1
|
de Lima LF, Ferreira AL, Awasthi S, Torres MD, Friedman HM, Cohen GH, de Araujo WR, de la Fuente-Nunez C. Rapid and accurate detection of herpes simplex virus type 2 using a low-cost electrochemical biosensor. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101513. [PMID: 38239491 PMCID: PMC10795591 DOI: 10.1016/j.xcrp.2023.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) infection, which is almost exclusively sexually transmitted, causes genital herpes. Although this lifelong and incurable infection is extremely widespread, currently there is no readily available diagnostic device that accurately detects HSV-2 antigens to a satisfactory degree. Here, we report an ultrasensitive electrochemical device that detects HSV-2 antigens within 9 min and costs just $1 (USD) to manufacture. The electrochemical biosensor is biofunctionalized with the human cellular receptor nectin-1 and detects the glycoprotein gD2, which is present within the HSV-2 viral envelope. The performance of the device is tested in a guinea pig model that mimics human biofluids, yielding 88.9% sensitivity, 100.0% specificity, and 95.0% accuracy under these conditions, with a limit of detection of 0.019 fg mL-1 for gD2 protein and 0.057 PFU mL-1 for titered viral samples. Importantly, no cross-reactions with other viruses were detected, indicating the adequate robustness and selectivity of the sensor. Our low-cost technology could facilitate more frequent testing for HSV-2.
Collapse
Affiliation(s)
- Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
2
|
Singh B, Flampouri E, Dempsey E. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) for parasitic nematode Ostertagia ostertagi (brown stomach worm) infections in dairy cattle. Analyst 2020; 144:5748-5754. [PMID: 31432061 DOI: 10.1039/c9an00982e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive electrochemical immunoassay (e-ELISA) has been developed for the detection of the gastrointestinal parasitic nematode Ostertagia ostertagi (brown stomach worm) in infected and control serum samples. An antigen-indirect immunoassay format was employed to detect the presence of O. ostertagi antibodies, coupled with an anti-species monoclonal horseradish peroxidase (HRP) conjugate. ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) and TMB (3,3',5,5'-tetramethylbenzidine/hydrogen peroxide) were investigated as both chromogenic visualising reagents for optical ELISA and electroactive substrates for electrochemical ELISA in the HRP catalysed oxidation reaction. Coulometry was applied for the detection of O. ostertagi antibodies (via TMB electrochemistry) and compared with the commercial optical ELISA (ABTS based SVANOVIR® O. ostertagi-Ab ELISA kit). Cost-effective in-house sensors were designed and fabricated using polyester and chemical adhesive materials with the aid of stencil printing and laser machining techniques. The performance of the electrochemical ELISA and sensor was evaluated by investigating redox mediators (ABTS vs. TMB), stop solutions (sodium dodecyl sulfate vs. sulfuric acid) and incubation times (150 min vs. 70 min vs. 25 min). For a total assay incubation time of 70 minutes, the TMB/H2SO4 based e-ELISA was able to differentiate between positive (P) and negative (N) control serum samples, with a P/N70 control ratio 1.6 times higher than that of optical ELISA (TMB/H2SO4 combination) and 2.9 times higher than that of the commercial ELISA kit (ABTS/SDS combination). Furthermore, the e-ELISA approach is quicker and required only 25 min (total incubation time) with even better response (P/N25 = 14.7), which is approximately 4-fold higher than the optical immunoassay (P/N25 = 3.8). The proposed e-ELISA is specific (selective Ab-Ag interactions) and highly sensitive - capable of detecting up to 16-fold dilutions of a positive control serum sample. The electrochemical ELISA approach has the potential for rapid sample screening in a portable, disposable format, contributing to the quest for effective prevention and control of parasitic Ostertagia ostertagi infections in cattle.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), Tallaght, Dublin 24, D24 FKT9, Ireland.
| | | | | |
Collapse
|
3
|
Arshad Z, Alturkistani A, Brindley D, Lam C, Foley K, Meinert E. Tools for the Diagnosis of Herpes Simplex Virus 1/2: Systematic Review of Studies Published Between 2012 and 2018. JMIR Public Health Surveill 2019; 5:e14216. [PMID: 31124465 PMCID: PMC6552407 DOI: 10.2196/14216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background Herpes simplex virus (HSV)-1 and HSV-2 are common infections affecting the global population, with HSV-1 estimated to affect 67% of the global population. HSV can have rare but severe manifestations, such as encephalitis and neonatal herpes, necessitating the use of reliable and accurate diagnostic tools for the detection of the viruses. Currently used HSV diagnostic tools require highly specialized skills and availability of a laboratory setting but may lack sensitivity. The numerous recently developed HSV diagnostic tools need to be identified and compared in a systematic way to make the best decision about which diagnostic tool to use. The diagnosis of HSV is essential for prompt treatment with antivirals. To select the best test for a patient, knowledge of the performance and limitations of each test is critical. Objective This systematic review has summarized recent studies evaluating HSV-1 and HSV-2 diagnostic tools. Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, selection criteria, data extraction, and data analysis were determined before the commencement of the study. Studies assessing the specificity/sensitivity of HSV-1 or HSV-2 diagnostic tools published between 2012 and 2018 were included. Quality assessment of included studies was performed using the quality assessment of diagnostic accuracy studies (QUADAS-2) tool. Results Searches of the PubMed database yielded 264 studies; 11 studies included 11 molecular assays, and 8 studies included 19 different serological assays for the detection of HSV-1, HSV-2, or both. A greater proportion of molecular assay–based tools are being developed by commercial entities. Studies that tested molecular assays mostly focused on cutaneous and mucosal HSV infections (n=13); 2 studies focused on ocular disease, whereas only 1 study focused on the central nervous system manifestations. The Simplexa HSV 1 & 2 Direct is currently the only Food and Drug Administration–approved device for use on cerebrospinal fluid. No tools focused on prenatal screening. We also present performance metrics of tests for benchmarking of future technology. Most of the included studies had a high risk of bias rating in half of the QUADAS-2 tool risk of bias domains. Conclusions The use of serologic tests to diagnose genital lesions is inappropriate because positive results may be due to chronic infection, whereas negative results may overlook recent infection. The incidence of acute infections is rising. As these infections present the greatest risk to fetuses, work needs to be done to prevent vertical transfer. Prenatal screening for primary infection and subsequent medical intervention will assist in lowering the rate of neonatal herpes. In conclusion, HSV diagnosis is moving away from culture-based methods to serology-based or polymerase chain reaction–based methods. Sensitive, rapid, and efficient HSV diagnostic tools should be adopted for the prevention of acute infections and neonatal herpes.
Collapse
Affiliation(s)
- Zeeshaan Arshad
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Abrar Alturkistani
- Global Digital Health Unit, Imperial College London, London, United Kingdom
| | - David Brindley
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ching Lam
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Kimberley Foley
- Global Digital Health Unit, Imperial College London, London, United Kingdom
| | - Edward Meinert
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|