1
|
Forbes TP, Robinson EL, Sisco E, Koss A. In-Line Thermal Desorption and Dielectric Barrier Discharge Ionization for Rapid Mass Spectrometry Detection of Explosives. Anal Chem 2024; 96:13352-13357. [PMID: 39103237 DOI: 10.1021/acs.analchem.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Thermal desorption (TD) of wipe-based samples was coupled with an in-line dielectric barrier discharge ionization (DBDI) source and rugged compact time-of-flight mass spectrometer (MS) for the detection of explosives, propellants, and postblast debris. The chromatography-free TD-DBDI-MS platform enabled rapid and sensitive detection of organic nitramine, nitrate ester, and nitroaromatic explosives as well as black powder and black powder substitute propellants. Parametric investigations characterized the response to TD temperature and optimized DBDI voltage, aerodynamically assisted entrainment, and fragmentation through in-source collision induced dissociation (isCID). Excess nitrate generated by the DBDI source yielded predominantly nitrate-adduct formation. Subnanogram sensitivities were demonstrated for all explosives investigated, except for nitroglycerin, specifically due to its volatility. Further, most analytes/explosives exhibited tens of picograms sensitivities. The platform also demonstrated the detection of propellant and military explosives from postblast debris. The TD-DBDI-MS system performed well without the need for aerodynamically assisted entrainment (and the associated rough pump), which along with requiring no additional gases (i.e., N2 or He) or solvents, aid in potential field deployment. The ease of TD-DBDI attachment and removal added trace solid or liquid residue detection to the rugged mass spectrometer, designed primarily for the analysis of volatile organic and inorganic compounds.
Collapse
Affiliation(s)
- Thomas P Forbes
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth L Robinson
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Edward Sisco
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Abigail Koss
- TOFWERK USA, Boulder, Colorado 80301, United States
| |
Collapse
|
2
|
Forbes TP, Pettibone JM, Windsor E, Conny JM, Fletcher RA. Rapid Chemical Screening of Microplastics and Nanoplastics by Thermal Desorption and Pyrolysis Mass Spectrometry with Unsupervised Fuzzy Clustering. Anal Chem 2023; 95:12373-12382. [PMID: 37567156 PMCID: PMC10501441 DOI: 10.1021/acs.analchem.3c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The transport and chemical identification of microplastics and nanoplastics (MNPs) are critical to the concerns over plastic accumulation in the environment. Chemically and physically transient MNP species present unique challenges for isolation and analysis due to many factors such as their size, color, surface properties, morphology, and potential for chemical change. These factors contribute to the eventual environmental and toxicological impact of MNPs. As analytical methods and instrumentation continue to be developed for this application, analytical test materials will play an important role. Here, a direct mass spectrometry screening method was developed to rapidly characterize manufactured and weathered MNPs, complementing lengthy pyrolysis-gas chromatography-mass spectrometry analysis. The chromatography-free measurements took advantage of Kendrick mass defect analysis, in-source collision-induced dissociation, and advancements in machine learning approaches for the data analysis of complex mass spectra. In this study, we applied Gaussian mixture models and fuzzy c-means clustering for the unsupervised analysis of MNP sample spectra, incorporating clustering stability and information criterion measurements to determine latent dimensionality. These models provided insight into the composition of mixed and weathered MNP samples. The multiparametric data acquisition and machine learning approach presented improved confidence in polymer identification and differentiation.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - John M. Pettibone
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Eric Windsor
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Joseph M. Conny
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Robert A. Fletcher
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| |
Collapse
|
3
|
Forbes TP, Gillen G. DART-MS Spectral Similarity of Infrared Thermally Desorbed Solid Particulate and Solution Cast Propellant Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1033-1040. [PMID: 33661626 PMCID: PMC9703350 DOI: 10.1021/jasms.1c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Security and forensic applications employ test and reference materials to develop, calibrate, and validate analytical instrumentation such as mass spectrometry for the trace detection and chemical analysis of target analytes. An emerging class of target analytes includes homemade fuel oxidizer explosives based on pyrotechnics, propellants, and powder mixtures. Test materials for these compounds must appropriately and accurately embody the physical and chemical nature of the threat. Precision liquid deposition methods have long been employed for creation of trace level test materials. Mass spectral similarity and chemical signature differences between solid particulate and solution cast (i.e., liquid deposited) propellant samples were investigated by infrared thermal desorption direct analysis in real time mass spectrometry (IRTD-DART-MS). Differences in the mass spectra and ion distributions of solid and liquid deposited black powders and black powder substitutes were observed. These differences were attributed to chemical processes (e.g., degradation) and physical differences in the crystal formation, spatial distribution, morphology, and size. The production and deposition of test and reference materials remain critical to developing new technologies and detecting evolving threats.
Collapse
|
4
|
Evans-Nguyen KM, Rivera A, Fontanez-Adames J, Li F, Musselman B. Solvent-free, Noncontact Electrostatic Sampling for Rapid Analysis with Mass Spectrometry: Application to Drugs and Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2237-2242. [PMID: 33107742 DOI: 10.1021/jasms.0c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hand-held Van de Graaf generator is used to apply a high voltage, negligible current electrostatic potential to a wire mesh positioned in close proximity to a particle-laden surface in order to collect those particles for analysis. The electrostatic field effects transfer particles to the mesh without a requirement for mechanical contact between mesh and surface. Analysis of chemicals present in the sampled particles is completed by thermal desorption electrospray ionization. The utility of the method for noncontact sampling is demonstrated using solid drug powder samples, and inorganic explosives dispersed either on solid surfaces or in sand/soil in order to simulate common interfering matrices that might be encountered in the forensic environment. A metal mesh sampling substrate is utilized instead of traditional polymer-based swabs in order to permit thermal desorption at higher temperatures. The method leaves no visible trace of sampling leaving details such as a fingerprint image unperturbed, as demonstrated using fluorescence photography. Direct sampling of trace particles from hard surfaces and skin documents flexibility in the choice of sampling substrates, desorption temperatures, and sampling times. The potential of the device for use in forensic analyses is detailed.
Collapse
Affiliation(s)
- Kenyon M Evans-Nguyen
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Amanda Rivera
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Jannelys Fontanez-Adames
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Frederick Li
- Ionsense, Inc., Saugus, Massachussetts 01906, United States
| | | |
Collapse
|
5
|
Manzoor K, Mishra SK, Podmore ID. Detection and identification of ethanal-derived spin-trapped free radicals using headspace thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Free Radic Res 2020; 54:745-755. [PMID: 33092425 DOI: 10.1080/10715762.2020.1841183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, we demonstrate a novel approach to the detection and identification of the products of spin-trapped free radicals. Hydroxyl free radicals were generated by Fenton-based chemistry in the presence of ethanal and the spin-trapping agent N-tert-butyl-α-phenylnitrone (PBN). The resulting volatile compounds present in the reaction vial headspace were collected using thermal desorption (TD) and analysed by gas chromatography-mass spectrometry (GC-MS). Eleven compounds were detected in the headspace, and their identification was aided by using either a fluorinated or deuterated analogue of PBN as an alternative spin trap and/or deuterated ethanal (CD3CHO) as the secondary source of free radicals. The electron-ionisation (EI) mass spectra clearly demonstrate the "capture" of methyl radicals; two of the compounds detected were identified as containing one methyl group derived from ethanal, and four were shown to contain two methyl groups. This study demonstrates that sampling the reaction headspace using TD-GC-MS is a viable method for analysing products of free radical trapping, and potentially may be applied to a wide range of free radical systems.
Collapse
Affiliation(s)
- Kamran Manzoor
- Biomedical Research Institute, University of Salford, Salford, UK
| | - Sanat K Mishra
- Biomedical Research Institute, University of Salford, Salford, UK
| | - Ian D Podmore
- Biomedical Research Institute, University of Salford, Salford, UK
| |
Collapse
|
6
|
Morrison KA, Valenzuela BR, Denis EH, Nims MK, Atkinson DA, Clowers BH, Ewing RG. Non-contact vapor detection of illicit drugs via atmospheric flow tube-mass spectrometry. Analyst 2020; 145:6485-6492. [PMID: 32748910 DOI: 10.1039/d0an00691b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time, non-contact detection of illicit drugs is a desirable goal for the interdiction of these controlled substances, but the relatively low vapor pressures of such species present a challenge for trace vapor detection technologies. The introduction of atmospheric flow tube-mass spectrometry (AFT-MS), which has previously been demonstrated to detect gas-phase analytes at low parts-per-quadrillion levels for explosives and organophosphorus compounds, also enables the potential for non-contact drug detection. With AFT-MS, direct vapor detection of cocaine and methamphetamine from ∼5 μg residues at room temperature is demonstrated herein. Furthermore, thermal desorption of low- to sub-picogram levels of cocaine, methamphetamine, fentanyl, and heroin is observed via AFT-MS using a carrier flow rate of several L min-1 of air. These low levels can permit non-contact sampling through collection of vapor, effectively preconcentrating the analyte before desorption and analysis. Quantitative evaluation of the thermal desorption approach has yielded limits of detection (LODs) on the order of 10 fg for cocaine and fentanyl, 100 fg for methamphetamine, and 1.6 pg for heroin. The LOD for heroin was lowered to 300 fg by using tributyl phosphate as a dopant to form a proton-bound heterodimer with heroin. When used with AFT-MS, the intentional formation of specific drug-dopant adducts has the potential to enhance detection limits and selectivity of additional drug species. Species that are prone to form adducts present a challenge to analysis, but that difficulty can be overcome by the intentional addition of a dopant. Molecules unlikely to form adducts will remain essentially unimpacted, but the adduct-forming species will interact with the dopant to compress the analyte signal into a single peak. This approach would be valuable in the application of non-contact screening for illicit substances via vapor collection followed by thermal desorption for analysis.
Collapse
|
7
|
Forbes TP, Krauss ST, Gillen G. Trace Detection and Chemical Analysis of Homemade Fuel-Oxidizer Mixture Explosives: Emerging Challenges and Perspectives. Trends Analyt Chem 2020; 131:10.1016/j.trac.2020.116023. [PMID: 34135538 PMCID: PMC8201619 DOI: 10.1016/j.trac.2020.116023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chemical analysis of homemade explosives (HMEs) and improvised explosive devices (IEDs) remains challenging for fieldable analytical instrumentation and sensors. Complex explosive fuel-oxidizer mixtures, black and smokeless powders, flash powders, and pyrotechnics often include an array of potential organic and inorganic components that present unique interference and matrix effect difficulties. The widely varying physicochemical properties of these components as well as external environmental interferents and background challenge many sampling and sensing modalities. This review provides perspective on these emerging challenges, critically discusses developments in sampling, sensors, and instrumentation, and showcases advancements for the trace detection of inorganic-based explosives.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Shannon T. Krauss
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Greg Gillen
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| |
Collapse
|
8
|
Krauss ST, Forbes TP, Lawrence JA, Gillen G, Verkouteren JR. Detection of fuel‐oxidizer explosives utilizing portable capillary electrophoresis with wipe‐based sampling. Electrophoresis 2020; 41:1482-1490. [DOI: 10.1002/elps.202000094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon T. Krauss
- National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | - Thomas P. Forbes
- National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | - Jeffrey A. Lawrence
- National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | - Greg Gillen
- National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | | |
Collapse
|
9
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
10
|
Bezemer KDB, Forbes TP, Hulsbergen AWC, Verkouteren J, Krauss ST, Koeberg M, Schoenmakers PJ, Gillen G, van Asten AC. Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks. Forensic Sci Int 2020; 308:110160. [PMID: 32014815 PMCID: PMC8041295 DOI: 10.1016/j.forsciint.2020.110160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
High volume screening of parcels with the aim to trace the illegal distribution and selling of fireworks using postal services is challenging. Inspection services have limited manpower and means to perform extensive visual inspection. In this study, the presence of solid pyrotechnic residues collected from cardboard shipping parcels containing fireworks was investigated for direct in-field chemical detection. Two emerging trace detection techniques, i.e., capillary electrophoresis (CE)-based inorganic oxidizer detector and infrared thermal desorption (IRTD) coupled with direct analysis in real time mass spectrometry (DART-MS), were investigated for their potential as screening tools. Detection of non-visible pyrotechnic trace residues from real-case seized parcels was demonstrated using both screening techniques. However, the high nitrate background in the commercial CE system complicated its screening for black powder traces. IRTD-DART-MS allowed differentiation between flash and black powder by identification of the molecular inorganic ions. Compared to the portable CE instrument, rapid screening using IRTD-DART-MS is currently limited to laboratory settings. The capabilities of these emerging techniques established solid particle and trace residue chemical detection as interesting options for parcel screening in a logistic setting.
Collapse
Affiliation(s)
- Karlijn D B Bezemer
- University of Amsterdam, Faculty of Science, Van 't Hoff Institute for Molecular Sciences, Amsterdam, the Netherlands; Netherlands Forensic Institute, The Hague, the Netherlands.
| | - Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | | | - Jennifer Verkouteren
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Shannon T Krauss
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | | | - Peter J Schoenmakers
- University of Amsterdam, Faculty of Science, Van 't Hoff Institute for Molecular Sciences, Amsterdam, the Netherlands
| | - Greg Gillen
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Arian C van Asten
- University of Amsterdam, Faculty of Science, Van 't Hoff Institute for Molecular Sciences, Amsterdam, the Netherlands; CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, the Netherlands
| |
Collapse
|
11
|
Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 2019; 204:189-197. [PMID: 31357281 DOI: 10.1016/j.talanta.2019.05.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
It is fairly crucial to detect inorganic explosives through a sensitive and fast method in the field of public safety, nevertheless, the high non-volatility and stability characteristics severely confine their accurate on-site detection from a real-world surface. In this work, an efficient, simple and cost effective method was developed to fabricate uniform silver nanoparticles (AgNPs) immobilized on polyurethane (PU) sponge through the in-situ reduction of polydopamine (PDA) based on mussel-inspired surface chemistry, in virtue of a large quantities catechol and amine functional groups. The formed PU@PDA@Ag sponges exhibited high SERS sensitivity, uniformity and reproducibility to 4-Aminothiophenol (4-ATP) probe molecule, and the limit of detection was calculated to be about 0.02 nmol L-1. Moreover, these PU@PDA@Ag sponges could be served as excellent flexible SERS substrates to rapidly detect trace inorganic explosives with high collection efficiency via swabbing extraction. The detection limit for perchlorates (ClO4-), chlorates (ClO3-) and nitrates (NO3-) were approximately down to 0.13, 0.13 and 0.11 ng respectively. These flexible substrates not only could drastically increase the sample collection efficiency, but also enhance analytical sensitivity and reliability for inorganic explosive, and would have a great potential application in the future homeland security fields.
Collapse
|
12
|
Zhang Q, Liu X, Li Z, Su Y, Guo Y. Rapid quantitative analysis with low matrix effects of capsaicin in various samples by thermal desorption carbon fiber ionization mass spectrometry. Anal Chim Acta 2019; 1048:115-122. [DOI: 10.1016/j.aca.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022]
|
13
|
Forbes TP, Verkouteren JR. Forensic Analysis and Differentiation of Black Powder and Black Powder Substitute Chemical Signatures by Infrared Thermal Desorption-DART-MS. Anal Chem 2019; 91:1089-1097. [PMID: 30516959 PMCID: PMC6614743 DOI: 10.1021/acs.analchem.8b04624] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The trace detection and forensic analysis of black powders and black powder substitutes, directly from wipe-based sample collections, was demonstrated using infrared thermal desorption (IRTD) coupled with direct analysis in real time mass spectrometry (DART-MS). Discrete 15 s heating ramps were generated, creating a thermal desorption profile that desorbed more volatile species (e.g., organic and semivolatile inorganic compounds) at lower temperatures (250-400 °C) and nonvolatile inorganic oxidizers at high temperatures (450-550 °C). Common inorganic components of black powders (e.g., sulfur and potassium nitrate) as well as the alternative and additional organic and inorganic components of common black powder substitutes (e.g., dicyandiamide, ascorbic acid, sodium benzoate, guanidine nitrate, and potassium perchlorate) were detected from polytetrafluoroethylene-coated fiberglass collection wipes with no additional sample preparation. IRTD-DART-MS enabled the direct detection of intact inorganic salt species as nitrate adducts (e.g., [KClO4+NO3]-) and larger clusters. The larger ion distributions generated by these complex mixtures were differentiated using principal component analysis (PCA) of the mass spectra generated at two points during the thermal desorption profile (low and high temperatures), as well as at high in-source collision-induced dissociation. The PCA framework generated by the analysis of the two black powders and five black powder substitutes was used to classify samples collected from a commercial firecracker containing both flash powder and black powder. The coupling of IRTD-DART-MS and multivariate statistics demonstrated the powerful utility for detection and discrimination of trace fuel-oxidizer mixtures.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Jennifer R. Verkouteren
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| |
Collapse
|
14
|
Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard's Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal Chem 2018; 91:637-654. [PMID: 30404441 DOI: 10.1021/acs.analchem.8b04704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewelina Mistek
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Marisia A Fikiet
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Shelby R Khandasammy
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Igor K Lednev
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
15
|
Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Forbes TP, Sisco E, Staymates M. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry. Anal Chem 2018; 90:6419-6425. [PMID: 29701987 PMCID: PMC6102708 DOI: 10.1021/acs.analchem.8b01037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Edward Sisco
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Matthew Staymates
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| |
Collapse
|
17
|
Abstract
Ambient mass spectrometry has evolved rapidly over the past decade, yielding a plethora of platforms and demonstrating scientific advancements across a range of fields from biological imaging to rapid quality control. These techniques have enabled real-time detection of target analytes in an open environment with no sample preparation and can be coupled to any mass analyzer with an atmospheric pressure interface; capabilities of clear interest to the defense, customs and border control, transportation security, and forensic science communities. This review aims to showcase and critically discuss advances in ambient mass spectrometry for the trace detection of explosives.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA.
| | | |
Collapse
|