1
|
L J, Kamaraj S, Kandasamy R, Alagarsamy S. Electrospinning: A New Frontier in Peptide Therapeutics. AAPS PharmSciTech 2025; 26:69. [PMID: 40011310 DOI: 10.1208/s12249-025-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The nanofiber technology has recently undergone an unprecedented transformation, finding widespread utilities across diverse scientific disciplines. It is noteworthy that electrospinning approaches have emerged as an adaptable and successful approach to generate fibers ranging in rapidly as a class of therapeutic agents with a high level of target specificity. Peptides encounter several challenges as drugs, including swift breakdown by the body, rapid elimination from the bloodstream, inadequate stability, and restricted ability to cross cell membranes. This renders it challenging to employ them as drugs. However, electrospun nanofibers might address these problems. This review explores the promising potential of electrospinning nanofibers for peptide delivery. We delve into recent advancements in this technique, highlighting its effectiveness in overcoming challenges associated with peptide drug delivery. It provides an analysis of the trends identified in the use of the electrospinning technique and its role in peptide drug delivery systems, based on a review of data collected over a period of five to seven years.
Collapse
Affiliation(s)
- Jeyanthi L
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sivadharshini Kamaraj
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Ali M, Li Y, He JH. Double Bubble Electrospinning: Patents and Nanoscale Interface. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:453-465. [PMID: 37877565 DOI: 10.2174/0118722105259729231004040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 10/26/2023]
Abstract
Background: Bipolymeric nanofibers have gained significant attention in various fields due to their enhanced functionality, improved mechanical properties, and controlled release capabilities. However, the fabrication of these composite fibers with a well-defined polymer-polymer interface remains a challenging task. Methods: The double bubble electrospinning setup was developed and simulated using Maxwell 3D to analyze the electric field. PVP and PVA polymers were electrospun simultaneously to create bipolymer nanofibers with an interface. The resulting nanofibers were compared with nanofibers made from pure PVA, PVP, and a PVA/PVP blend. The characterization of the nanofibers was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Results: The SEM images showed the formation of PVA/PVP interfacial nanofibers aligned side by side, with a diameter of a few thousand nanometers on each side. By increasing the voltage from 20 kV to 40 kV during electrospinning, the diameter of the nanofibers on the PVA and PVP sides was successfully reduced by 60.8% and 66.3%, respectively. FTIR analysis confirmed the presence of both PVA and PVP in the bipolymeric interfacial nanofibers. TGA analysis demonstrated a weight retention of 14.28% compared to PVA, PVP, and the PVA/PVP blend even after degradation at 500°C. The Maxwell simulation of double bubble electrospinning revealed a stronger and more uniform electric field pattern at 40 kV compared to 20 kV. Conclusion: The study has demonstrated the potential of double bubble electrospinning for the fabrication of bipolymer nanofibers with an interface, opening new avenues and patents for the development of functional nanofibers. .
Collapse
Affiliation(s)
- Muhammad Ali
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ya Li
- College of Textile Science and Engineering (International Silk College), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ji-Huan He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Chen Z, Guan M, Bian Y, Yin X. Multifunctional Electrospun Nanofibers for Biosensing and Biomedical Engineering Applications. BIOSENSORS 2023; 14:13. [PMID: 38248390 PMCID: PMC10813457 DOI: 10.3390/bios14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Nanotechnology is experiencing unprecedented developments, leading to the advancement of functional nanomaterials. The properties that stand out include remarkable porosity, high-specific surface area, excellent loading capacity, easy modification, and low cost make electrospun nanofibers. In the biomedical field, especially in biosensors, they exhibit amazing potential. This review introduces the principle of electrospinning, describes several structures and biomaterials of electrospun nanofibers used for biomedicine, and summarizes the applications of this technology in biosensors and other biomedical applications. In addition, the technical challenges and limitations of electrospinning for biomedicine are discussed; however, more research work is needed to elucidate its full potential.
Collapse
Affiliation(s)
- Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (M.G.); (Y.B.); (X.Y.)
| | | | | | | |
Collapse
|
4
|
Onuh G, Bar-On R, Manor O. Particle Network Self-Assembly of Similar Size Sub-Micron Calcium Alginate and Polystyrene Particles Atop Glass. Macromol Biosci 2023; 23:e2300219. [PMID: 37551162 DOI: 10.1002/mabi.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Particle-mediated self-assembly, such as nanocomposites, microstructure formation in materials, and core-shell coating of biological particles, offers precise control over the properties of biological materials for applications in drug delivery, tissue engineering, and biosensing. The assembly of similar-sized calcium alginate (CAG) and polystyrene sub-micron particles is studied in an aqueous sodium nitrate solution as a model for particle-mediated self-assembly of biological and synthetic mixed particle species. The objective is to reinforce biological matrices by incorporating synthetic particles to form hybrid particulate networks with tailored properties. By varying the ionic strength of the suspension, the authors alter the energy barriers for particle attachment to each other and to a glass substrate that result from colloidal surface forces. The particles do not show monotonic adsorption trend to glass with ionic strength. Hence, apart from DLVO theory-van der Waals and electrostatic interactions-the authors further consider solvation and bridging interactions in the analysis of the particulate adsorption-coagulation system. CAG particles, which support lower energy barriers to attachment relative to their counterpart polystyrene particles, accumulate as dense aggregates on the glass substrate. Polystyrene particles adsorb simultaneously as detached particles. At high electrolyte concentrations, where electrostatic repulsion is largely screened, the mixture of particles covers most of the glass substrate; the CAG particles form a continuous network throughout the glass substrate with pockets of polystyrene particles. The particulate structure is correlated with the adjustable energy barriers for particle attachment in the suspension.
Collapse
Affiliation(s)
- Gideon Onuh
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Bar-On
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ofer Manor
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
5
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Surface Modified Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2023. [DOI: 10.1007/12_2022_143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Blaudez F, Vaquette C, Ivanovski S. Cell Seeding on 3D Scaffolds for Tissue Engineering and Disease Modeling Applications. Methods Mol Biol 2023; 2588:473-483. [PMID: 36418705 DOI: 10.1007/978-1-0716-2780-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Scaffold cell seeding is a crucial step for the standardization and homogeneous maturation of tissue engineered constructs. This is particularly critical in the context of additively manufactured scaffolds whereby large pore size and high porosity usually impedes the retention of the seeding solution resulting in poor seeding efficacy and heterogeneous cell distribution. To circumvent this limitation, a simple yet efficient cell seeding technique is described in this chapter consisting of preincubating the scaffold in 100% serum for 1 h leading to reproducible seeding. A proof of concept is demonstrated using highly porous melt electrowritten polycaprolactone scaffolds as the cell carrier. As cell density, cell distribution, and differentiation within the scaffold are important parameters, various assays are proposed to validate the seeding and perform quality control of the cellularized construct using techniques such as alizarin red, Sirius red, and immunostaining.
Collapse
Affiliation(s)
- Fanny Blaudez
- The University of Queensland, School of Dentistry, Brisbane, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Australia.,The University of Queensland, School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Brisbane, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, Australia. .,The University of Queensland, School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Brisbane, Australia.
| |
Collapse
|
8
|
Hochberg JD, Wirth DM, Pokorski JK. PET-RAFT to expand the surface-modification chemistry of melt coextruded nanofibers. Polym Chem 2023. [DOI: 10.1039/d2py01389d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Polymeric nanofibers have been widely used as scaffolds for tissue engineering, drug delivery, and filtration applications, among many others. This work describes new methods to modify chemically-inert fibers using PET-RAFT.
Collapse
Affiliation(s)
- Justin D. Hochberg
- Department of NanoEngineering, University of California San Diego, Jacobs School of Engineering, 9500 Gilman Dr, SME Building 243J, La Jolla, California 92093, USA
| | - David M. Wirth
- Department of NanoEngineering, University of California San Diego, Jacobs School of Engineering, 9500 Gilman Dr, SME Building 243J, La Jolla, California 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California San Diego, Jacobs School of Engineering, 9500 Gilman Dr, SME Building 243J, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Hochberg JD, Wirth DM, Pokorski JK. Surface-Modified Melt Coextruded Nanofibers Enhance Blood Clotting In Vitro. Macromol Biosci 2022; 22:e2200292. [PMID: 36122179 DOI: 10.1002/mabi.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Blood loss causes an estimated 1.9 million deaths per year globally, making new methods to stop bleeding and promote clot formation immediately following injury paramount. The fabrication of functional hemostatic materials has the potential to save countless lives by limiting bleeding and promoting clot formation following an injury. This work describes the melt manufacturing of poly(ε-caprolactone) nanofibers and their chemical functionalization to produce highly scalable materials with enhanced blood clotting properties. The nanofibers are manufactured using a high throughput melt coextrusion method. Once isolated, the nanofibers are functionalized with polymers that promote blood clotting through surface-initiated atom transfer radical polymerization. The functional nanofibers described herein speed up the coagulation cascade and produce more robust blood clots, allowing for the potential use of these functional nonwoven mats as advanced bandages.
Collapse
Affiliation(s)
- Justin D Hochberg
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David M Wirth
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Kulkarni D, Musale S, Panzade P, Paiva-Santos AC, Sonwane P, Madibone M, Choundhe P, Giram P, Cavalu S. Surface Functionalization of Nanofibers: The Multifaceted Approach for Advanced Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3899. [PMID: 36364675 PMCID: PMC9655053 DOI: 10.3390/nano12213899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/13/2023]
Abstract
Nanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application. Surface functionalization entirely changes physicochemical and biological properties of nanofibers. In physicochemical properties, wettability, melting point, glass transition temperature, and initial decomposition temperature significantly change offer several advantageous for nanofibers. Similarly, biological properties include cell adhesion, biocompatibility, and proliferation, also changes by functionalization of nanofibers. Various natural and synthetic materials polymers, metals, carbon materials, functional groups, proteins, and peptides, are currently used for surface modification of nanofibers. Various research studies across the globe demonstrated the usefulness of surface functionalized nanofibers in tissue engineering, wound healing, skin cancers, melanoma, and disease diagnosis. The delivery of drug through surface functionalized nanofibers results in improved permeation and bioavailability of drug which is important for better targeting of disease and therapeutic efficacy. This review provides a comprehensive insight about various techniques of surface functionalization of nanofibers along with its biomedical applications, toxicity assessment and global patent scenario.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Shubham Musale
- Formulation and Development Department, Aculife Healthcare Pvt. Ltd., Sachana, Ahmedabad 382150, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Pratiksha Sonwane
- Department of Chemistry, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Monika Madibone
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Puja Choundhe
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
13
|
Lee SJ, Nah H, Ko WK, Lee D, Moon HJ, Lee JS, Heo M, Hwang YS, Bang JB, An SH, Heo DN, Kwon IK. Facile Preparation of β-Cyclodextrin-grafted Chitosan Electrospun Nanofibrous Scaffolds as a Hydrophobic Drug Delivery Vehicle for Tissue Engineering Applications. ACS OMEGA 2021; 6:28307-28315. [PMID: 34723027 PMCID: PMC8552460 DOI: 10.1021/acsomega.1c04481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Despite advances in the bio-tissue engineering area, the technical basis to directly load hydrophobic drugs on chitosan (CTS) electrospun nanofibers (ENs) has not yet been fully established. In this study, we fabricated CTS ENs by using an electrospinning (ELSP) system, followed by surface modification using succinyl-beta-cyclodextrin (β-CD) under mild conditions. The β-CD-modified CTS (βCTS) ENs had slightly increased hydrophobicity compared to pristine CTS ENs as well as decreased residual amine content on the surface. Through FTIR spectroscopy and thermogravimetric analysis (TGA), we characterized the surface treatment physiochemically. In the drug release test, we demonstrated the stable and sustained release of a hydrophobic drug (e.g., dexamethasone) loaded on β-CD ENs. During in vitro biocompatibility assessments, the grafting of β-CD was shown to not reduce cell viability compared to pristine CTS ENs. Additionally, cells proliferated well on β-CD ENs, and this was confirmed by F-actin fluorescence staining. Overall, the material and strategies developed in this study have the potential to load a wide array of hydrophobic drugs. This could be applied as a drug carrier for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Haram Nah
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Wan-Kyu Ko
- Department
of Neurosurgery, CHA University, CHA Bundang
Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Donghyun Lee
- Laboratory
Animal Center, Daegu-Gyeongbuk Medical Innovation
Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ho-Jin Moon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Seo Lee
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min Heo
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Beum Bang
- Department
of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemum-gu, Seoul 02447, Republic of Korea
| | - Sang-Hyun An
- Laboratory
Animal Center, Daegu-Gyeongbuk Medical Innovation
Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Dong Nyoung Heo
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Il Keun Kwon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Engineered Membranes for Residual Cell Trapping on Microfluidic Blood Plasma Separation Systems: A Comparison between Porous and Nanofibrous Membranes. MEMBRANES 2021; 11:membranes11090680. [PMID: 34564497 PMCID: PMC8470088 DOI: 10.3390/membranes11090680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Blood-based clinical diagnostics require challenging limit-of-detection for low abundance, circulating molecules in plasma. Micro-scale blood plasma separation (BPS) has achieved remarkable results in terms of plasma yield or purity, but rarely achieving both at the same time. Here, we proposed the first use of electrospun polylactic-acid (PLA) membranes as filters to remove residual cell population from continuous hydrodynamic-BPS devices. The membranes hydrophilicity was improved by adopting a wet chemistry approach via surface aminolysis as demonstrated through Fourier Transform Infrared Spectroscopy and Water Contact Angle analysis. The usability of PLA-membranes was assessed through degradation measurements at extreme pH values. Plasma purity and hemolysis were evaluated on plasma samples with residual red blood cell content (1, 3, 5% hematocrit) corresponding to output from existing hydrodynamic BPS systems. Commercially available membranes for BPS were used as benchmark. Results highlighted that the electrospun membranes are suitable for downstream residual cell removal from blood, permitting the collection of up to 2 mL of pure and low-hemolyzed plasma. Fluorometric DNA quantification revealed that electrospun membranes did not significantly affect the concentration of circulating DNA. PLA-based electrospun membranes can be combined with hydrodynamic BPS in order to achieve high volume plasma separation at over 99% plasma purity.
Collapse
|
15
|
Grewal MG, Highley CB. Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomater Sci 2021; 9:4228-4245. [PMID: 33522527 PMCID: PMC8205946 DOI: 10.1039/d0bm01588a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extracellular matrix (ECM) is a water-swollen, tissue-specific material environment in which biophysiochemical signals are organized and influence cell behaviors. Electrospun nanofibrous substrates have been pursued as platforms for tissue engineering and cell studies that recapitulate features of the native ECM, in particular its fibrous nature. In recent years, progress in the design of electrospun hydrogel systems has demonstrated that molecular design also enables unique studies of cellular behaviors. In comparison to the use of hydrophobic polymeric materials, electrospinning hydrophilic materials that crosslink to form hydrogels offer the potential to achieve the water-swollen, nanofibrous characteristics of endogenous ECM. Although electrospun hydrogels require an additional crosslinking step to stabilize the fibers (allowing fibers to swell with water instead of dissolving) in comparison to their hydrophobic counterparts, researchers have made significant advances in leveraging hydrogel chemistries to incorporate biochemical and dynamic functionalities within the fibers. Consequently, dynamic biophysical and biochemical properties can be engineered into hydrophilic nanofibers that would be difficult to engineer in hydrophobic systems without strategic and sometimes intensive post-processing techniques. This Review describes common methodologies to control biophysical and biochemical properties of both electrospun hydrophobic and hydrogel nanofibers, with an emphasis on highlighting recent progress using hydrogel nanofibers with engineered dynamic complexities to develop culture systems for the study of biological function, dysfunction, development, and regeneration.
Collapse
Affiliation(s)
- M Gregory Grewal
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | | |
Collapse
|
16
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
17
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
18
|
Daglar O, Altinkok C, Acik G, Durmaz H. Electrospinning of Poly(1,4‐Cyclohexanedimethylene Acetylene Dicarboxylate): Study on the Morphology, Wettability, Thermal and Biodegradation Behaviors. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ozgun Daglar
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University Sarıyer Istanbul 34469 Turkey
| | - Cagatay Altinkok
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University Sarıyer Istanbul 34469 Turkey
| | - Gokhan Acik
- Department of Chemistry Faculty of Science and Letters Piri Reis University Tuzla TR‐Istanbul 34940 Turkey
| | - Hakan Durmaz
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University Sarıyer Istanbul 34469 Turkey
| |
Collapse
|
19
|
Ghane N, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Das O, Ramakrishna S. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. J Biomed Mater Res A 2020; 109:437-452. [PMID: 32856425 DOI: 10.1002/jbm.a.37092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, Singapore
| |
Collapse
|
20
|
Van de Voorde KM, Pokorski JK, Korley LTJ. Exploring Morphological Effects on the Mechanics of Blended Poly(lactic acid)/Poly(ε-caprolactone) Extruded Fibers Fabricated Using Multilayer Coextrusion. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kris M. Van de Voorde
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Arbade GK, Srivastava J, Tripathi V, Lenka N, Patro TU. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1648-1670. [PMID: 32402230 DOI: 10.1080/09205063.2020.1769799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time.
Collapse
Affiliation(s)
- Gajanan Kashinathrao Arbade
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India.,National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | - Nibedita Lenka
- National Centre for Cell Science, Pune, Maharashtra, India
| | - T Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
| |
Collapse
|
22
|
Redondo A, Jang D, Korley LTJ, Gunkel I, Steiner U. Electrospinning of Cellulose Nanocrystal-Reinforced Polyurethane Fibrous Mats. Polymers (Basel) 2020; 12:polym12051021. [PMID: 32369944 PMCID: PMC7284984 DOI: 10.3390/polym12051021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
We report the electrospinning of mechanically-tunable, cellulose nanocrystal (CNC)-reinforced polyurethanes (PUs). Using high-aspect ratio CNCs from tunicates, the stiffness and strength of electrospun PU/CNC mats are shown to generally increase. Furthermore, by tuning the electrospinning conditions, fibrous PU/CNC mats were created with either aligned or non-aligned fibers, as confirmed by scanning electron microscopy. PU/CNC mats having fibers aligned in the strain direction were stiffer and stronger compared to mats containing non-aligned fibers. Interestingly, fiber alignment was accompanied by an anisotropic orientation of the CNCs, as confirmed by wide-angle X-ray scattering, implying their alignment additionally benefits both stiffness and strength of fibrous PU/CNC nanocomposite mats. These findings suggest that CNC alignment could serve as an additional reinforcement mechanism in the design of stronger fibrous nanocomposite mats.
Collapse
Affiliation(s)
- Alexandre Redondo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland;
| | - Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (D.J.); (L.T.J.K.)
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (D.J.); (L.T.J.K.)
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland;
- Correspondence: (I.G.); (U.S.)
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland;
- Correspondence: (I.G.); (U.S.)
| |
Collapse
|
23
|
Optimization of ZnO Nanorods Growth on Polyetheresulfone Electrospun Mats to Promote Antibacterial Properties. Molecules 2020; 25:molecules25071696. [PMID: 32272751 PMCID: PMC7180436 DOI: 10.3390/molecules25071696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/23/2022] Open
Abstract
Zinc oxide (ZnO) nanorods grown by chemical bath deposition (CBD) on the surface of polyetheresulfone (PES) electrospun fibers confer antimicrobial properties to the obtained hybrid inorganic–polymeric PES/ZnO mats. In particular, a decrement of bacteria colony forming units (CFU) is observed for both negative (Escherichia coli) and positive (Staphylococcus aureus and Staphylococcus epidermidis) Grams. Since antimicrobial action is strictly related to the quantity of ZnO present on surface, a CBD process optimization is performed to achieve the best results in terms of coverage uniformity and reproducibility. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) provide morphological and compositional analysis of PES/ZnO mats while thermogravimetric analysis (TGA) is useful to assess the best process conditions to guarantee the higher amount of ZnO with respect to PES scaffold. Biocidal action is associated to Zn2+ ion leaching in solution, easily indicated by UV–Vis measurement of metallation of free porphyrin layers deposited on glass.
Collapse
|
24
|
|
25
|
Saravanan RK, Naqvi TK, Patil S, Dwivedi PK, Verma S. Purine-blended nanofiber woven flexible nanomats for SERS-based analyte detection. Chem Commun (Camb) 2020; 56:5795-5798. [DOI: 10.1039/d0cc00648c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a fabricated nanocomposite as a flexible Surface-Enhanced Raman Scattering (SERS) substrate for uric acid detection up to 10−7 M (100 nM).
Collapse
Affiliation(s)
- R. Kamal Saravanan
- Department of Chemistry Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Tania K. Naqvi
- Centre for Nanoscience Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sandip Patil
- E-Spin Nanotech Pvt. Ltd
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Prabhat K. Dwivedi
- Centre for Nanoscience Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sandeep Verma
- Department of Chemistry Indian Institute of Technology Kanpur
- Kanpur 208016
- India
- Centre for Nanoscience Indian Institute of Technology Kanpur
- Kanpur 208016
| |
Collapse
|
26
|
Berton F, Porrelli D, Di Lenarda R, Turco G. A Critical Review on the Production of Electrospun Nanofibres for Guided Bone Regeneration in Oral Surgery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E16. [PMID: 31861582 PMCID: PMC7023267 DOI: 10.3390/nano10010016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Nanofibre-based membranes or scaffolds exhibit high surface-to-volume ratio, which allows an improved cell adhesion, representing an attractive subgroup of biomaterials due to their unique properties. Among several techniques of nanofiber production, electrospinning is a cost-effective technique that has been, to date, attractive for several medical applications. Among these, guided bone regeneration is a surgical procedure in which bone regeneration, due to bone atrophy following tooth loss, is "guided" by an occlusive barrier. The membrane should protect the initial blood clot from any compression, shielding the bone matrix during maturation from infiltration of soft tissues cells. This review will focus its attention on the application of electrospinning (ELS) in oral surgery bone regeneration. Despite the abundance of published papers related to the electrospinning technique applied in the field of bone regeneration of the jaws, to the authors' knowledge, no articles report clinical application of these structures. Moreover, only a few records can be found with in vivo application. Therefore, no human studies have to date been detectable. New approaches such as multifunctional multilayering and coupling with bone promoting factors or antimicrobial agents, makes this technology very attractive. However, greater efforts should be made by researchers and companies to turn these results into clinical practice.
Collapse
Affiliation(s)
- Federico Berton
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (D.P.); (R.D.L.); (G.T.)
| | | | | | | |
Collapse
|
27
|
Bio-orthogonal click reaction-enabled highly specific in situ cellularization of tissue engineering scaffolds. Biomaterials 2019; 230:119615. [PMID: 31776020 DOI: 10.1016/j.biomaterials.2019.119615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022]
Abstract
Tissue engineering generally utilizes natural or synthetic scaffolds to repair or replace damaged tissues. However, due to the lack of guidance of biological signals, most of the implanted scaffolds have always suffered from poor in vivo cellularization. Herein, we demonstrate a bio-orthogonal reaction-based strategy to realize in situ specific and fast cellularization of tissue engineering scaffold. DBCO-modified PCL-PEG (PCL-PEG-DBCO) polymer was synthesized and then fabricated into PCL-PEG-DBCO film through electrospinning. Meanwhile, azide-labeled macrophages (N3 (+) macrophages) were obtained through metabolic glycoengineering. Through a series of in vitro dynamic and in vivo characterization, DBCO-modified films were noted to dramatically increase the selective capture efficiency and survival rate of N3 (+) cells. Additionally, there is negligible influence of covalent conjugation on cell viability and proliferation, indicating the feasibility of the bio-orthogonal click reaction-based tissue engineering strategy. Overall, this work shows the advantages of an in situ bio-orthogonal click reaction in realizing highly specific, efficient, and long-lasting scaffold cellularization. We anticipate that this general strategy would be widely applicable and useful in tissue engineering and regenerative medicine in the near future.
Collapse
|
28
|
Huang W, Xiao Y, Shi X. Construction of Electrospun Organic/Inorganic Hybrid Nanofibers for Drug Delivery and Tissue Engineering Applications. ADVANCED FIBER MATERIALS 2019; 1:32-45. [DOI: 10.1007/s42765-019-00007-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2025]
|
29
|
Onak G, Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019; 6:231-240. [PMID: 31404337 PMCID: PMC6683955 DOI: 10.1093/rb/rbz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, Bornova, İzmir, Turkey
| |
Collapse
|
30
|
Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 2019; 134:673-694. [PMID: 31054302 DOI: 10.1016/j.ijbiomac.2019.04.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type of damages is one of the most important health problems with an increasing incidence worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor organs, as well as immunological problems. In this context, tissue engineering (TE) was introduced as a novel and versatile approach for restoring tissue/organ function using living cells, scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) support material, provide physical and chemical cues for seeding cells and has an essential role in cell missions. Among the wide verity of scaffolding materials, natural or synthetic biopolymers are the most commonly biomaterials mainly due to their unique physicochemical and biological features. In this context, naturally occurring biological macromolecules are particular of interest owing to their low immunogenicity, excellent biocompatibility and cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding applications. In this review, we highlighted the potentials of natural and synthetic polymers as scaffolding materials. The properties, advantages, and disadvantages of both polymer types as well as the current status, challenges, and recent progresses regarding the application of them as scaffolding biomaterials are also discussed.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
31
|
Nagrath M, Alhalawani A, Rahimnejad Yazdi A, Towler MR. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:521-538. [PMID: 31029347 DOI: 10.1016/j.msec.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Malvika Nagrath
- Department of Biomedical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada
| | - Adel Alhalawani
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada
| | - Mark R Towler
- Department of Biomedical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada.
| |
Collapse
|
32
|
Yang W, Zhang M, Li X, Jiang J, Sousa AMM, Zhao Q, Pontious S, Liu L. Incorporation of Tannic Acid in Food-Grade Guar Gum Fibrous Mats by Electrospinning Technique. Polymers (Basel) 2019; 11:E141. [PMID: 30960126 PMCID: PMC6402038 DOI: 10.3390/polym11010141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
The use of polysaccharides to produce functional micro- or nanoscale fibrous mats has attracted growing interest for their food-grade applications. In this study, the characterization and electro-spinnability of guar gum (GG) solutions loaded with tannic acid (TA) was demonstrated. Food-grade antioxidant materials were successfully produced by electrospinning while incorporating different loads of TA into GG fibers. Bead-free GG-TA fibers could be fabricated from GG solution (2 wt %) with 10 wt % TA. Increasing the amount of TA led to fibers with defects and larger diameter sizes. Fourier Transformed Infrared Spectroscopy and X-ray Diffraction of neat GG and TA loaded GG fibrous mats suggested that inclusion of TA interrupted the hydrogen bonding and that a higher density of the ordered junction zones formed with the increased TA. The high TA incorporation efficiency and retained antioxidant activity of the fibrous mats afford a potential application in active edible film or drug delivery system.
Collapse
Affiliation(s)
- Weiqiao Yang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Jiesheng Donghui Fresh-keeping Technology Co., Ltd, Tianjin 300403, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianan Jiang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ana M M Sousa
- Dairy and Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Sherri Pontious
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
33
|
Niu J, Guo J, Ding R, Li X, Li Y, Xiao D, Zhou C. An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. J Mater Chem B 2019. [DOI: 10.1039/c9tb00392d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The BCG–PS/PVP electrospun fibrous membrane can rapidly, sensitively and conveniently sense the critical pH point of 5.5 of dental caries.
Collapse
Affiliation(s)
- Jingjing Niu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Jia Guo
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Ruolin Ding
- West China School of Stomatology
- Sichuan University
- Chengdu
- China
| | - Xiaoling Li
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Dan Xiao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Cuisong Zhou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
34
|
Janghela S, Neeraj NS, Agarwal N, Agarwal K, Roy D, Mukhopadhyay K, Prasad NE. 'Nano on micro' hierarchical porous all carbon structures: an insight into interfacial interactions with bacteria. Phys Chem Chem Phys 2018; 20:29847-29855. [PMID: 30468231 DOI: 10.1039/c8cp05570j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Micron long carbon nanofibers (CNFs) were grown on porous carbon beads to give an active surface for rapid immobilization of guest molecules. The fabrication of nanostructures using a catalytic route involving chemical vapour deposition on a porous substrate was accomplished by the controlled synthesis of iron nanoclusters on the surface of porous carbon beads. The challenge of catalyst nanoparticle diffusion into the porous substrate was addressed by using iron coordinated ligand complexes and optimizing the loading percentage of metal salts onto beads. The effect of using tethered bottom up surface processed CNFs on the porous beads' morphologies was established using structural characterization. The protruding architecture of CNFs on the porous carbon surface was subjected to bacterial colonisation in order to determine the efficiency of cell conjugation onto hairy structures, particularly at a low concentration. The interfaces of immobilized bacteria on the textured surface were studied by varying the pH and external physical stimuli to check the biofilm formation. The strategy of fabricating all carbon porous beads, which had topologically controlled 'nano on micro' geometries, to give fast immobilization of guest molecules could be useful in the future for developing an active disinfectant surface.
Collapse
Affiliation(s)
- Shriram Janghela
- Directorate of Nanomaterials and Technologies, DMSRDE, GT Road, Kanpur, India-13.
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen X, Fu L, Lu Q, Wu X, Xie S. Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3881. [PMID: 30423880 PMCID: PMC6263497 DOI: 10.3390/s18113881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022]
Abstract
Liquid droplet and quasi-droplet whispering gallery mode (WGM) microcavities have been widely studied recently for the enhanced spatial overlap between the liquid and WGM field, especially in sensing applications. However, the fragile cavity structure and the evaporation of liquid limit its practical applications. Here, stable, packaged, quasi-droplet and droplet microcavities are proposed and fabricated for thermal sensing with high sensitivity. The sensitivity and electromagnetic field intensity distribution are analyzed by Mie theory, and a quantified definition of the quasi-droplet is presented for the first time to the best of our knowledge. By doping dye material directly into the liquid, lasing packaged droplet and quasi-droplet microcavity sensors with a high thermal sensitivity of up to 205.3 pm/°C are experimentally demonstrated. The high sensitivity, facile fabrication, and mechanically robust properties of the optofluidic, packaged droplet microresonator make it a promising candidate for future integrated photonic devices.
Collapse
Affiliation(s)
- Xiaogang Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Liang Fu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Qijing Lu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Xiang Wu
- Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Shusen Xie
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
36
|
Cheng J, Li H, Cao Z, Wu D, Liu C, Pu H. Nanolayer coextrusion: An efficient and environmentally friendly micro/nanofiber fabrication technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:292-301. [PMID: 30573253 DOI: 10.1016/j.msec.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
Researchers have developed many types of nanoscale materials with different properties. Among them, nanofibers have recently attracted increasing interest and attention due to their functional versatility and potential applications in diverse industries, including tapes, filtration, energy generation, and biomedical technologies. Nanolayer coextrusion, a novel polymer melt fiber processing technology, has gradually received attention due to its environmental friendliness, efficiency, simplicity and ability to be mass-produced. Compared with conventional techniques, nanolayer coextruded non-woven nanofibrous mats offer advantages such as a tunable fiber diameter, high porosity, high surface area to volume ratio, and the potential to manufacture composite nanofibers with different components to achieve desired structures and properties. Dozens of thermoplastic polymers have been coextruded for various applications, and the variety of polymers has gradually continued to increase. This review presents an overview of the nanolayer coextrusion technique and its promising advantages and potential applications. We discuss nanolayer coextrusion theory and the parameters (polymer and processing) that significantly affect the fiber morphology and properties. We focus on varied applications of nanolayer coextruded fibers in different fields and conclude by describing the future potential of this novel technology.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Changzhou 213016, China.
| | - Hongting Pu
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
37
|
Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1478. [PMID: 30127246 PMCID: PMC6120038 DOI: 10.3390/ma11081478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress in stem cell biology has resulted in a major current focus on effective modalities to promote directed cellular behavior for clinical therapy. The fundamental principles of tissue engineering are aimed at providing soluble and insoluble biological cues to promote these directed biological responses. Better understanding of extracellular matrix functions is ensuring optimal adhesive substrates to promote cell mobility and a suitable physical niche to direct stem cell responses. Further, appreciation of the roles of matrix constituents as morphogen cues, termed matrikines or matricryptins, are also now being directly exploited in biomaterial design. These insoluble topological cues can be presented at both micro- and nanoscales with specific fabrication techniques. Progress in development and molecular biology has described key roles for a range of biological molecules, such as proteins, lipids, and nucleic acids, to serve as morphogens promoting directed behavior in stem cells. Controlled-release systems involving encapsulation of bioactive agents within polymeric carriers are enabling utilization of soluble cues. Using our efforts at dental craniofacial tissue engineering, this narrative review focuses on outlining specific biomaterial fabrication techniques, such as electrospinning, gas foaming, and 3D printing used in combination with polymeric nano- or microspheres. These avenues are providing unprecedented therapeutic opportunities for precision bioengineering for regenerative applications.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Malvika Nagrath
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Sasikumar Ponnusamy
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| | - Praveen R Arany
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
38
|
Process study, development and degradation behavior of different size scale electrospun poly(caprolactone) and poly(lactic acid) fibers. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1475-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Cheng J, Pu H. A facile method to prepare polyvinylidene fluoride composite nanofibers with high photocatalytic activity via nanolayer coextrusion. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
de Oliveira FCS, Olvera D, Sawkins MJ, Cryan SA, Kimmins SD, da Silva TE, Kelly DJ, Duffy GP, Kearney C, Heise A. Direct UV-Triggered Thiol–ene Cross-Linking of Electrospun Polyester Fibers from Unsaturated Poly(macrolactone)s and Their Drug Loading by Solvent Swelling. Biomacromolecules 2017; 18:4292-4298. [DOI: 10.1021/acs.biomac.7b01335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando C. S. de Oliveira
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Dinorath Olvera
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael J. Sawkins
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sally-Ann Cryan
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Scott D. Kimmins
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Tatiane Eufrasio da Silva
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Daniel J. Kelly
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Garry P. Duffy
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Anatomy,
School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Cathal Kearney
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andreas Heise
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
41
|
Li B, Kan L, Zhang X, Li J, Li R, Gui Q, Qiu D, He F, Ma N, Wang Y, Wei H. Biomimetic Bone-like Hydroxyapatite by Mineralization on Supramolecular Porous Fiber Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8493-8502. [PMID: 28803478 DOI: 10.1021/acs.langmuir.7b02394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxyapatite (HA), the main inorganic component of bone tissue, is mineralized with collagen fibril scaffolds during bone formation. Inspired by the process, a self-assembled porous network architecture was designed and synthesized by using the 2-ureido-4[1H]-pyrimidone (UPy) modified glycerol molecule UPy-Gly, which was further utilized as a template for biomimetic mineralization. When incubated in simulated body fluid (SBF), the HA nucleus first formed in the holes of the template by the induction of hydroxyls on the surface, grew along the nanofibers, and fused with the template to fabricate hydroxyapatite composites (UPy-Gly/HA). Transmission electron microscopic observation demonstrates that the mineral clusters are accumulated by lamella-like nano hydroxyapatite and the elasticity modulus measured by atomic force microscopy is about 5.5 GPa, which is quite close to the natural cancellous bone tissue of human both in structure and in mechanical properties. The Cell Counting Kit 8 (CCK-8) assay of UPy-Gly and UPy-Gly/HA shows noncytotoxicity to mouse fibroblast L-929 cells. This bioinspired composite will be a promising material for potential use in bone tissue implantation and regeneration engineering.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Lei Kan
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Xinyue Zhang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Jie Li
- School of Packaging and Printing Engineering, Tianjin University of Science and Technology , Tianjin 300222, China
| | - Ruiting Li
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Qinyuan Gui
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Dengli Qiu
- Bruker (Beijing) Scientific Technology Co., Ltd. , Beijing 100081, China
| | - Fei He
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
42
|
Tanes ML, Xue J, Xia Y. A General Strategy for Generating Gradients of Bioactive Proteins on Electrospun Nanofiber Mats by Masking with Bovine Serum Albumin. J Mater Chem B 2017; 5:5580-5587. [PMID: 28848651 PMCID: PMC5571829 DOI: 10.1039/c7tb00974g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrospun nanofibers are widely used in tissue engineering owing to their capability to mimic the structures and architectures of various types of extracellular matrices. However, it has been difficult to incorporate a biochemical cue into the physical cue provided by the nanofibers. Here we report a simple and versatile method for generating gradients of bioactive proteins on nanofiber mats. We establish that the adsorption of bovine serum albumin (BSA) onto nanofibers is a time- and concentration-dependent process. By linearly increasing the volume of BSA solution introduced into a container, a gradient in BSA is readily generated across the length of a vertically oriented strip of nanofibers. Next, the bare regions uncovered by BSA can be filled with the bioactive protein of interest. In demonstrating the potential application, we examine the outgrowth of neurites from dorsal root ganglion (DRG) isolated from chick embryos and then seeded on aligned polycaprolactone nanofibers covered by nerve growth factor (NGF) with a uniform coverage or in a gradient. In the case of uniform coverage, the neurites extending from DRG show essentially the same length on either side of the DRG cell mass. For the sample with a gradient in NGF, the neurites extending along the gradient (i.e., increase of NGF concentration) were significantly longer than the neurites extending against the gradient.
Collapse
Affiliation(s)
- Michael L Tanes
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Hackett AJ, Malmström J, Travas-Sejdic J. Functionalization of conducting polymers for biointerface applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Liu C, Shen J, Yeung KWK, Tjong SC. Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. ACS Biomater Sci Eng 2017; 3:471-486. [DOI: 10.1021/acsbiomaterials.6b00766] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chen Liu
- Department
of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Jie Shen
- Department
of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Wai Kwok Yeung
- Department
of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sie Chin Tjong
- Department
of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
45
|
Kim SE, Jordan AM, Korley LTJ, Pokorski JK. Drawing in poly(ε-caprolactone) fibers: tuning mechanics, fiber dimensions and surface-modification density. J Mater Chem B 2017; 5:4499-4506. [DOI: 10.1039/c7tb00096k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work describes the complex interplay between mechanical manipulation of coextruded fibers and the resulting photochemical yield of surface modification.
Collapse
Affiliation(s)
- Si-Eun Kim
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Alex M. Jordan
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - LaShanda T. J. Korley
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| |
Collapse
|
46
|
Viswanath V, Maity S, Bochinski JR, Clarke LI, Gorga RE. Enhanced Crystallinity of Polymer Nanofibers without Loss of Nanofibrous Morphology via Heterogeneous Photothermal Annealing. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vidya Viswanath
- Fiber
and Polymer Science Program and ‡Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Somsubhra Maity
- Fiber
and Polymer Science Program and ‡Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jason R. Bochinski
- Fiber
and Polymer Science Program and ‡Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Laura I. Clarke
- Fiber
and Polymer Science Program and ‡Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Russell E. Gorga
- Fiber
and Polymer Science Program and ‡Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
47
|
Lenart WR, Jang KS, Jordan AM, Baer E, Korley LT. Mechanically tunable dual-component polyolefin fiber mats via two-dimensional multilayer coextrusion. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|