1
|
Yu J, Kan X, Xiang Z, Liu J, Bao F, Hou L. On-Chip Droplet Splitting with High Volume Ratios Using a 3D Conical Microstructure-Based Microfluidic Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22355-22362. [PMID: 39377732 DOI: 10.1021/acs.langmuir.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This work reports a simple microfluidic method for splitting a mother droplet into two daughter droplets with high and precise volume ratios. To achieve this, a droplet-splitting microfluidic device embedded with a three-dimensional (3D) conical microstructure is fabricated, in which the high splitting ratios of monodisperse mother droplets are achieved. The volume ratio of the split daughter droplets can reach up to 265. In addition, we examined factors that affect the splitting ratio of the daughter droplets and found that the ratio is affected by the flow rates of the two individual outlet channels, the injection length of the conical microstructure, and the diameter of the original mother droplets. Numerical simulations of these parameters were conducted to gain a clearer understanding of the splitting behavior. The proposed droplet splitting device with a conical microstructure enables on-chip sample extraction and droplet volume control, which can be a powerful tool for various droplet-based applications in microfluidic devices such as viral infectivity assays and sequencing heterogeneous populations.
Collapse
Affiliation(s)
- Jian Yu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Xueqing Kan
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Zhaoyang Xiang
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Jiachen Liu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Likai Hou
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Feng S, Xue C, Pan C, Tao S. Droplet drinking in constrictions. LAB ON A CHIP 2024; 24:3412-3421. [PMID: 38904151 DOI: 10.1039/d4lc00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Droplets generated through microfluidics serve as a common platform for assembling artificial cells, which are feasibly tailored using microfluidic methodology. The ability of natural cells to undergo shape changes, such as phagocytosis, is a typical characteristic that researchers aim to mimic in artificial cells. However, simulating the deformation behavior of natural cells within droplets is exceptionally challenging. Here, this study reports a pinocytosis-like phenomenon observed in droplets, termed "droplet drinking". When droplets traverse a capillary with constrictions, the shear force from the continuous-phase fluid induces relative motion within the droplets, creating concave regions at the rear. These regions facilitate engulfing of the continuous-phase fluid, resulting in the formation of multiple emulsions. This behavior is influenced by the capillary number, and the size of the ingested droplets is governed by the interfacial tension between the two phases. The production of multicore or multi-shell emulsions can be easily accomplished by making slight adjustments to the constrictions. Furthermore, this method demonstrates the integration of reactants into pre-existing droplets, facilitating biochemical reactions. This study presents a convenient approach for generating complex emulsions and an innovative strategy for studying deformation behavior in droplet-based artificial cells.
Collapse
Affiliation(s)
- Shi Feng
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Chundong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, P.R. China
| | - Cunliang Pan
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, P.R. China
| | - Shengyang Tao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Chen J, Shen H, Heng Y, Wang S, Ardekani A, Yang Y, Hu Y. Droplet Microfluidics-Assisted Fabrication of Shape Controllable Iron-Alginate Microgels with Fluorescent Property. Macromol Rapid Commun 2024; 45:e2400084. [PMID: 38653451 DOI: 10.1002/marc.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Droplet-based microfluidics-assisted fabrication of alginate microgels has extensive applications in biomaterials, biomedicines, and related fields. This approach is typically achieved by crosslinking droplets of an aqueous solution of sodium alginate with various divalent and trivalent ions, such as Ca2+, Ba2+, Sr2+, etc. Despite the exceptional features exhibited by bulk alginate hydrogels when using iron ions as the crosslinking reagent, including stimulus responsiveness and complex chemistry, no attention has been given to studying the fabrication of Fe-alginate microgels through droplet microfluidics. In this work, a facile method is presented for fabricating Fe-alginate microgels using single emulsion droplets as templates and an off-chip crosslinking technique to solidify the droplets. The morphologies of the resulting microgels can be systematically adjusted by manipulating different parameters such as viscosities and ionic strength of the collecting solutions. It should be noted that these resulting microgels undergo a color change from light brown to dark brown due to presumed self-oxidation of iron ions within their skeleton structure. Furthermore, these Fe-alginate microgels are functionalized by decorating them with a positively charged linear polymer via electrostatic interactions to impart them with stable fluorescent property. These functionalized Fe-alginate microgels may find potential applications in drug delivery carriers and biomimetic structures.
Collapse
Affiliation(s)
- Jie Chen
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hanyu Shen
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yicheng Heng
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Songhe Wang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Arezoo Ardekani
- Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438, China
| |
Collapse
|
4
|
Qu Q, Cheng W, Zhang X, Zhou A, Deng Y, Zhu M, Chu T, Manshian BB, Xiong R, Soenen SJ, Braeckmans K, De Smedt SC, Huang C. Multicompartmental Microcapsules for Enzymatic Cascade Reactions Prepared through Gas Shearing and Surface Gelation. Biomacromolecules 2022; 23:3572-3581. [PMID: 35931466 DOI: 10.1021/acs.biomac.2c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inspired by the structure of eukaryotic cells, multicompartmental microcapsules have gained increasing attention. However, challenges remain in the fabrication of "all-aqueous" (i.e., oil-free) microcapsules composed of accurately adjustable hierarchical compartments. This study reports on multicompartmental microcapsules with an innovative architecture. While multicompartmental cores of the microcapsules were fabricated through gas shearing, a shell was applied on the cores through surface gelation of alginate. Different from traditional multicompartmental microcapsules, thus obtained microcapsules have well-segregated compartments while the universal nature of the surface-gelation method allows us to finely tune the shell thicknesses of the microcapsules. The microcapsules are highly stable and cytocompatible and allow repeated enzymatic cascade reactions, which might make them of interest for complex biocatalysis or for mimicking physiological processes.
Collapse
Affiliation(s)
- Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, P. R. China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Aying Zhou
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B Manshian
- Translation Cell and Tissue Research Unit, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium.,Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium.,Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.,Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
5
|
Wu Y, Zheng Y, Jin Z, Li S, Wu W, An C, Guo J, Zhu Z, Zhou T, Zhou Y, Cen L. Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. Int J Biol Macromol 2022; 216:1-13. [PMID: 35777503 DOI: 10.1016/j.ijbiomac.2022.06.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Human umbilical cord mesenchymal stem cells (HUMSCs) are one of the most attractive sources of stem cells, and it is meaningful to design and develop a type of microcarriers with suitable mechanical strength for HUMSCs proliferation in order to acquire enough cells for cell-based therapy. Alginate-gelatin core-shell (AG) soft microcarriers were thus fabricated via a microfluidic device with droplet shearing/gelation facilities and surface coating for in vitro expansion of HUMSCs. The attachment and proliferation of HUMSCs on AG microcarriers with different mechanical strengths modulated by gelatin coating was studied, and the harvested cells were characterized to verity their differentiation potential. The obtained core-shell microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). An increase in the gelatin surface coating concentration from 0.5 % to 1.5 % would lead to the reduction in both the particle size of the microcarriers and swelling ratio upon the contact of culture medium, but increased elastic modulus. Microcarriers of 245.12 μm with a gelatin coating elastic modulus of 27.5 kPa (AG10) were found to be the optimal substrate for HUMSCs with an initial attachment efficiency of 44.41 % and a 5-day expansion efficiency of 647 %. The cells harvested from AG10 still reserved their outstanding pluripotency. Fresh AG10 could smoothly transfer cells from a running microcarrier-cell system of confluence to serve as a convenient way of scaling-up the existing culture. The current study thus developed suitable microcarriers, AG10, for in vitro HUMSCs expansion with well reserve of cell multipotency, and also provided a manufacturing and surface manipulating strategy of precise production and fine regulation of microcarrier properties.
Collapse
Affiliation(s)
- Yanfei Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Yiling Zheng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Shihao Li
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Weiqian Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Jiahao Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Zhihua Zhu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China..
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China..
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
6
|
Tao Y, Liu W, Ge Z, Song C, Xue R, Ren Y. Numerical characterization of inter‐core coalescence by AC dielectrophoresis in double‐emulsion droplets. Electrophoresis 2022; 43:2141-2155. [DOI: 10.1002/elps.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ye Tao
- School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Weiyu Liu
- School of Electronics and Control Engineering Chang'an University Xi'an 710064 P. R. China
| | - Zhenyou Ge
- School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Chunlei Song
- School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Rui Xue
- School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 P. R. China
- State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
7
|
Lin B, Wang Y, Yao Y, Chen L, Zeng Y, Li L, Lin Z, Guo L. Oil-Free Gold Nanobipyramid@Ag Microgels as a Functional SERS Substrate for Direct Detection of Small Molecules in a Complex Sample Matrix. Anal Chem 2021; 93:16727-16733. [PMID: 34851090 DOI: 10.1021/acs.analchem.1c04797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a super-sensitive analysis technology based on the target molecular fingerprint information. The enhancement of local electromagnetic field of the SERS substrate would increase the target molecules' Raman intensity which adsorb on the surface of nanoparticles. However, the existing adhesive macromolecules in the complex mixed sample would interfere with the adsorption of small target molecules, and it weakens the Raman intensity of target molecules. Microgels are one of the potential materials to suppress the interference of adhesive macromolecules and to avoid the complex pretreatments. However, most of the current microgel synthesis methods involve complex operations with precise instrumentation or the interference of oil and organic reagents. In this work, a simple and oil-free method was proposed to synthesize the gold nanobipyramid (Au NBP)@Ag@hyaluronic acid microgel via the condensation reaction of carboxyl and amino groups. As a proof-of-concept demonstration for small-molecule detection, the rhodamine 6G (R6G) molecules were allowed to enter inside the microgel through the meshes and adsorb on the surface of Au NBP@Ag nanoparticles within 30 min, while the macromolecule (bovine serum albumin in this case) was retained outside the microgel in the meantime. In addition, under the combined action of lightning rod effect of Au NBP and surface plasmon resonance effect of silver render the microgels with high SERS activity. The synthetic Au NBP@Ag@hyaluronic acid microgels were applied to detect 6-thioguanine in the human serum without any pretreatment process, and it showed a high signal enhancement and stable SERS signal, which can satisfy the requirement of clinical diagnosis. These results show that the proposed microgels have potential applications in the field of point-of-care testing.
Collapse
Affiliation(s)
- Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.,Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Zhenyu Lin
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
8
|
Sharratt WN, Lopez CG, Sarkis M, Tyagi G, O’Connell R, Rogers SE, Cabral JT. Ionotropic Gelation Fronts in Sodium Carboxymethyl Cellulose for Hydrogel Particle Formation. Gels 2021; 7:44. [PMID: 33921260 PMCID: PMC8167666 DOI: 10.3390/gels7020044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogel microparticles (HMPs) find numerous practical applications, ranging from drug delivery to tissue engineering. Designing HMPs from the molecular to macroscopic scales is required to exploit their full potential as functional materials. Here, we explore the gelation of sodium carboxymethyl cellulose (NaCMC), a model anionic polyelectrolyte, with Fe3+ cations in water. Gelation front kinetics are first established using 1D microfluidic experiments, and effective diffusive coefficients are found to increase with Fe3+ concentration and decrease with NaCMC concentrations. We use Fourier Transform Infrared Spectroscopy (FTIR) to elucidate the Fe3+-NaCMC gelation mechanism and small angle neutron scattering (SANS) to spatio-temporally resolve the solution-to-network structure during front propagation. We find that the polyelectrolyte chain cross-section remains largely unperturbed by gelation and identify three hierarchical structural features at larger length scales. Equipped with the understanding of gelation mechanism and kinetics, using microfluidics, we illustrate the fabrication of range of HMP particles with prescribed morphologies.
Collapse
Affiliation(s)
- William N. Sharratt
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Carlos G. Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany;
| | - Miriam Sarkis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Gunjan Tyagi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Róisín O’Connell
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| | - Sarah E. Rogers
- ISIS, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, UK;
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (M.S.); (G.T.); (R.O.)
| |
Collapse
|
9
|
Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci 2020; 282:102208. [PMID: 32721624 DOI: 10.1016/j.cis.2020.102208] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse
|
10
|
Choi YH, Lee SS, Lee DM, Jeong HS, Kim SH. Composite Microgels Created by Complexation between Polyvinyl Alcohol and Graphene Oxide in Compressed Double-Emulsion Drops. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903812. [PMID: 31515955 DOI: 10.1002/smll.201903812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Indexed: 05/22/2023]
Abstract
Microgels, microparticles made of hydrogels, show fast diffusion kinetics and high reconfigurability while maintaining the advantages of hydrogels, being useful for various applications. Here, presented is a new microfluidic strategy for producing polymer-graphene oxide (GO) composite microgels without chemical cues or a temperature swing for gelation. As a main component of microgels, polymers that are able to form hydrogen bonds, such as polyvinyl alcohol (PVA), are used. In the mixture of PVA and GO, GO is tethered by PVA through hydrogen bonding. When the mixture is rapidly concentrated in the core of double-emulsion drops by osmotic-pressure-driven water pumping, PVA-tethered GO sheets form a nematic phase with a planar alignment. In addition, the GO sheets are linked by additional hydrogen bonds, leading to a sol-gel transition. Therefore, the PVA-GO composite remains undissolved when it is directly exposed to water by oil-shell rupture. These composite microgels can be also produced using poly(ethylene oxide) or poly(acrylic acid), instead of PVA. In addition, the microgels can be functionalized by incorporating other polymers in the presence of the hydrogel-forming polymers. It is shown that the multicomponent microgels made from a mixture of polyacrylamide, PVA, and GO show an excellent adsorption capacity for impurities.
Collapse
Affiliation(s)
- Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Seok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Dong-Myeong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
12
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
13
|
Yamada M, Seki M. Multiphase Microfluidic Processes to Produce Alginate-Based Microparticles and Fibers. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| |
Collapse
|
14
|
Jia Y, Ren Y, Hou L, Liu W, Deng X, Jiang H. Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702188. [PMID: 29044912 DOI: 10.1002/smll.201702188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Advances in microfluidic emulsification have enabled the generation of exquisite multiple-core droplets, which are promising structures to accommodate microreactions. An essential requirement for conducting reactions is the sequential coalescence of the multiple cores encapsulated within these droplets, therefore, mixing the reagents together in a controlled sequence. Here, a microfluidic approach is reported for the conduction of two-step microreactions by electrically fusing three cores inside double-emulsion droplets. Using a microcapillary glass device, monodisperse water-in-oil-in-water droplets are fabricated with three compartmented reagents encapsulated inside. An AC electric field is then applied through a polydimethylsiloxane chip to trigger the sequential mixing of the reagents, where the precise sequence is guaranteed by the discrepancy of the volume or conductivity of the inner cores. A two-step reaction in each droplet is ensured by two times of core coalescence, which totally takes 20-40 s depending on varying conditions. The optimal parameters of the AC signal for the sequential fusion of the inner droplets are identified. Moreover, the capability of this technique is demonstrated by conducting an enzyme-catalyzed reaction used for glucose detection with the double-emulsion droplets. This technique should benefit a wide range of applications that require multistep reactions in micrometer scale.
Collapse
Affiliation(s)
- Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Weiyu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaokang Deng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
15
|
Wu Q, Yang C, Liu G, Xu W, Zhu Z, Si T, Xu RX. Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. LAB ON A CHIP 2017; 17:3168-3175. [PMID: 28812769 DOI: 10.1039/c7lc00769h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a simple but efficient multiplex coaxial flow focusing (MCFF) process for single-step fabrication of multicompartment Janus microcapsules (MJMs) in a wide range of operating parameters. The produced MJMs consist of a multicompartmental core-shell structure with material compositions tunable in individual shell and core compartments. Potential applications of such a MJM agent are demonstrated in both benchtop and in vitro experiments. For the benchtop experiment, magnetic nanoparticles are loaded into one of the shell compartments and photopolymerized under ultraviolet light for controlled alignment and rotation of the microcapsules in a magnetic field. For the in vitro experiment, four different types of cells are encapsulated in the desired compartments of sodium alginate MJMs and co-cultured for seven days. By increasing the number of coaxial needles, we are also able to produce MJMs with three or more compartments. Our studies have shown that the proposed MCFF process is able to produce MJMs with desired material compositions and narrow size distribution. This process is inexpensive and scalable for mass production of various MJMs in its potential applications in biomedical imaging, drug delivery, and regenerative medicine.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Lee TY, Ku M, Kim B, Lee S, Yang J, Kim SH. Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700646. [PMID: 28558167 DOI: 10.1002/smll.201700646] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Biodegradable microcapsules with a large aqueous lumen and ultrathin membrane are microfluidically designed for sustained release of hydrophilic bioactives using water-in-oil-in-water double-emulsion drops as a template. As a shell phase, an organic solution of poly(lactic-co-glycolic acid) is used, which is consolidated to form a biodegradable membrane. The encapsulants stored in the lumen are released over a long period of time as the membranes degrade. The period can be controlled in a range of -three to five months at neutral pH condition by adjusting membrane thickness, providing highly sustained release and potentially enabling the programed release of multiple drugs. At acidic or basic condition, the degradation is accelerated, leading to the release in the period of approximately two months. As the membrane is semipermeable, the microcapsules respond to the osmotic pressure difference across the membrane. The microcapsules are inflated in hypotonic condition and deflated in hypertonic condition. Both conditions cause cracks on the membrane, resulting in the fast release of encapsulants in a day. The microcapsules implanted in mice also show sustained release, despite the period is decreased to a month. It is believed that the microcapsules are promising for the in vivo sustained release of drugs for high and long-term efficacy.
Collapse
Affiliation(s)
- Tae Yong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Bomi Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sangmin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
17
|
Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, Jiang H. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12282-12289. [PMID: 28345345 DOI: 10.1021/acsami.7b00670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microfluidically generated double emulsions are promising templates for microreactions, which protect the reaction from external disturbance and enable in vitro analyses with large-scale samples. Controlled combination of their inner droplets in a continuous manner is an essential requirement toward truly applications. Here, we first generate dual-cored double-emulsion drops with different inner encapsulants using a capillary microfluidic device; next, we transfer the emulsion drops into another electrode-integrated polydimethylsiloxane microfluidic device and utilize external AC electric field to continuously trigger the coalescence of inner cores inside these emulsion drops in continuous flow. Hundreds of thousands of monodisperse microreactions with nanoliter-scale reagents can be conducted using this approach. The performance of core coalescence is investigated as a function of flow rate, applied electrical signal, and core conductivity. The coalescence efficiency can reach up to 95%. We demonstrate the utility of this technology for accommodating microreactions by analyzing an enzyme catalyzed reaction and by fabricating cell-laden hydrogel particles. The presented method can be readily used for the controlled triggering of microreactions with high flexibility for a wide range of applications, especially for continuous chemical or cell assays.
Collapse
Affiliation(s)
- Likai Hou
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Yankai Jia
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Xiaokang Deng
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Weiyu Liu
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Xiangsong Feng
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering and ‡State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, PR China
| |
Collapse
|
18
|
Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles. J Colloid Interface Sci 2017; 498:387-394. [PMID: 28343136 DOI: 10.1016/j.jcis.2017.03.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. RESULTS Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients. FINDINGS The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10-4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.
Collapse
|
19
|
Jia Y, Ren Y, Liu W, Hou L, Tao Y, Hu Q, Jiang H. Electrocoalescence of paired droplets encapsulated in double-emulsion drops. LAB ON A CHIP 2016; 16:4313-4318. [PMID: 27714017 DOI: 10.1039/c6lc01052k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We utilize an ac electric field to trigger the on-demand fusion of two aqueous cores inside water-in-oil-in-water (W/O/W) double-emulsion drops. We attribute the coalescence phenomenon to field-induced structural polarization and breakdown of the stress balance at interfaces. This method provides not only accurate control over the reaction time of coalescence but also protection of the reaction from cross contamination.
Collapse
Affiliation(s)
- Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Weiyu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Qingming Hu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, 150001 PR China.
| |
Collapse
|
20
|
Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. LAB ON A CHIP 2016; 16:3415-40. [PMID: 27470590 DOI: 10.1039/c6lc00809g] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colours, and many other uses. This article reviews the current state of the art in the microfluidic-based production of multiple-emulsion drops and functional microcapsules. The three main sections of this paper discuss distinct microfluidic techniques developed for the generation of multiple emulsions, four representative methods used for solid membrane formation, and various applications of functional microcapsules. Finally, we outline the current limitations and future perspectives of microfluidics and microcapsules.
Collapse
Affiliation(s)
- Tae Yong Lee
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, South Korea.
| | | | | | | | | |
Collapse
|
21
|
Håti AG, Arnfinnsdottir NB, Østevold C, Sletmoen M, Etienne G, Amstad E, Stokke BT. Microarrays for the study of compartmentalized microorganisms in alginate microbeads and (W/O/W) double emulsions. RSC Adv 2016. [DOI: 10.1039/c6ra23945e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present two array platforms for small (50–100 μm) cell-containing 3D compartments prepared by droplet-based microfluidics.
Collapse
Affiliation(s)
- Armend G. Håti
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Nina Bjørk Arnfinnsdottir
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Camilla Østevold
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Marit Sletmoen
- Dept. of Biotechnology
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - Gianluca Etienne
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Esther Amstad
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Bjørn T. Stokke
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| |
Collapse
|