1
|
Microplastics and nanoplastics in food, water, and beverages, part II. Methods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
3
|
Ruggeri FS, Miller AM, Vendruscolo M, Knowles TPJ. Unraveling the Physicochemical Determinants of Protein Liquid-liquid Phase Separation by Nanoscale Infrared Vibrational Spectroscopy. Bio Protoc 2021; 11:e4122. [PMID: 34541041 DOI: 10.21769/bioprotoc.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/02/2022] Open
Abstract
The phenomenon of reversible liquid-liquid phase separation of proteins underlies the formation of membraneless organelles, which are crucial for cellular processes such as signalling and transport. In addition, it is also of great interest to uncover the mechanisms of further irreversible maturation of the functional dense liquid phase into aberrant insoluble assemblies due to its implication in human disease. Recent advances in methods based on atomic force microscopy (AFM) have made it possible to study protein condensates at the nanometer level, providing unprecedented information on the nature of the intermolecular interactions governing phase separation. Here, we provide an in-depth description of a protocol for the characterisation of the morphology, stiffness, and chemical properties of protein condensates using infrared nanospectroscopy (AFM-IR).
Collapse
Affiliation(s)
- Francesco S Ruggeri
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands.,Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alyssa M Miller
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands
| | - Michele Vendruscolo
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands
| | - Tuomas P J Knowles
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands.,Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Liu H, Piper JA, Li M. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation. Anal Chem 2021; 93:10955-10965. [PMID: 34323465 DOI: 10.1021/acs.analchem.1c01861] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emulsion generation approaches in most cases are highly polydisperse, making them less desirable for quantitative assays, controlled biomaterial synthesis, and entrapped ingredient release. Microfluidic devices can generate monodisperse DEs with controllable size, morphology, and production rate, but these generally require multistep fabrication processes and use of different solvents or bulky external instrumentation to pattern channel wettability. To overcome these limitations, we propose a rapid, simple, and inexpensive method to spatially pattern wettability in microfluidic devices for the continuous generation of monodisperse DEs. This is achieved by applying corona-plasma treatment to a select zone of the microchannel surface aided by a custom-designed corona resistance microchannel to strictly confine the plasma-treatment zone in a single polydimethylsiloxane (PDMS) microfluidic device. The properties of PDMS channel surfaces and key microchannel regions for DE generation are characterized under different levels of treatment. The size, shell thickness, and number of inner cores of generated DEs are shown to be highly controllable by tuning the phase flow rate ratios. Using DEs as templates, we successfully achieve a one-step generation and collection of gelatin microgels. Additionally, we demonstrate the biological capability of generated DEs by flow cytometric screening of the encapsulation and growth of yeast cells within DEs. We expect that the proposed approach will be widely used to create microfluidic devices with more complex wettability patterns.
Collapse
Affiliation(s)
- Hangrui Liu
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Department of Physics and Astronomy, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Department of Physics and Astronomy, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
5
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
6
|
Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers. Nat Commun 2021; 12:688. [PMID: 33514697 PMCID: PMC7846799 DOI: 10.1038/s41467-020-20782-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Significant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases. Our understanding of the molecular mechanisms underlying pathological protein aggregation remains incomplete. Here, single molecule infrared nanospectroscopy (AFM-IR) offers insight into the structure of Aβ42 oligomeric and fibrillar species and their interaction with an aggregation inhibitor, paving the way for single molecule drug discovery studies.
Collapse
|
7
|
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 2020; 11:2945. [PMID: 32522983 PMCID: PMC7287102 DOI: 10.1038/s41467-020-16728-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
Collapse
Affiliation(s)
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roman Schmid
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
8
|
Ruggeri FS, Flagmeier P, Kumita JR, Meisl G, Chirgadze DY, Bongiovanni MN, Knowles TPJ, Dobson CM. The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS NANO 2020; 14:5213-5222. [PMID: 32159944 DOI: 10.1021/acsnano.9b09676] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteinaceous deposits of α-synuclein amyloid fibrils are a hallmark of human disorders including Parkinson's disease. The onset of this disease is also associated with five familial mutations of the gene encoding the protein. However, the mechanistic link between single point mutations and the kinetics of aggregation, biophysical properties of the resulting amyloid fibrils, and an increased risk of disease is still elusive. Here, we demonstrate that the disease-associated mutations of α-synuclein generate different amyloid fibril polymorphs compared to the wild type protein. Remarkably, the α-synuclein variants forming amyloid fibrils of a comparable structure, morphology, and heterogeneity show similar microscopic steps defining the aggregation kinetics. These results demonstrate that a single point mutation can significantly alter the distribution of fibrillar polymorphs in α-synuclein, suggesting that differences in the clinical phenotypes of familial Parkinson's disease could be associated with differences in the mechanism of formation and the structural characteristics of the aggregates.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Marie N Bongiovanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Protein Microgels from Amyloid Fibril Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:223-263. [PMID: 31713201 DOI: 10.1007/978-981-13-9791-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nanofibrillar forms of amyloidogenic proteins were initially discovered in the context of protein misfolding and disease but have more recently been found at the origin of key biological functionality in many naturally occurring functional materials, such as adhesives and biofilm coatings. Their physiological roles in nature reflect their great strength and stability, which has led to the exploration of their use as the basis of artificial protein-based functional materials. Particularly for biomedical applications, they represent attractive building blocks for the development of, for instance, drug carrier agents due to their inherent biocompatibility and biodegradability. Furthermore, the propensity of proteins to self-assemble into amyloid fibrils can be exploited under microconfinement, afforded by droplet microfluidic techniques. This approach allows the generation of multi-scale functional microgels that can host biological additives and can be designed to incorporate additional functionality, such as to aid targeted drug delivery.
Collapse
|
10
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
11
|
Affiliation(s)
- Aleksei Solomonov
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
12
|
Wright MA, Ruggeri FS, Saar KL, Challa PK, Benesch JLP, Knowles TPJ. Analysis of αB-crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst 2019; 144:4413-4424. [PMID: 31215547 DOI: 10.1039/c9an00382g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, significant advancements have been made in the understanding of the population distributions and dynamic oligomeric states of the molecular chaperone αB-crystallin and its core domain variants. In this work, we provide solution-phase evidence of the polydispersity of αB-crystallin using microfluidic methods, used for separating the oligomeric species present in solution according to their different electrophoretic mobilities on-chip in a matter of seconds. We in particular demonstrate that microfluidic high-field electrophoresis and diffusion can detect the oligomerisation of these highly dynamic molecular chaperones and characterise the dominant oligomeric species present. We thereby provide a robust microfluidic method for characterising the individual species within complex protein mixtures of biological relevance.
Collapse
Affiliation(s)
- Maya A Wright
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK. and Fluidic Analytics Ltd., Unit 5 Chesterton Mill, French's Road CB4 3NP, UK
| | | | - Kadi L Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Pavan K Challa
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Justin L P Benesch
- Department of Physical and Theoretical Chemistry, University of Oxford, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK. and Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
13
|
Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 2019; 664:134-148. [PMID: 30742801 PMCID: PMC6420408 DOI: 10.1016/j.abb.2019.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Tomas Šneideris
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
14
|
Liu X, Toprakcioglu Z, Dear AJ, Levin A, Ruggeri FS, Taylor CG, Hu M, Kumita JR, Andreasen M, Dobson CM, Shimanovich U, Knowles TPJ. Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromol Rapid Commun 2019; 40:e1800898. [DOI: 10.1002/marc.201800898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Xizhou Liu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zenon Toprakcioglu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alexander J. Dear
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Aviad Levin
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Francesco Simone Ruggeri
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher G. Taylor
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Mengsha Hu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Janet R. Kumita
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Maria Andreasen
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Dr. M. AndreasenAarhus University Wilhelm Meyer's Allé 3 8000 Aarhus Denmark
| | - Christopher M. Dobson
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Tuomas P. J. Knowles
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Prof. T. P. J. KnowlesDepartment of Physics J J Thomson Avenue Cambridge CB3 0HE UK
| |
Collapse
|
15
|
Ruggeri FS, Marcott C, Dinarelli S, Longo G, Girasole M, Dietler G, Knowles TPJ. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. Int J Mol Sci 2018; 19:E2582. [PMID: 30200270 PMCID: PMC6163177 DOI: 10.3390/ijms19092582] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
During their lifespan, Red blood cells (RBC), due to their inability to self-replicate, undergo an ageing degradation phenomenon. This pathway, both in vitro and in vivo, consists of a series of chemical and morphological modifications, which include deviation from the biconcave cellular shape, oxidative stress, membrane peroxidation, lipid content decrease and uncoupling of the membrane-skeleton from the lipid bilayer. Here, we use the capabilities of atomic force microscopy based infrared nanospectroscopy (AFM-IR) to study and correlate, with nanoscale resolution, the morphological and chemical modifications that occur during the natural degradation of RBCs at the subcellular level. By using the tip of an AFM to detect the photothermal expansion of RBCs, it is possible to obtain nearly two orders of magnitude higher spatial resolution IR spectra, and absorbance images than can be obtained on diffraction-limited commercial Fourier-transform Infrared (FT-IR) microscopes. Using this approach, we demonstrate that we can identify localized sites of oxidative stress and membrane peroxidation on individual RBC, before the occurrence of neat morphological changes in the cellular shape.
Collapse
Affiliation(s)
| | - Curtis Marcott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Light Light Solutions, Athens, GA 30608, USA.
| | - Simone Dinarelli
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Longo
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Marco Girasole
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Tuomas P J Knowles
- Department of Chemistry, Cambridge University, Cambridge CB21EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
16
|
Ramer G, Ruggeri FS, Levin A, Knowles TPJ, Centrone A. Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS NANO 2018; 12:6612-6619. [PMID: 29932670 PMCID: PMC11404133 DOI: 10.1021/acsnano.8b01425] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The folding and acquisition of proteins native structure is central to all biological processes of life. By contrast, protein misfolding can lead to toxic amyloid aggregates formation, linked to the onset of neurodegenerative disorders. To shed light on the molecular basis of protein function and malfunction, it is crucial to access structural information on single protein assemblies and aggregates under native conditions. Yet, current conformation-sensitive spectroscopic methods lack the spatial resolution and sensitivity necessary for characterizing heterogeneous protein aggregates in solution. To overcome this limitation, here we use photothermal-induced resonance to demonstrate that it is possible to acquire nanoscale infrared spectra in water with high signal-to-noise ratio (SNR). Using this approach, we probe supramolecular aggregates of diphenylalanine, the core recognition module of the Alzheimer's β-amyloid peptide, and its derivative Boc-diphenylalanine. We achieve nanoscale resolved IR spectra and maps in air and water with comparable SNR and lateral resolution, thus enabling accurate identification of the chemical and structural state of morphologically similar networks at the single aggregate ( i. e., fibril) level.
Collapse
Affiliation(s)
- Georg Ramer
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| | | | - Aviad Levin
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Cavendish Laboratory, Department of Physics , University of Cambridge , J J Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Andrea Centrone
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|
17
|
Chahinez D, Reji T, Andreas R. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures. RSC Adv 2018; 8:19616-19626. [PMID: 35540971 PMCID: PMC9080668 DOI: 10.1039/c8ra03261k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023] Open
Abstract
Tunable plasmonic noble metal nanoparticles are indispensable for chemical sensors and optical near field enhancement applications. Laser wavelengths within the absorption spectrum of the nanoparticle and Localized Surface Plasmon Resonances (LSPR) in the visible and near infrared range are the key points to be met for the successful utilization in the field of aforementioned high sensitivity sensors. This way, Surface Enhanced Raman Spectroscopy (SERS) has been pushed to the sensitivity level of single molecule. The tunability, i.e. the modulation of the surface plasmon resonance wavelength as a function of the ambient refractive index is one of the important criteria to be understood clearly. Among various noble metals, gold and silver nanoparticles have the strongest surface enhancement factors for the Raman signal and their tunability for many practical applications has been experimentally demonstrated. We present a comprehensive numerical investigation by means of a finite element analysis on Ag/Au core-shell nanospheres including agglomerated and non-agglomerated dimers. Tunability as a function of shell thickness, total nanosphere radius and fraction of overlap between the dimer is discussed. Our studies show that tunability is considerably affected by the nanosphere radius rather than the shell thickness. These findings may be helpful in the synthesis of nanoplasmonic structures, especially related to an optimized use of gold as the shell material for the targeted application.
Collapse
Affiliation(s)
- Dab Chahinez
- Nanophotonics-Nanoelectronics, Institut National de la Recherche Scientifique INRS-EMT 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| | - Thomas Reji
- Division of Research and Development, Lovely Professional University G.T. Road Phagwara Punjab 144411 India
| | - Ruediger Andreas
- Nanophotonics-Nanoelectronics, Institut National de la Recherche Scientifique INRS-EMT 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
- Department of Electrical Engineering and Information Technology, Université de Sherbrooke, 2500, Boul. Université Sherbrooke J1K 2R1 Canada
| |
Collapse
|
18
|
Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA, Lin JQ, Phillips EC, Miyashita A, Williams D, Ströhl F, Meadows W, Ferry R, Dardov VJ, Tartaglia GG, Farrer LA, Kaminski Schierle GS, Kaminski CF, Holt CE, Fraser PE, Schmitt-Ulms G, Klenerman D, Knowles T, Vendruscolo M, St George-Hyslop P. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. Cell 2018; 173:720-734.e15. [PMID: 29677515 PMCID: PMC5927716 DOI: 10.1016/j.cell.2018.03.056] [Citation(s) in RCA: 629] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.
Collapse
Affiliation(s)
- Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Suzanne J Randle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Juan A Varela
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Emma C Phillips
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - William Meadows
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Rodylyn Ferry
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Victoria J Dardov
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gian G Tartaglia
- Centre for Genomic Regulation, the Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Lindsay A Farrer
- Departments of Medicine, Neurology, and Ophthalmology and Departments of Epidemiology and Biostatistics, Boston University, Boston, MA 02118, USA
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada.
| |
Collapse
|
19
|
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Chen R, Chen X, Jin X, Zhu X. Morphology design and control of polymer particles by regulating the droplet flowing mode in microfluidic chips. Polym Chem 2017. [DOI: 10.1039/c7py00440k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymer particles with different morphologies were prepared by regulating the flowing mode of droplets.
Collapse
Affiliation(s)
- Rui Chen
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication
- Department of Micro/Nano Electronics
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|