1
|
Mahboob MBH, Subramaniam S, Tait JR, Grace JL, Elliott AG, Floyd H, Zuegg J, Quinn JF, Prestidge CA, Landersdorfer CB, Whittaker MR. Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals. J Mater Chem B 2025; 13:2776-2795. [PMID: 39869058 DOI: 10.1039/d4tb02317j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers via an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group. Subsequent ring-opening of the pendant oxazolone group with various functional amines [i.e., 2-(2-aminoethyl)-1,3-di-Boc-guanidine (BG), 1-(3-aminopropyl)imidazole (IMID), N-Boc-ethylenediamine (BEDA), or N,N-dimethylethylenediamine (DMEN)] yielded an 11 functional cationic lipidated oligomer (CLOs) library, which comprised different cationic elements with the same terminal lipid cholesterol element. These CLOs exhibited greater activity against all tested fungal pathogens (Candida albicans, Cryptococcus neoformans, Candida tropicalis, Candida glabrata, Cryptococcus deuterogattii, and Candida auris), compared to the bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus [MRSA]). Specifically, the DMEN and BEDA (after deprotection) series exhibited superior antifungal activities 4-16 times greater [determined by the minimum inhibitory concentration (MIC) in μg mL-1] than the clinically relevant antifungal fluconazole. Two 'hit' CLOs (Chol-DMEN-25 and Chol-BEDA-10) were identified, which inhibited both single sp. (C. albicans, C. tropicalis, C. neoformans, or C. gattii) and dual sp. (C. albicans and C. tropicalis) biofilm formation, and were able to attenuate mature biofilms, with a >50% mature biofilm biomass reduction at 128 μg mL-1. Co-delivery of fluconazole with two 'hit' CLOs demonstrated additive and synergistic effects on the aforementioned single-species and dual-species fungi biofilms, with a synergy score (SS) ranging from ∼3 to 15 and most synergistic area score (MSAS) ∼13-29 (by a Bliss independence model). The mechanistic studies (PI assay and nucleic acid release assay) revealed that these CLOs disrupted the integrity of fungal cell membranes. These results demonstrate that cholesterol terminated CLOs are potential antifungal candidates.
Collapse
Affiliation(s)
- Muhammad Bilal Hassan Mahboob
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
| | - Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| | - Jessica R Tait
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
| | - James L Grace
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
| | - Alysha G Elliott
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Holly Floyd
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Johannes Zuegg
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - John F Quinn
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
| | - Michael R Whittaker
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Hancock SN, Yuntawattana N, Diep E, Maity A, Tran A, Schiffman JD, Michaudel Q. Ring-opening metathesis polymerization of N-methylpyridinium-fused norbornenes to access antibacterial main-chain cationic polymers. Proc Natl Acad Sci U S A 2023; 120:e2311396120. [PMID: 38079554 PMCID: PMC10742381 DOI: 10.1073/pnas.2311396120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.
Collapse
Affiliation(s)
- Sarah N. Hancock
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | | | - Emily Diep
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA01003
| | - Arunava Maity
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - An Tran
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA01003
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, TX77843
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
3
|
Sabarees G, Gouthaman S, Alagarsamy V, Velmurugan V, Solomon VR. Isolation, Functionalization, In Silico Investigation, and Synthesis of 1,8-Cineole Analog as Antitubercular Agent Targeting InhA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Yeung CWS, Periayah MH, Teo JYQ, Goh ETL, Chee PL, Loh WW, Loh XJ, Lakshminarayanan R, Lim JYC. Transforming Polyethylene into Water-Soluble Antifungal Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Celine W. S. Yeung
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Mercy Halleluyah Periayah
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Jerald Y. Q. Teo
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Eunice Tze Leng Goh
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Pei Lin Chee
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Wei Wei Loh
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Jason Y. C. Lim
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
5
|
Shao Z, Wulandari E, Lin RCY, Xu J, Liang K, Wong EHH. Two plus One: Combination Therapy Tri-systems Involving Two Membrane-Disrupting Antimicrobial Macromolecules and Antibiotics. ACS Infect Dis 2022; 8:1480-1490. [PMID: 35771275 DOI: 10.1021/acsinfecdis.2c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The escalating issue of multidrug-resistant (MDR) bacteria indicates the urgent need for new and effective strategies to combat this global health challenge. Here, we describe a new combinatorial approach that can be put forward for experimental therapy application against MDR bacteria. Specifically, we have developed a tri-system that includes the coadministration of two different membrane-disrupting-type antimicrobial agents─a synthetic antimicrobial polymer P and an antimicrobial peptide (AMP) colistin methanesulfonate (Col)─in conjunction with an antibiotic [doxycycline (Dox), rifampicin (Rif), or azithromycin (Azi)]. Traditionally, the administration of membrane-disrupting antimicrobial agents causes toxicity, but, in comparison, we demonstrated synergy and biocompatibility using this combinatorial approach. Checkerboard assays showed the occurrence of synergistic interactions in Col-Dox-P, Col-Rif-P, and Col-Azi-P tri-systems against wild-type and MDR Pseudomonas aeruginosa, with the Col-Dox-P system being the most effective. The ability to synergize thus enables the use of a lower dosage in combinations compared to the standalone agents. The tri-systems not only demonstrated bacteriostatic activity but were also bactericidal. For example, the Col-Dox-P system (at 8, 4, and 8 μg mL-1, respectively) and the Col-Rif-P system (at 4, 8, and 16 μg mL-1, respectively) were able to kill >99.999% of planktonic P. aeruginosa cells within 3 h of treatment. More importantly, an improvement of the therapeutic/selectivity index was achieved via combination therapy. Taking the Col-Dox-P system as an example, its biocompatibility with murine embryonic fibroblast cells was found to be comparable to that of polymer P alone despite the synergistic enhancement in antimicrobial activity of the combination. This resulted in a significant increase in selectivity by 16-fold for the Col-Dox-P combination system compared to P alone. Furthermore, the broad applicability of this tri-system strategy was demonstrated via the successful application of the AMP melittin in place of Col or P. Overall, this study sheds new insights on the application of membrane-disrupting antimicrobial agents in combination therapy and their potential for safer clinical use. Additionally, the information gathered in this study could inform the development of future combination therapy systems involving the simultaneous employment of multiple AMPs with antibiotics.
Collapse
Affiliation(s)
- Zeyu Shao
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erna Wulandari
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ruby C Y Lin
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jiangtao Xu
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kang Liang
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Edgar H H Wong
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Truong VK, Al Kobaisi M, Vasilev K, Cozzolino D, Chapman J. Current Perspectives for Engineering Antimicrobial Nanostructured Materials. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Guo W, Wang Y, Wan P, Wang H, Chen L, Zhang S, Xiao C, Chen X. Cationic amphiphilic dendrons with effective antibacterial performance. J Mater Chem B 2022; 10:456-467. [PMID: 34982090 DOI: 10.1039/d1tb02037d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections and antibiotic resistance have become a global healthcare crisis. Herein, we designed and synthesized a series of cationic amphiphilic dendrons with cationic dendrons and hydrophobic alkyl chains for potential antibacterial applications. Our results showed that the antimicrobial activities of the cationic amphiphilic dendrons were highly dependent upon the length of the hydrophobic alkyl chain, whereas the number of cationic charges was less important. Among these cationic amphiphilic dendrons, a prime candidate was identified, which possessed excellent antimicrobial activity against various pathogens (minimum inhibitory concentrations of 9, 3, and 3 μg mL-1 for Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus, respectively). Scanning electron microscopy and fluorescence microscopy analyses showed that it could disrupt the integrity of a pathogen's membrane, leading to cell lysis and death. In addition, in vitro bacteria-killing kinetics showed that it had rapid bactericidal efficiency. It also had excellent antimicrobial activities against MRSA in vivo and promoted wound healing. In general, the synthesized cationic amphiphilic dendrons, which exhibited rapid and broad-spectrum bactericidal activity, may have great potential in antimicrobial applications.
Collapse
Affiliation(s)
- Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Yongjie Wang
- Department of Spinal Surgery, the First Hospital of Jilin University, Changchun, China.,Molecular Bacteriology Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. .,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Shaokun Zhang
- Department of Spinal Surgery, the First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
8
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Gong C, Sun J, Xiao Y, Qu X, Lang M. Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2021; 10:e2101244. [PMID: 34410043 DOI: 10.1002/adhm.202101244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Antibacterial materials are highly demanded in treatment of bacterial infection, especially severe ones with multidrug-resistance. Herein, pH-responsive polypeptide, i.e., poly-L-lysine modified by 1-(propylthio)acetic acid-3-octylimidazolium and citraconic anhydride (PLL-POIM-CA), is synthesized by post-polymerization modification of poly-L-lysine (PLL) with 1-(propylthio)acetic acid-3-octylimidazolium (POIM) and citraconic anhydride (CA). It is observed that PLL-POIM-CA is stable under normal physiological condition, while CA cleaves rapidly at weakly acidic environment like bacterial infectious sites. The hydrolyzed PLL-POIM-CA exhibits excellent broad-spectrum antibacterial activities against Gram-negative bacteria of Escherichia coli and Gram-positive bacteria of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In particular, the minimum inhibitory concentration (MIC) against multidrug-resistant bacteria like MRSA is as low as 7.8 µg mL-1 . Moreover, PLL-POIM-CA exhibits good biocompatibility with mouse fibroblast cells (L929) in vitro and improved hemocompatibility with an HC50 exceeding 5000 µg mL-1 . Therefore, PLL-POIM-CA displays an excellent bacteria versus cells selectivity (HC50 /MIC) over 534, which is 53 times higher than natural antimicrobial peptide of indolicidin. It is further demonstrated in vivo that the antimicrobial polypeptide effectively accelerates MRSA-infected wound healing by relieving local inflammatory response. Therefore, this targeted antimicrobial polypeptide has broad application prospects for the treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Chenyu Gong
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Junjie Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xue Qu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
10
|
Pranantyo D, Kang ET, Chan-Park MB. Smart nanomicelles with bacterial infection-responsive disassembly for selective antimicrobial applications. Biomater Sci 2021; 9:1627-1638. [DOI: 10.1039/d0bm01382j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic nanomicelles remain stable and biocompatible under physiological conditions, but readily burst and spill out cationic antimicrobial peptide to kill bacteria at infection sites.
Collapse
Affiliation(s)
- Dicky Pranantyo
- Centre of Antimicrobial Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Department of Chemical and Biomolecular Engineering
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Lee Kong Chian School of Medicine
| |
Collapse
|
11
|
Wyers D, Goris T, De Smet Y, Junkers T. Amino acid acrylamide mimics: creation of a consistent monomer library and characterization of their polymerization behaviour. Polym Chem 2021. [DOI: 10.1039/d1py00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel consistent approach to mimic the structure of biopolymers via precision polymer synthesis with reversible deactivation radical polymerization (RDRP).
Collapse
Affiliation(s)
- Dries Wyers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Toon Goris
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Yana De Smet
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Pan M, Lu C, Zheng M, Zhou W, Song F, Chen W, Yao F, Liu D, Cai J. Unnatural Amino-Acid-Based Star-Shaped Poly(l-Ornithine)s as Emerging Long-Term and Biofilm-Disrupting Antimicrobial Peptides to Treat Pseudomonas aeruginosa-Infected Burn Wounds. Adv Healthc Mater 2020; 9:e2000647. [PMID: 32893500 DOI: 10.1002/adhm.202000647] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Peptide-based antimicrobial materials are recognized as promising alternatives to antibiotics to circumvent the emergence of antibiotic-resistant bacteria or to combat multiple resistant bacteria by targeting the bacterial cell membrane. The components and conformations of antimicrobial peptides are extensively explored to achieve broad-spectrum and effective antimicrobial activity. Here, star-shaped antimicrobial polypeptides are fabricated by employing homologs of poly(l-lysine)s (i.e., poly(l-ornithine)s, poly(l-lysine)s, and poly(l-α,ζ-diaminoheptylic acid)s) with the aim of modulating their charge/hydrophobicity balance and rationalizing their structure-antimicrobial property relationships. The in vitro antibacterial investigation reveals that unnatural amino-acid-based star-shaped poly(l-ornithine)s have remarkable proteolytic stability, excellent biofilm-disrupting capacity, and broad-spectrum antimicrobial activity, even against difficult-to-kill Gram-negative Pseudomonas aeruginosa. Furthermore, star-shaped poly(l-ornithine)s significantly reduce the microbial burden and improve the burn wound healing of mouse skin infected with P. aeruginosa. These results demonstrate that unnatural amino-acid-based star-shaped poly(l-ornithine)s can serve as emerging long-term and biofilm-disrupting antimicrobial agents to treat biofilm-related infections in burn, especially caused by notorious P. aeruginosa.
Collapse
Affiliation(s)
- Miao Pan
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Chao Lu
- College of Pharmacy Jinan University Guangzhou 511443 China
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Maochao Zheng
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Wen Zhou
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Fuling Song
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Weidong Chen
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Fen Yao
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Daojun Liu
- Department of Pharmacy Medical College Shantou University Shantou 515041 China
| | - Jianfeng Cai
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|
14
|
Yadav S, Singh AK, Agrahari AK, Sharma K, Singh AS, Gupta MK, Tiwari VK, Prakash P. Making of water soluble curcumin to potentiate conventional antimicrobials by inducing apoptosis-like phenomena among drug-resistant bacteria. Sci Rep 2020; 10:14204. [PMID: 32848171 PMCID: PMC7450046 DOI: 10.1038/s41598-020-70921-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022] Open
Abstract
The upsurge of multidrug resistant bacterial infections with declining pipeline of newer antibiotics has made it imperative to develop newer molecules or tailor the existing molecules for more effective antimicrobial therapies. Since antiquity, the use of curcumin, in the form of Curcuma longa paste, to treat infectious lesions is unperturbed despite its grave limitations like instability and aqueous insolubility. Here, we utilized "click" chemistry to address both the issues along with improvisation of its antibacterial and antibiofilm profile. We show that soluble curcumin disrupts several bacterial cellular processes leading to the Fenton's chemistry mediated increased production of reactive oxygen species and increased membrane permeability of both Gram-positive and Gram-negative bacteria. We here report that its ability to induce oxidative stress can be harnessed to potentiate activities of ciprofloxacin, meropenem, and vancomycin. In addition, we demonstrated that the soluble curcumin reported herein even sensitizes resistant Gram-negative clinical isolates to the Gram-positive specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. This work shows that the soluble curcumin can be used to enhance the action of existing antimicrobials against both Gram-positive and Gram-negative bacteria thus strengthening the antibiotic arsenal for fighting resistant bacterial infections for many years to come.
Collapse
Affiliation(s)
- Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kavyanjali Sharma
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop Shyam Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Munesh Kumar Gupta
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. J Colloid Interface Sci 2020; 580:850-862. [PMID: 32736272 DOI: 10.1016/j.jcis.2020.07.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
The recent rise of antibiotic resistance amongst Staphylococcus aureus (S. aureus) populations has made treating Staph-based infections a global medical challenge. Therapies that specifically target the peptidoglycan layer of S. aureus have emerged as new treatment avenues, towards which bacteria are less likely to develop resistance. While the majority of antibacterial polymers/oligomers have the ability to disrupt bacterial membranes, the design parameters for the enhanced disruption of peptidoglycan outer layer of Gram-positive bacteria remain unclear. Here, the design of oligomeric structures with favorable conformational characteristics for improved disruption of the peptidoglycan outer layer of Gram-positive bacteria is reported. Molecular dynamics simulations were employed to inform the structure design and composition of cationic oligomers displaying collapsed and expanded conformations. The most promising diblock and triblock cationic oligomers were synthesized by photo-induced atom transfer radical polymerization (photo ATRP). Following synthesis, the diblock and triblock oligomers displayed average antibacterial activity of ~99% and ~98% for S. aureus and methicillin-resistant S. aureus (MRSA), respectively, at the highest concentrations tested. Importantly, triblock oligomers with extended conformations showed significantly higher disruption of the peptidoglycan outer layer of S. aureus compared to diblock oligomers with more collapsed conformation, as evidenced by a number of characterization techniques including scanning electron, confocal and atomic force microscopy. This work provides new insight into the structure/property relationship of antibacterial materials and advances the design of functional materials for combating the rise of drug-resistant bacteria.
Collapse
|
16
|
Zheng Y, Liu J, Guo Y, Zhang Q, Gao X, Gao Z, He T, Ban Q. Effect of the topology on the antibacterial activity of cationic polythioether synthesized by all‐click chemistry. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaochen Zheng
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Jian Liu
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Yan Guo
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Qian Zhang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Xuan Gao
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Zhengguo Gao
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Tao He
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Qingfu Ban
- Department of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringYantai University Yantai China
| |
Collapse
|
17
|
Silver Nanoparticles Ecofriendly Synthesized by Achyranthes aspera and Scoparia dulcis Leaf Broth as an Effective Fungicide. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study describes an inexpensive, simple and green method to form silver nanoparticles from different leaf extracts of Achyranthes aspera and Scoparia dulcis plants. The silver nitrate is reduced by Achyranthes aspera and Scoparia dulcis leaf extracts respectively to generate two silver nanoparticle types symbolized as AA.AgNPs and SD.AgNPs. The optical absorption, size and morphology of silver nanoparticles are significantly impacted by extract types. The ultraviolet visible spectrum of AA.AgNPs shows a 433-nm peak being more broadened than that of SD.AgNPs. The Fourier infrared transform spectra of two of these silver nanoparticles revealed that their surface is modified by organic constituents from extracts, and thus they are stabilized in solution without any additional reaction. Images from transmission electron microscopy and scanning electron microscope indicate that AA.AgNPs are in clusters with the size of 8–52 nm almost possessing oval shape, while SD.AgNPs are smaller size of 5-45 nm separated well in diversified shapes (spherical, triangle, quadrilateral and hexagonal). Moreover, both AA.AgNPs and SD.AgNPs exhibit the highly antifungal effect against Aspergillus niger, Aspergillus flavus and the most strong impact on Fusarium oxysporum. For these obtained results, two new silver nanoparticles are promising fungicides for various applications of medical and agricultural fields.
Collapse
|
18
|
Nguyen DH, Lee JS, Park KD, Ching YC, Nguyen XT, Phan VHG, Hoang Thi TT. Green Silver Nanoparticles Formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis Leaf Extracts and the Antifungal Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E542. [PMID: 32192177 PMCID: PMC7153602 DOI: 10.3390/nano10030542] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Phytoconstituents presenting in herbal plant broths are the biocompatible, regenerative, and cost-effective sources that can be utilized for green synthesis of silver nanoparticles. Different plant extracts can form nanoparticles with specific sizes, shapes, and properties. In the study, we prepared silver nanoparticles (P.uri.AgNPs, P.zey.AgNPs, and S.dul.AgNPs) based on three kinds of leaf extracts (Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis, respectively) and demonstrated the antifungal capacity. The silver nanoparticles were simply formed by adding silver nitrate to leaf extracts without using any reducing agents or stabilizers. Formation and physicochemical properties of these silver nanoparticles were characterized by UV-vis, Fourier transforms infrared spectroscopy, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray spectroscopy. P.uri.AgNPs were 28.3 nm and spherical. P.zey.AgNPs were 26.7 nm with hexagon or triangle morphologies. Spherical S.dul.AgNPs were formed and they were relatively smaller than others. P.uri.AgNPs, P.zey.AgNPs and S.dul.AgNPs exhibited the antifungal ability effective against Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum, demonstrating their potentials as fungicides in the biomedical and agricultural applications.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St. New Haven, CT 06511, USA
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Xuan Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000 Vietnam
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000 Vietnam
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
19
|
Barbon SM, Truong NP, Elliott AG, Cooper MA, Davis TP, Whittaker MR, Hawker CJ, Anastasaki A. Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01435g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sequence-controlled copolymers have recently attracted great interest in a variety of applications, including antimicrobial materials.
Collapse
Affiliation(s)
- Stephanie M. Barbon
- Materials Research Laboratory
- University of California
- Santa Barbara
- Santa Barbara
- USA
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash University
- Parkville, Melbourne
- Australia
| | - Alysha G. Elliott
- Institute of Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Matthew A. Cooper
- Institute of Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash University
- Parkville, Melbourne
- Australia
| | - Michael R. Whittaker
- Monash Institute of Pharmaceutical Sciences
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash University
- Parkville, Melbourne
- Australia
| | - Craig J. Hawker
- Materials Research Laboratory
- University of California
- Santa Barbara
- Santa Barbara
- USA
| | - Athina Anastasaki
- Materials Research Laboratory
- University of California
- Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
20
|
Grace JL, Amado M, Reid JC, Elliott AG, Landersdorfer CB, Truong NP, Kempe K, Cooper MA, Davis TP, Montembault V, Pascual S, Fontaine L, Velkov T, Quinn JF, Whittaker MR. An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform. J Mater Chem B 2019; 7:6796-6809. [PMID: 31603181 DOI: 10.1039/c9tb01624d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers via an optimised Cu(0)-mediated reversible-deactivation radical polymerisation approach, and the use of these oligomers as a versatile functional platform for the rapid generation of antimicrobial materials. The relative amounts of CuBr2 and Me6TREN were optimised to allow the fast and controlled polymerisation of VDM. These conditions were then used with the initiators ethyl 2-bromoisobutyrate, dodecyl 2-bromoisobutyrate, and (R)-3-((2-bromo-2-methylpropanoyl)oxy)propane-1,2-diyl didodecanoate to synthesise a library of oligo(VDM) (degree of polymerisation = 10) with ethyl, dodecyl or diglyceride end-groups. Subsequently, ring-opening of the pendant oxazolone group with various amines (i.e., 2-(2-aminoethyl)-1,3-di-Boc-guanidine, 1-(3-aminopropyl)imidazole, N-Boc-ethylenediamine, or N,N-dimethylethylenediamine) expanded the library to give 12 functional oligomers incorporating different cationic and lipid elements. The antimicrobial activities of these oligomers were assessed against a palette of bacteria and fungi: i.e. Staphylococcus aureus, Escherichia coli, Candida albicans, and Cryptococcus neoformans. The oligomers generally exhibited the greatest activity against the fungus, C. neoformans, with a minimum inhibitory concentration of 1 μg mL-1 (comparable to the clinically approved antifungal fluconazole). To assess haemocompatibility, the oligomers were assayed against erythrocytes, with the primary amine or guanidine containing C12 and 2C12 oligomers exhibiting greater lysis against the red blood cells (HC10 values between 7.1 and 43 μg mL-1) than their imidazole and tertiary amine counterparts (HC10 of >217 μg mL-1). Oligomers showed the greatest selectivity for C. neoformans, with the C12- and 2C12-tertiary amine and C12-imidazole oligomers possessing the greatest selectivity of >54-109. These results demonstrate the utility of reactive oligomers for rapidly assessing structure-property relationships for antibacterial and antifungal materials.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Maite Amado
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janet C Reid
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alysha G Elliott
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia and Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Matthew A Cooper
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia and Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| |
Collapse
|
21
|
Dart A, Bhave M, Kingshott P. Antimicrobial Peptide‐Based Electrospun Fibers for Wound Healing Applications. Macromol Biosci 2019; 19:e1800488. [DOI: 10.1002/mabi.201800488] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Dart
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Mrinal Bhave
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Peter Kingshott
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| |
Collapse
|
22
|
Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial Peptide-Reduced Gold Nanoclusters with Charge-Reversal Moieties for Bacterial Targeting and Imaging. Biomacromolecules 2019; 20:2922-2933. [DOI: 10.1021/acs.biomac.9b00392] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Peng Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Wenbin Zhong
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|
23
|
Artim CM, Brown JS, Alabi CA. Biophysical Characterization of Cationic Antibacterial Oligothioetheramides. Anal Chem 2019; 91:3118-3124. [PMID: 30675774 DOI: 10.1021/acs.analchem.8b05721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biophysical analysis into the mechanism of action of membrane-disrupting antibiotics such as antimicrobial peptides (AMPs) and AMP mimetics is necessary to improve our understanding of this promising but relatively untapped class of antibiotics. We evaluate the impact of cationic nature, specifically the presence of guanidine versus amine functional groups using sequence-defined oligothioetheramides (oligoTEAs). Relative to amines, guanidine groups demonstrated improved antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). To understand the mechanism of action, we evaluated membrane interactions by performing a propidium iodide assay and fluorescence microscopy of supported MRSA mimetic bilayers treated with oligoTEAs. Both studies demonstrated membrane disruption, while fluorescence microscopy showed the formation of lipid aggregates. We further analyzed the mechanism using surface plasmon resonance with a recently developed two-state binding model with loss. Our biophysical analysis points to the importance of lipid aggregation for antibacterial activity and suggests that guanidine groups improve antibacterial activity by increasing the extent of lipid aggregation. Altogether, these results verify and rationalize the importance of guanidines for enhanced antibacterial activity of oligoTEAs, and present biophysical phenomena for the design and analysis of additional membrane-active antibiotics.
Collapse
Affiliation(s)
- Christine M Artim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Joseph S Brown
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| |
Collapse
|
24
|
Masri A, Anwar A, Ahmed D, Siddiqui RB, Raza Shah M, Khan NA. Silver Nanoparticle Conjugation-Enhanced Antibacterial Efficacy of Clinically Approved Drugs Cephradine and Vildagliptin. Antibiotics (Basel) 2018; 7:antibiotics7040100. [PMID: 30445704 PMCID: PMC6316254 DOI: 10.3390/antibiotics7040100] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023] Open
Abstract
This paper sets out to determine whether silver nanoparticles conjugation enhance the antibacterial efficacy of clinically approved drugs. Silver conjugated Cephradine and Vildagliptin were synthesized and thoroughly characterized by ultraviolet visible spectrophotometry (UV-vis), Fourier transform infrared (FT-IR) spectroscopic methods, atomic force microscopy (AFM), and dynamic light scattering (DLS) analysis. Using antibacterial assays, the effects of drugs alone and drugs-conjugated with silver nanoparticles were tested against a variety of Gram-negative and Gram-positive bacteria including neuropathogenic Escherichia coli K1, Pseudomonas aeruginosa, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus and Streptococcus pyogenes. Cytopathogenicity assays were performed to determine whether pretreatment of bacteria with drugs inhibit bacterial-mediated host cell cytotoxicity. The UV-vis spectra of both silver-drug nanoconjugates showed a characteristic surface plasmon resonance band in the range of 400–450 nm. AFM further confirmed the morphology of nanoparticles and revealed the formation of spherical nanoparticles with size distribution of 30–80 nm. FT-IR analysis demonstrated the involvement of Hydroxyl groups in both drugs in the stabilization of silver nanoparticles. Antibacterial assays showed that silver nanoparticle conjugation enhanced antibacterial potential of both Cephradine and Vildagliptin compared to the drugs alone. Pretreatment of bacteria with drugs inhibited E. coli K1-mediated host cell cytotoxicity. In summary, conjugation with silver nanoparticle enhanced antibacterial effects of clinically approved Cephradine. These findings suggest that modifying and/or repurposing clinically approved drugs using nanotechnology is a feasible approach in our search for effective antibacterial molecules.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Dania Ahmed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74600, Pakistan.
| | - Ruqaiyyah Bano Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74600, Pakistan.
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
25
|
Grace JL, Schneider-Futschik EK, Elliott AG, Amado M, Truong NP, Cooper MA, Li J, Davis TP, Quinn JF, Velkov T, Whittaker MR. Exploiting Macromolecular Design To Optimize the Antibacterial Activity of Alkylated Cationic Oligomers. Biomacromolecules 2018; 19:4629-4640. [PMID: 30359516 DOI: 10.1021/acs.biomac.8b01317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is growing interest in synthetic polymers which co-opt the structural features of naturally occurring antimicrobial peptides. However, our understanding of how macromolecular architecture affects antibacterial activity remains limited. To address this, we investigated whether varying architectures of a series of block and statistical co-oligomers influenced antibacterial and hemolytic activity. Cu(0)-mediated polymerization was used to synthesize oligomers constituting 2-(Boc-amino)ethyl acrylate units and either diethylene glycol ethyl ether acrylate (DEGEEA) or poly(ethylene glycol) methyl ether acrylate units with varying macromolecular architecture; subsequent deprotection produced primary amine functional oligomers. Further guanylation provided an additional series of antimicrobial candidates. Both chemical composition and macromolecular architecture were shown to affect antimicrobial activity. A broad spectrum antibacterial oligomer (containing guanidine moieties and DEGEEA units) was identified that possessed promising activity (MIC = 2 μg mL-1) toward both Gram-negative and Gram-positive bacteria. Bacterial membrane permeabilization was identified as an important contributor to the mechanism of action.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Elena K Schneider-Futschik
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Alysha G Elliott
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Maite Amado
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Matthew A Cooper
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Chemistry , Warwick University , Gibbet Hill , Coventry , CV4 7AL , U.K
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| |
Collapse
|
26
|
Chang MH, Hsiao YP, Hsu CY, Lai PS. Photo-Crosslinked Polymeric Matrix with Antimicrobial Functions for Excisional Wound Healing in Mice. NANOMATERIALS 2018; 8:nano8100791. [PMID: 30301173 PMCID: PMC6215132 DOI: 10.3390/nano8100791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 01/08/2023]
Abstract
Wound infection extends the duration of wound healing and also causes systemic infections such as sepsis, and, in severe cases, may lead to death. Early prevention of wound infection and its appropriate treatment are important. A photoreactive modified gelatin (GE-BTHE) was synthesized by gelatin and a conjugate formed from the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the 2-hydroxyethyl methacrylate (HEMA). Herein, we investigated the photocurable polymer solution (GE-BTHE mixture) containing GE-BTHE, poly(ethylene glycol) diacrylate (PEGDA), chitosan, and methylene blue (MB), with antimicrobial functions and photodynamic antimicrobial chemotherapy for wound dressing. This photocurable polymer solution was found to have fast film-forming property attributed to the photochemical reaction between GE-BTHE and PEGDA, as well as the antibacterial activity in vitro attributed to the ingredients of chitosan and MB. Our in vivo results also demonstrated that untreated wounds after 3 days had the same scab level as the GE-BTHE mixture-treated wounds after 20 s of irradiation, which indicates that the irradiated GE-BTHE mixture can be quickly transferred into artificial scabs to protect wounds from an infection that can serve as a convenient excisional wound dressing with antibacterial efficacy. Therefore, it has the potential to treat nonhealing wounds, deep burns, diabetic ulcers and a variety of mucosal wounds.
Collapse
Affiliation(s)
- Ming-Hsiang Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chia-Yen Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
27
|
Heredero-Bermejo I, Hernández-Ros JM, Sánchez-García L, Maly M, Verdú-Expósito C, Soliveri J, Javier de la Mata F, Copa-Patiño JL, Pérez-Serrano J, Sánchez-Nieves J, Gómez R. Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Ergene C, Yasuhara K, Palermo EF. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem 2018. [DOI: 10.1039/c8py00012c] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, coupled with the decline in the number of new antibiotic drug approvals, has created a therapeutic gap that portends an emergent public health crisis.
Collapse
Affiliation(s)
- Cansu Ergene
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Kazuma Yasuhara
- Graduate School of Materials Science
- Nara Institute for Science and Technology
- Ikoma
- Japan
| | - Edmund F. Palermo
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| |
Collapse
|
29
|
Luo X, Jiang Z, Zhang N, Yang Z, Zhou Z. Interactions of Biocidal Polyhexamethylene Guanidine Hydrochloride and Its Analogs with POPC Model Membranes. Polymers (Basel) 2017; 9:polym9100517. [PMID: 30965821 PMCID: PMC6418608 DOI: 10.3390/polym9100517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
The bacterial membrane-targeted polyhexamethylene guanidine hydrochloride (PHGH) and its novel analog polyoctamethylene guanidine hydrochloride (POGH) had excellent antimicrobial activities against antibiotics-resistant bacteria. However, the biocompatibility aspects of PHGH and POGH on the phospholipid membrane of the eukaryotic cell have not yet been considered. Four chemically synthesized cationic oligoguanidine polymers containing alkyl group with different carbon chain lengths, including PHGH, POGH, and their two analogs, were used to determine their interactions with zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipids vesicles mimicking the eukaryotic cell membrane. Characterization was conducted by using bactericidal dynamics, hemolysis testing, calcein dye leakage, and isothermal titration calorimetry. Results showed that the gradually lengthened alkyl carbon chain of four oligoguanidine polymers increased the biocidal activity of the polymer, accompanied with the increased hemolytic activity, calcein dye leakage rate and the increased absolute value of the exothermic effect of polymer-POPC membrane interaction. The thermodynamic curve of the polymer-POPC membrane interaction exhibited a very weak exothermic effect and a poorly unsaturated titration curve, which indicated that four guanidine polymers had weak affinity for zwitterionic POPC vesicles. Generally, PHGH of four guanidine polymers had high biocidal activity and relatively high biocompatibility. This study emphasized that appropriate amphiphilicity balanced by the alkyl chain length, and the positive charge is important factor for the biocompatibility of cationic antimicrobial guanidine polymer. Both PHGH and POGH exhibited destructive power to phospholipid membrane of eukaryotic cell, which should be considered in their industry applications.
Collapse
Affiliation(s)
- Xuliang Luo
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
| | - Ziran Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
| | - Niya Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
| | - Zixin Yang
- College of Sciences, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
| | - Zhongxin Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agriculture University, 1 Shizishan Street, Wuhan 430070, China.
| |
Collapse
|
30
|
Yuen AY, Lopez-Martinez E, Gomez-Bengoa E, Cortajarena AL, Aguirresarobe RH, Bossion A, Mecerreyes D, Hedrick JL, Yang YY, Sardon H. Preparation of Biodegradable Cationic Polycarbonates and Hydrogels through the Direct Polymerization of Quaternized Cyclic Carbonates. ACS Biomater Sci Eng 2017; 3:1567-1575. [DOI: 10.1021/acsbiomaterials.7b00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Y. Yuen
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida
Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Elena Lopez-Martinez
- CIC
BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Enrique Gomez-Bengoa
- Departamento
de Química Orgánica I, Facultad de Química, Universidad del País Vasco, 48940 Lejona, Spain
| | - Aitziber L. Cortajarena
- CIC
BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Robert H. Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida
Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Amaury Bossion
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida
Tolosa 72, 20018 Donostia-San Sebastian, Spain
- University of Bordeaux, 351 Cours
de la Liberation, 33400 Talence, France
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida
Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - James L. Hedrick
- IBM Almaden Research Center, 650
Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida
Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|