthening strategies for protein-based hydrogels are to introduce nanoparticles or synthetic polymers for improving their mechanical strength, but often compromise their biocompatibility. Here, a new, general, protein unfolding-chemical coupling (PNC) strategy is developed to fabricate pure protein hydrogels without any additives to achieve both high mechanical strength and excellent cell biocompatibility. This PNC strategy combines thermal-induced protein unfolding/gelation to form a physically-crosslinked network and a -NH2/-COOH coupling reaction to generate a chemicallycrosslinked network. Using bovine serum albumin (BSA) as a globular protein, PNC-BSA hydrogels show macroscopic transparency, high stability, high mechanical properties (compressive/tensile strength of 115/0.43 MPa), fast stiffness/toughness recovery of 85%/91% at room temperature, good fatigue resistance, and low cell cytotoxicity and red blood cell hemolysis. More importantly, the PNC strategy can be not only generally applied to silk fibroin, ovalbumin, and milk albumin protein to form different, high strength protein hydrogels, but also modified with PEDOT/PSS nanoparticles as strain sensors and fluorescent fillers as color sensors. This work demonstrates a new, universal, PNC method to prepare high strength, multi-functional, pure protein hydrogels beyond a few available today.
Collapse
Affiliation(s)
- Ziqing Tang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
| | - Zhuangzhuang Liu
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jia Yang
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Gang Qin
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jiang Wu
- School of Pharmaceutical SciencesKey Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Qiang Chen
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
- Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
22
|
Wang JT, Pei YY, Qu CH, Wang Y, Rong X, Niu XY, Wang J, Li QF. Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. Int J Biol Macromol 2022; 195:530-537. [PMID: 34920063 DOI: 10.1016/j.ijbiomac.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/05/2022]
Abstract
Luminescent hydrogels show extensive applications in many fields because of their excellent optical properties. Although there are many matrixes used to prepare luminescent hydrogels, the synthesis of protein-based luminescent hydrogels is still urgently needed to explore due to their good biodegradability and biocompatibility. In this work, a color-tunable, self-healing protein-based luminescent hydrogel consisting of bovine serum albumin (BSA) and lanthanide complexes is prepared via reductant-triggered gelation. Firstly, a bifunctional organic ligand named 4-(phenylsulfonyl)-pyridine-2,6-dicarboxylic acid (4-PSDPA) is synthesized, which can react with thiol groups and effectively sensitize the luminescence of Eu3+ and Tb3+ ions. Then, the BSA is treated with a reducing agent tris(2-carboxyethyl)phosphine (TCEP) to produce thiol groups. And the newly formed thiol groups can re-match to form disulfide bonds between two BSA molecules or react with Ln(4-PSDPA)3 complexes, resulting in the formation of an albumin-based luminescent hydrogel. Furthermore, the self-healing, biodegradability and biocompatibility of albumin-based hydrogels have also been demonstrated. We expect that the newly developed multifunctional protein-based hydrogels will find potential applications in the fields of biomedical engineering and optical devices.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Ying-Ying Pei
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Cong-Hui Qu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Yi Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Xing Rong
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Xin-Yue Niu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, PR China.
| | - Qing-Feng Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China.
| |
Collapse
|
23
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
24
|
Guo C, Zeng Z, Yu S, Zhou X, Liu Q, Pei D, Lu D, Geng Z. Highly stretchable, compressible, adhesive hydrogels with double network. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02765-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractIn this work, a double network bovine serum albumin-polyacrylamide (BSA-PAM) adhesive hydrogel was fabricated, in which combination of physical interactions including hydrogen bonds and chain entanglements, and chemical covalent photo-crosslinking. The BSA-PAM hydrogel exhibited excellent mechanical and adhesive properties. The composite hydrogel not only demonstrated excellent tensile properties (maximum force elongation 1552%~2037%), but also displayed extremely high fatigue resistance even when subjected to compress strains of up to 85%. More importantly, the BSA-PAM hydrogel showed excellent adhesiveness to various substrates (90 kPa~150 kPa for glass and 9.74 kPa~35.09 kPa for pigskin). This work provided a facile way of fabricating tough, stretchable and adhesive BSA-PAM hydrogels.
Collapse
|
25
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Xia T, Jiang X, Deng L, Yang M, Chen X. Albumin-based dynamic double cross-linked hydrogel with self-healing property for antimicrobial application. Colloids Surf B Biointerfaces 2021; 208:112042. [PMID: 34425530 DOI: 10.1016/j.colsurfb.2021.112042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Hydrogels as ideal material are widely used in biomedical field against bacterial infection. Hydrogels synthesized from natural protein possess better biocompatibility than that synthesized from synthetic polymers. In this work, we designed bovine serum albumin (BSA) based hydrogel via double dynamic crosslinking. The cleavage and rearrangement of disulfide bonds of BSA triggered by glutathione (GSH) forms a disulfide bridge network, and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) grafts the amino groups of BSA by a Mannich-type reaction to form a second network. Integrating THPS into the BSA/GSH system enables gel formation and endows excellent antimicrobial properties. Rheological tests showed the hydrogel featuring elasticity, good mechanical strength and self-healing properties. Antibacterial and cytotoxicity tests proved the hydrogel excellent bacteriostatic ability and low cytotoxicity. This albumin-based hydrogel with low cost is expected to realize wide biomedical applications.
Collapse
Affiliation(s)
- Tiantian Xia
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
28
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Motabar D, Li J, Wang S, Tsao CY, Tong X, Wang LX, Payne GF, Bentley WE. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol Bioeng 2021; 118:2744-2758. [PMID: 33851726 DOI: 10.1002/bit.27793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
30
|
Wilk S, Benko A. Advances in Fabricating the Electrospun Biopolymer-Based Biomaterials. J Funct Biomater 2021; 12:26. [PMID: 33923664 PMCID: PMC8167588 DOI: 10.3390/jfb12020026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers formed into a fibrous morphology through electrospinning are of increasing interest in the field of biomedicine due to their intrinsic biocompatibility and biodegradability and their ability to be biomimetic to various fibrous structures present in animal tissues. However, their mechanical properties are often unsatisfactory and their processing may be troublesome. Thus, extensive research interest is focused on improving these qualities. This review article presents the selection of the recent advances in techniques aimed to improve the electrospinnability of various biopolymers (polysaccharides, polynucleotides, peptides, and phospholipids). The electrospinning of single materials, and the variety of co-polymers, with and without additives, is covered. Additionally, various crosslinking strategies are presented. Examples of cytocompatibility, biocompatibility, and antimicrobial properties are analyzed. Special attention is given to whey protein isolate as an example of a novel, promising, green material with good potential in the field of biomedicine. This review ends with a brief summary and outlook for the biomedical applicability of electrospinnable biopolymers.
Collapse
Affiliation(s)
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicz 30 Avenue, 30-059 Krakow, Poland;
| |
Collapse
|
31
|
Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Chimala P, Perera MM, Wade A, McKenzie T, Allor J, Ayres N. Hyperbranched polymer hydrogels with large stimuli-responsive changes in storage moduli and peroxide-induced healing. Polym Chem 2021. [DOI: 10.1039/d1py00560j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels prepared using hyperbranched polymers with dynamic disulfide bonds show larger changes in moduli upon exposure to chemical stimuli for both softening and stiffening responses compared to linear polymers.
Collapse
Affiliation(s)
| | - M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Aissatou Wade
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Tucker McKenzie
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Joshua Allor
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
33
|
Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with phase tunability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111590. [PMID: 33321635 DOI: 10.1016/j.msec.2020.111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Amyloids are fibrillar structures formed due to protein aggregation or misfolding when the molecules undergo a conformational change from α-helix to β-sheet. Although this self-assembly is associated with many neurodegenerative diseases in vivo, the highly ordered amyloidic structures formed in vitro are ideal scaffolds for many bionanotechnological applications. Amyloid fibrillar networks under specific stimuli can also form stable hydrogels. We have used bovine serum albumin (BSA) as a model amyloidogenic protein to obtain thermally-induced hydrogels that display tunable sol-gel-sol transitions spanning over minutes to days. High concentrations of BSA (14-22% w/v) were heated at 65 °C for less than 3 min without any cross-linking agent to yield soft, injectable gels that were non-toxic to mammalian cells. A detailed investigation of temperature, concentration, incubation time and ionic strength on the formation and reversal of these gels was carried out using visual inspection, rheology, electron microscopy, fluorescence spectroscopy, UV-visible spectroscopy and circular dichroism spectroscopy. The optimum gelation temperature (Tg) for phase reversal of BSA gels was found to lie between 60 and 70 °C. An increase in protein concentration led to a reduction in the gelation time and increase in the gel-to-rev sol transition time. Gels heated for longer duration than their minimum gelation time yielded irreversible gels suggesting that low incubation periods were favourable for partial protein denaturation and hydrogel formation. This was supported by time-resolved secondary and tertiary structural ensemble studies. Further, the hydrogel networks demonstrated a zero-order drug release kinetics and the rev sol was found to be cytocompatible with HaCaT skin cell lines. Overall, our approach demonstrates rapid, crosslinker-free thermoresponsive BSA gelation with wide tunability and control on the time and material property, ideal for topical drug delivery applications.
Collapse
Affiliation(s)
- Shruti Khanna
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ajay Kumar Singh
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumya Prakash Behera
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
34
|
Yoshimura K, Patmawati, Maeda M, Kamiya N, Zako T. Protein-Functionalized Gold Nanoparticles for Antibody Detection Using the Darkfield Microscopic Observation of Nanoparticle Aggregation. ANAL SCI 2020; 37:507-511. [PMID: 33310993 DOI: 10.2116/analsci.20scp12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gold nanoparticles (AuNPs) are commonly used in biosensing applications. In this study, AuNPs were synthesized by using reduced bovine serum albumin (rBSA) as the reducing agent. The rBSA conjugated with AuNPs via Au-Sulfur interactions to form rBSA-functionalized AuNPs (rBSA-AuNPs). The interaction of the rBSA moieties on the rBSA-AuNP surface with an anti-BSA antibody (anti-BSA) led to AuNP aggregation, which enabled the successful detection of anti-BSA at a concentration as low as 20 nM through darkfield microscopy (DFM). This study demonstrates the potential applications of protein-functionalized AuNPs in the bioanalysis of substances through DFM.
Collapse
Affiliation(s)
- Ken Yoshimura
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University
| | - Patmawati
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University
| |
Collapse
|
35
|
Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. J Colloid Interface Sci 2020; 580:561-572. [DOI: 10.1016/j.jcis.2020.07.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
|
36
|
Kalashnikova I, Chung SJ, Nafiujjaman M, Hill ML, Siziba ME, Contag CH, Kim T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020; 10:11863-11880. [PMID: 33204316 PMCID: PMC7667692 DOI: 10.7150/thno.49069] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects 1-2% of the human population worldwide, and effective therapies with targeted delivery for local immune suppression have not been described. We address this problem by developing a novel theranostic nanoparticle for RA and assessed its therapeutic and targeting effects under image-guidance. Methods: Albumin-cerium oxide nanoparticles were synthesized by the biomineralization process and further conjugated with near-infrared, indocyanine green (ICG) dye. Enzymatic-like properties and reactive oxygen species (ROS) scavenging activities, as well as the ability to reprogram macrophages, were determined on a monocyte cell line in culture. The therapeutic effect and systemic targeting potential were evaluated in collagen-induced arthritis (CIA) mouse model using optical/optoacoustic tomographic imaging. Results: Small nanotheranostics with narrow size distribution and high colloidal stability were fabricated and displayed high ROS scavenging and enzymatic-like activity, as well as advanced efficacy in a converting pro-inflammatory macrophage phenotype into anti-inflammatory phenotype. When administrated into affected animals, these nanoparticles accumulated in inflamed joints and revealed a therapeutic effect similar to the gold-standard therapy for RA, methotrexate. Conclusions: The inflammation-targeting, inherent contrast and therapeutic activity of this new albumin-cerium oxide nanoparticle may make it a relevant agent for assessing severity in RA, and other inflammatory diseases, and controlling inflammation with image-guidance. The design of these nanotheranostics will enable potential clinical translation as systemic therapy for RA.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Arthritis, Experimental/diagnosis
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cerium/administration & dosage
- Cerium/chemistry
- Cerium/pharmacokinetics
- Collagen/administration & dosage
- Collagen/immunology
- Coloring Agents/administration & dosage
- Coloring Agents/chemistry
- Drug Compounding/methods
- Drug Monitoring/methods
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Half-Life
- Humans
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Injections, Intra-Articular
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/immunology
- Joints/pathology
- Mice
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Photoacoustic Techniques/methods
- RAW 264.7 Cells
- Serum Albumin, Bovine/chemistry
- Severity of Illness Index
- THP-1 Cells
- Theranostic Nanomedicine/methods
- Tomography/methods
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Seock-Jin Chung
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Md Nafiujjaman
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Meghan L. Hill
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Mzingaye E. Siziba
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Christopher H. Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Taeho Kim
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| |
Collapse
|
37
|
Lantigua D, Nguyen MA, Wu X, Suvarnapathaki S, Kwon S, Gavin W, Camci-Unal G. Synthesis and characterization of photocrosslinkable albumin-based hydrogels for biomedical applications. SOFT MATTER 2020; 16:9242-9252. [PMID: 32929420 DOI: 10.1039/d0sm00977f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-based biomaterials are widely used to generate three-dimensional (3D) scaffolds for tissue regeneration as well as compact delivery systems for drugs, genes, and peptides. Specifically, albumin-based biomaterials are of particular interest for their ability to facilitate controlled delivery of drugs and other therapeutic agents. These hydrogels possess non-toxic and non-immunogenic properties that are desired in tissue engineering scaffolds. This work employs a rapid ultraviolet (UV) light induced crosslinking to fabricate bovine serum albumin (BSA) hydrogels. Using four different conditions, the BSA hydrogel properties were modulated based on the extent of glycidyl methacrylate modification in each polymer. The highly tunable mechanical behavior of the material was determined through compression tests which yielded a range of material strengths from 4.4 ± 1.5 to 122 ± 7.4 kPa. Pore size measurements also varied from 7.7 ± 1.7 to 23.5 ± 6.6 μm in the photocrosslinked gels. The physical properties of materials such as swelling and degradation were also characterized. In further evaluation, 3D scaffolds were used in cell encapsulation and in vivo implantation studies. The biocompatibility and degradability of the material demonstrated effective integration with the native tissue environment. These modifiable chemical and mechanical properties allow BSA hydrogels to be fine-tuned to a plethora of biomedical applications including regenerative medicine, in vitro cancer study models, and wound healing approaches.
Collapse
Affiliation(s)
- Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Michelle A Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Seongjin Kwon
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Wendy Gavin
- Core Research Facilities, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
Ye J, Fu S, Zhou S, Li M, Li K, Sun W, Zhai Y. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48668] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Selen Uman
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Abhishek Dhand
- Department of Chemical and Biomolecular EngineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Jason A. Burdick
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| |
Collapse
|
40
|
Sanaeifar N, Mäder K, Hinderberger D. Nanoscopic Characterization of Stearic Acid Release from Bovine Serum Albumin Hydrogels. Macromol Biosci 2020; 20:e2000126. [PMID: 32567224 DOI: 10.1002/mabi.202000126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Indexed: 12/22/2022]
Abstract
The release behavior of 16-doxyl stearic acid (16-DSA) from hydrogels made from bovine serum albumin (BSA) is characterized. 16-DSA serves as a model tracer molecule for amphiphilic drugs. Various hydrogel preparation procedures are tested and the fatty acid release from the different gels is compared in detail. These comparisons reach from the macroscopic level, the viscoelastic behavior via rheological characterization to changes on the nanoscopic level concerning the secondary structure of the protein during gelation through infrared (ATR-IR) spectroscopy. 16-DSA-BSA interaction via continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in addition gives a nanoscopic view of small molecule-hydrogel interaction. The combined effects of fatty acid concentration, hydrogel incubation time, and gelation procedures on release behavior are studied via CW EPR spectroscopy and dynamic light scattering (DLS) measurements, which provide deep insight on the interaction of 16-DSA with BSA hydrogels and the nature and size of the released components, respectively. It is found that the release rate of the fatty acid from BSA hydrogels depends on and can thus be tuned through its loading percentage, duration of hydrogel formation and the type of gelation methods. All of the results confirm the potential of these gels as delivery hosts in pharmaceutical applications allowing the sustained release of drug.
Collapse
Affiliation(s)
- Niuosha Sanaeifar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), 06120, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, Halle (Saale), 06120, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), 06120, Germany
| |
Collapse
|
41
|
Lu S, Zhu L, Wang Q, Liu Z, Tang C, Sun H, Yang J, Qin G, Sun G, Chen Q. High-Strength Albumin Hydrogels With Hybrid Cross-Linking. Front Chem 2020; 8:106. [PMID: 32161748 PMCID: PMC7052378 DOI: 10.3389/fchem.2020.00106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Natural protein-based hydrogels possess excellent biocompatibility; however, most of them are weak or brittle. In the present work, high strength hybrid dual-crosslinking BSA gels (BSA DC gels), which have both chemical cross-linking and physical cross-linking, were fabricated by a facile photoreaction-heating process. BSA DC gels showed high transparency (light transmittance of ~90%) and high strength. At optimal conditions, BSA DC gel exhibited high compressive strength (σc,f) of 37.81 ± 2.61 MPa and tensile strength (σt,f) of 0.62 ± 0.078 MPa, showing it to be much stronger than physically cross-linked BSA gel (BSA PC gel) and chemically cross-linked BSA gel (BSA CC gel). More importantly, BSA DC gel displayed non-swelling properties while maintaining high strength in DI water, pH = 3.0, and pH = 10.0. Moreover, BSA DC gel also demonstrated large hysteresis, rapid self-recovery, and excellent fatigue resistance properties. It is believed that our BSA DC gel can potentially be applied in biomedical fields.
Collapse
Affiliation(s)
- Shaoping Lu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Lin Zhu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Qilin Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Zhao Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Chen Tang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Huan Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiang Chen
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
42
|
Hu TM, Lin CY, Chou HC, Wu MJ. Turning proteins into hydrophobic floatable materials with multiple potential applications. J Colloid Interface Sci 2019; 554:166-176. [DOI: 10.1016/j.jcis.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
43
|
Li F, Qiu C, Li M, Xiong L, Shi Y, Sun Q. Preparation and characterization of redox-sensitive glutenin nanoparticles. Int J Biol Macromol 2019; 137:327-336. [PMID: 31260770 DOI: 10.1016/j.ijbiomac.2019.06.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 02/01/2023]
Abstract
In recent thirty years, protein-based nanoparticles have attracted considerable attention, and they are being widely used in the food, pharmaceutical, and biomedical fields. Wheat glutenin, an important natural vegetable protein, has been demonstrated to be nutritive and biocompatible. This study aimed to develop a new type of redox-sensitive protein nanoparticles. The glutenin nanoparticles (GNPs) were synthesized with glutenin concentrations (0.082%, 0.5%, and 0.83%) through the adoption of an antisolvent titration technique and the use of hydrogen peroxide (H2O2) oxidative cross-linking for different periods. At a glutenin concentration of 0.83% and oxidation time of 20 h, the obtained GNPs were spherical in shape and approximately 100-300 nm in size, as measured by transmission electron microscopy and dynamic light scattering. The formation of disulfide was confirmed by Raman spectroscopy. The turbidity values of the GNP suspensions were decreased by half after the addition of β-mercaptoethanol. Nile blue A, a model hydrophilic substance, was entrapped in the GNPs with 77.67% loading efficiency. The newly developed GNPs can be used as redox-responsive carriers for delivering hydrophilic active substances.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Chao Qiu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanping Shi
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
44
|
Zhao Z, Hu R, Shi H, Wang Y, Ji L, Zhang P, Zhang Q. Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. J Inorg Biochem 2019; 194:19-25. [DOI: 10.1016/j.jinorgbio.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 02/08/2023]
|
45
|
Bai Y, Li S, Li X, Han X, Li Y, Zhao J, Zhang J, Hou X, Yuan X. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:662-678. [PMID: 30947639 DOI: 10.1080/09205063.2019.1600821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Bai
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Juntao Zhang
- First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
46
|
Yu J, Chen Y, Xiong L, Zhang X, Zheng Y. Conductance Changes in Bovine Serum Albumin Caused by Drug-Binding Triggered Structural Transitions. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1022. [PMID: 30925667 PMCID: PMC6479529 DOI: 10.3390/ma12071022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
Proteins, due to their binding selectivity, are promising candidates for fabricating nanoscale bio-sensors. However, the influence of structural change on protein conductance caused by specific protein-ligand interactions and disease-induced degeneration still remains unknown. Here, we excavated the relationship between circular dichroism (CD) spectroscopy and conductive atomic force microscopy (CAFM) to reveal the effect of the protein secondary structures changes on conductance. The secondary structure of bovine serum albumin (BSA) was altered by the binding of drugs, like amoxicillin (Amox), cephalexin (Cefa), and azithromycin (Azit). The CD spectroscopy shows that the α-helical and β-sheet content of BSA, which varied according to the molar ratio between the drug and BSA, changed by up to 6%. The conductance of BSA monolayers in varying drug concentrations was further characterized via CAFM. We found that BSA conductance has a monotonic relation with α-helical content. Moreover, BSA conductance seems to be in connection with the binding ability of drugs and proteins. This work elucidates that protein conductance variations caused by secondary structure transitions are triggered by drug-binding and indicate that electrical methods are of potential application in protein secondary structure analysis.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Liqun Xiong
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Yue Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
- Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
47
|
Razi MA, Wakabayashi R, Goto M, Kamiya N. Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2610-2618. [PMID: 30673276 DOI: 10.1021/acs.langmuir.8b02809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer continues to pose health problems for people all over the world. Nanoparticles (NPs) have emerged as a promising platform for effective cancer chemotherapy. NPs formed by the assembly of proteins and chitosan (CH) through noncovalent interactions are attracting a great deal of interest. However, the poor water solubility of CH and low stability of this kind of NP limit its practical application. Herein, the formation of reduced bovine serum albumin (rBSA) and glycol chitosan (GC) nanoparticles (rBG-NPs) stabilized by hydrophobic interactions and disulfide bonds was demonstrated for paclitaxel (PTX) delivery. The effects of the rBSA:GC mass ratio and pH on the particle size, polydispersity index (PDI), number of particles, and surface charge were evaluated. The formation mechanism and stability of the NPs were determined by compositional analysis and dynamic light scattering. Hydrophobic and electrostatic interactions were the driving forces for the formation of the rBG-NPs, and the NPs were stable under physiological conditions. PTX was successfully encapsulated into rBG-NPs with a high encapsulation efficiency (∼90%). PTX-loaded rBG-NPs had a particle size of ∼400 nm with a low PDI (0.2) and positive charge. rBG-NPs could be internalized by HeLa cells, possibly via endocytosis. An in vitro cytotoxicity study revealed that PTX-loaded rBG-NPs had anticancer activity that was lower than that of a Taxol-like formulation at 24 h but had similar activity at 48 h, possibly because of the slow release of PTX into the cells. Our study suggests that rBG-NPs could be used as a potential nanocarrier for hydrophobic drugs.
Collapse
Affiliation(s)
- Muhamad Alif Razi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
- Division of Biotechnology, Center for Future Chemistry , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
- Division of Biotechnology, Center for Future Chemistry , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
48
|
Teng L, Chen Y, Jia YG, Ren L. Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 2019; 7:6705-6736. [DOI: 10.1039/c9tb01698h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights the most recent progress in gelation strategies of biomedical supramolecular and dynamic covalent crosslinking hydrogels and their applications for enhancing cell retention and cartilage regeneration.
Collapse
Affiliation(s)
- Lijing Teng
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Yong-Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| |
Collapse
|
49
|
Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Sulfur Chemistry in Polymer and Materials Science. Macromol Rapid Commun 2018; 40:e1800650. [DOI: 10.1002/marc.201800650] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hatice Mutlu
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ezgi Berfin Ceper
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Jingmei Yang
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
- Institute of Fundamental Science and Frontiers; University of Electronic Science and Technology of China; Chengdu 610054 China
| | - Wenyuan Dong
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Mehmet Murat Ozmen
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Patrick Theato
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| |
Collapse
|
50
|
Arabi SH, Aghelnejad B, Schwieger C, Meister A, Kerth A, Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater Sci 2018; 6:478-492. [PMID: 29446432 DOI: 10.1039/c7bm00820a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report extended pH- and temperature-induced preparation procedures and explore the materials and molecular properties of different types of hydrogels made from human and bovine serum albumin, the major transport protein in the blood of mammals. We describe the diverse range of properties of these hydrogels at three levels: (1) their viscoelastic (macroscopic) behavior, (2) protein secondary structure changes during the gelation process (via ATR-FTIR spectroscopy), and (3) the hydrogel fatty acid (FA) binding capacity and derive from this the generalized tertiary structure through CW EPR spectroscopy. We describe the possibility of preparing hydrogels from serum albumin under mild conditions such as low temperatures (notably below albumin's denaturation temperature) and neutral pH value. As such, the proteins retain most of their native secondary structure. We find that all the combined data indicate a two-stage gelation process that is studied in detail. We summarize these findings and the explored dependences of the gels on pH, temperature, concentration, and incubation time by proposing phase diagrams for both HSA and BSA gel-states. As such, it has become possible to prepare gels that have the desired nanoscopic and macroscopic properties, which can, in future, be tested for, e.g., drug delivery applications.
Collapse
Affiliation(s)
- S Hamidreza Arabi
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Behdad Aghelnejad
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Christian Schwieger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Annette Meister
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Andreas Kerth
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| |
Collapse
|