1
|
Tabassum H, Maity A, Singh K, Bagchi D, Nath P, Kumar N, Choudhury S, Vishwakarma S, Chakraborty A. Elucidating Antibody Conjugation and Orientation Dynamics on Phenylalanine-Functionalized Gold Nanoparticles: The Role of Lipid Coating and Other Physiological Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40384431 DOI: 10.1021/acs.langmuir.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Gold nanoparticles (AuNPs) functionalized with antibodies offer significant potential to advance biomedical applications due to their unique optical properties and the specificity of antibody-antigen interactions. A critical aspect of optimizing these AuNP-based systems is the effective adsorption of antibodies on the nanoparticle surface. Recent research has focused on developing new strategies to enhance antibody loading and orientation, with the aim of improving antibody activity. However, the lack of robust analytical methods for accurately quantifying the activity of conjugated antibodies and comparing immobilization strategies remains a significant challenge. Herein, for the first time, we describe the effect of DPPC and DOPC lipid coatings on the interaction of phenylalanine functionalized gold nanoparticles (AuPhe NPs) with immunoglobulin G (IgG) antibody under varying pH (∼6, 7.4, and 9) and buffer systems (HEPES and phosphate). Using several techniques, we reveal the superior performance of lipid-coated AuPhe NPs, particularly those coated with DPPC, compared to native AuPhe NPs in terms of stability, antigen-binding activity, and antibody orientation. Between the two different buffer systems, antibody adsorption on AuPhe NPs is significantly higher in the zwitterionic buffer (HEPES) compared to the negatively charged phosphate buffer. Furthermore, at lower pH, native AuPhe NPs and DOPC-coated AuPhe NPs undergo aggregation, and DPPC-coated AuPhe NPs remain stable. Considering the vital role of lipid coatings under varying physiological conditions, we propose that lipid-coated AuPhe NPs serve as robust platforms for diverse biomedical applications, ensuring enhanced stability and efficiency in antibody-mediated processes.
Collapse
Affiliation(s)
- Huma Tabassum
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Krishna Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Debanjan Bagchi
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Priyanka Nath
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Suman Choudhury
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sachin Vishwakarma
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
2
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Oleg V Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Vladimir N Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Aleksandr A Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anton V Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Zhang P, Hou H, Xu S, Wen Y, Zhang Y, Xing F. Localized surface plasmon resonance sensing based on monometallic gold nanoparticles: from material preparation to detection of bioanalytes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:892-915. [PMID: 39693100 DOI: 10.1039/d4ay01509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The tunable geometrical properties of gold nanoparticles (AuNPs) endow them with the capacity to exhibit distinct behaviors with respect to both macroscopic (color) and microscopic (resonance wavelength) aspects, which has been extensively utilized in localized surface plasmon resonance (LSPR) sensing platforms. Additionally, functionalizing AuNP surfaces enhances the platforms' capabilities, allowing for the detection of a wide range of molecules related to various aspects of human health. In this review, we comprehensively elucidate the fundamental principles of LSPR biosensing and provide an in-depth survey of the preparation processes for metal nanoparticles, encompassing deposition technology for large-scale particle production as well as ion reduction methods that afford superior control over the particles' physical and chemical attributes. The sensing strategies based on adjustment of the dielectric environment and particle dispersion-aggregation levels are thoroughly reviewed and discussed. The discussion focused on a specific class of nanoparticles, characterized by their uniform shape and size, with each section bifurcated into two parts: a summary of the salient features and recent discoveries pertaining to the sensing strategy, as well as illustrations of representative, cutting-edge applications employing the strategy. We specifically aim to scrutinize analytes commonly encountered in the biomedical realm, encompassing biomarkers that serve as indicators of a wide range of diseases and microbial pathogens, while also prognosticating the future development trends of LSPR optical biosensor platforms within the biomedical field.
Collapse
Affiliation(s)
- Peng Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Huizhen Hou
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Songshi Xu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Yingfei Wen
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
4
|
Munusamy S, Zheng H, Jahani R, Zhou S, Chen J, Kong J, Guan X. DNA-Assisted CRISPR-Cas12a Enhanced Fluorescent Assay for Protein Detection in Complicated Matrices. ACS APPLIED BIO MATERIALS 2025; 8:754-762. [PMID: 39700063 PMCID: PMC12006969 DOI: 10.1021/acsabm.4c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Proteins are important biological macromolecules that perform a wide variety of functions in the cell and human body, and can serve as important biomarkers for early diagnosis and prognosis of human diseases as well as monitoring the effectiveness of disease treatment. Hence, sensitive and accurate detection of proteins in human biospecimens is imperative. However, at present, there is no ideal method available for the detection of proteins in clinical samples, many of which are present at ultralow (less than 1 pM) concentrations and in complicated matrices. Herein, we report an ultrasensitive and selective DNA-assisted CRISPR-Cas12a enhanced fluorescent assay (DACEA) for protein detection with detection limits reaching as low as attomolar concentrations. The high assay sensitivity was accomplished through the combined DNA barcode amplification (by using dual-functionalized AuNPs) and CRISPR analysis, while the high selectivity and high resistance to the matrix effects of our method were accomplished via the formation of protein-antibody sandwich structure and the specific recognition of Cas12a (under the guidance of crRNA) toward the designed target ssDNA. Given its ability to accurately and sensitively detect trace amounts of proteins in complicated matrices, the DACEA protein assay platform pioneered in this work has a potential application in routine protein biomarker testing.
Collapse
Affiliation(s)
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Mohaghegh N, Ahari A, Abbasgholizadeh R, Ramezani Farani M, Hassani Najafabadi A, Zare I, Mostafavi E. Gold nanoparticles for cancer diagnosis and therapy. GOLD NANOPARTICLES, NANOMATERIALS AND NANOCOMPOSITES 2025:591-617. [DOI: 10.1016/b978-0-443-15897-1.00032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhai JM, Xu S, Wu XH, Fu SY, Liang P, Guan ZQ, Zhang YJ, Li JF. Construction of a Convenient and Highly Sensitive Sensor for the Detection of Myo in Serum Based on ELI-SERS. ACS Sens 2024; 9:6852-6860. [PMID: 39680914 DOI: 10.1021/acssensors.4c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Acute myocardial infarction (AMI) is one of the most common causes of sudden death in cardiovascular disease, and myoglobin (Myo) is the first protein to be released in the blood after the attack, which is an important biomarker for clinical detection of AMI. The "Golden Rescue Time" for acute myocardial infarction is to intervene within the first 30 min after the attack; therefore, a rapid and accurate Myo detection method is needed urgently. In this study, we designed a combined enzyme-linked immunosorbent assay (ELISA) technique with surface-enhanced Raman scattering (SERS) immunoassay (ELI-SERS), which integrates the small sample volume, ease of operation, and excellent linearity of ELISA while utilizing the SERS technique and selecting the molecule with the Raman signal (IR-808), which is in resonance with the excitation wavelength, for further signal enhancement. The sensitivity of the system was further improved by optimizing the key factors in the assay such as incubation time, particle concentration, and temperature. Compared with the sandwich-structured magnetic bead method, no collection and concentration steps are required, simplifying the operation and ultimately realizing a sensitivity of a 5.3 pg/mL antigen detectable in 6 min. In actual serum samples, we achieve 100% accuracy and sensitivity by adding blockers to exclude the effect of heterophilic antibodies in serum and to reduce false positives in blank samples. We also validated the hepatitis B surface antigen test, demonstrating the universality of our system. Overall, this study designed an ultrasensitive and convenient SERS sensor for the detection of Myo, which extends the practical application of SERS and also contributes methods for the detection of other biomarkers.
Collapse
Affiliation(s)
- Jia-Min Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shanshan Xu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Xiao-Hang Wu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Shi-Ying Fu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhen-Qun Guan
- Concert Bioscience (Xiamen) Co., Ltd., Xiamen 361101, China
| | - Yue-Jiao Zhang
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Chen P, Yang Q, Li S, Liu X, Li B, Zhang J, Wang J, Yue X, Wang Y. Nanobody-Induced Aggregation of Gold Nanoparticles: A Mix-and-Read Strategy for the Rapid Detection of Cronobacter sakazakii. Anal Chem 2024; 96:17602-17611. [PMID: 39445484 DOI: 10.1021/acs.analchem.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein-nanoparticle interactions play a crucial role in both biomedical applications and the biosafety assessment of nanomaterials. Here, we found that nanobodies can induce citrate-capped gold nanoparticles (AuNPs) to aggregate into large clusters. Subsequently, we explored the mechanism behind this aggregation and proposed the "gold nucleation mechanism" to explain this phenomenon. Building on this observation, we developed a one-step label-free colorimetric method based on nanobody-induced AuNP aggregation. When nanobodies bind to target bacteria, spatial hindrance occurs, preventing further AuNPs aggregation. This alteration in surface plasmon resonance properties results in visible color changes. As an example, we present a simple and sensitive "mix-and-read" chromogenic immunosensor for Cronobacter sakazakii (C. sakazakii). The experiment can be completed within 20 min, with a visual detection limit of 103 CFU/mL and a quantitative detection limit of 136 CFU/mL. Importantly, our method exhibits no cross-reactivity with other bacterial species. This strategy harnesses the excellent properties of nanobodies and the optical characteristics of AuNPs for direct and rapid detection of foodborne pathogen.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinkai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shurong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingzhi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiahao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Sharma V, Javed B, Byrne HJ, Tian F. Mycotoxin Detection through Colorimetric Immunoprobing with Gold Nanoparticle Antibody Conjugates. BIOSENSORS 2024; 14:491. [PMID: 39451705 PMCID: PMC11506043 DOI: 10.3390/bios14100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Driven by their exceptional optical characteristics, robust chemical stability, and facile bioconjugation, gold nanoparticles (AuNPs) have emerged as a preferred material for detection and biosensing applications in scientific research. This study involves the development of a simple, rapid, and cost-effective colorimetric immuno-sensing probe to detect aflatoxin B1 and zearalenone using AuNP antibody (AuNP-mAb) conjugates. Anti-toxin antibodies were attached to the AuNPs by using the physical adsorption method. The colorimetric immunosensor developed operates on the principle that the optical properties of the AuNP are very sensitive to aggregation, which can be induced by a critical high salt concentration. Although the presence of antibodies on the AuNP surface inhibits the aggregation, these antibodies bind to the toxin with higher affinity, which leads to exposure of the surface of AuNPs and aggregation in a salt environment. The aggregation triggers a noticeable but variable alteration in color from red to purple and blueish gray, as a result of a red shift in the surface plasmon resonance band of the AuNPs. The extent of the shift is dependent on the toxin exposure dose and can be quantified using a calibration curve through UV-Visible-NIR spectroscopy. The limit of detection using this assay was determined to be as low as 0.15 ng/mL for both zearalenone and aflatoxin B1. The specificity of the prepared immunoprobe was analyzed for a particular mycotoxin in the presence of other mycotoxins. The developed immunoprobe was evaluated for real-world applicability using artificially spiked samples. This colorimetric immunoprobe based on localized surface plasmon resonance (LSPR) has a reduced detection limit compared to other immunoassays, a rapid readout, low cost, and facile fabrication.
Collapse
Affiliation(s)
- Vinayak Sharma
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Bilal Javed
- Nanolab, Physical to Life Sciences Research Hub, Technological University Dublin, D08 CKP1 Dublin, Ireland; (B.J.); (H.J.B.)
| | - Hugh J. Byrne
- Nanolab, Physical to Life Sciences Research Hub, Technological University Dublin, D08 CKP1 Dublin, Ireland; (B.J.); (H.J.B.)
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Nanolab, Physical to Life Sciences Research Hub, Technological University Dublin, D08 CKP1 Dublin, Ireland; (B.J.); (H.J.B.)
| |
Collapse
|
9
|
Beyer M, Hladun C, Bou-Abdallah F. Detection of proteins with ascorbic acid-capped gold nanoparticles: a simple and highly sensitive colorimetric assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5391-5398. [PMID: 38978467 DOI: 10.1039/d4ay01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.
Collapse
Affiliation(s)
- Maximilian Beyer
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Colby Hladun
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
10
|
Xu S, Wu XH, Wu L, Zhai JM, Li SJ, Kou Y, Peng W, Zheng QN, Tian JH, Zhang YJ, Li JF. Systematic Optimization of Universal Real-Time Hypersensitive Fast Detection Method for HBsAg in Serum Based on SERS. Anal Chem 2024; 96:6784-6793. [PMID: 38632870 DOI: 10.1021/acs.analchem.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.
Collapse
Affiliation(s)
- Shanshan Xu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xiao-Hang Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lin Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jia-Min Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shi-Jun Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yichuan Kou
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Wei Peng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
11
|
Wang J, Liang J. Functionalized Gold Nanoparticles for Facile Pattern-Controlled Surface Coatings. Biomimetics (Basel) 2024; 9:146. [PMID: 38534831 DOI: 10.3390/biomimetics9030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Gold nanoparticles (AuNPs) have been widely investigated as surface modifiers; nevertheless, most methods still require the pretreatment of surfaces and several steps to control coating efficiency and patterns for improved functionality. We developed functionalized AuNPs through borate-protected dopamine (B-AuNPs). The simple activation of B-AuNPs with a strong acid to remove the protected borate groups produces adhesive dopamine AuNPs (D-AuNPs). D-AuNP-coated surfaces with varied but controlled features and properties such as coating density and surface pattern were achieved using D-AuNPs with a precisely controlled dopamine density and coating conditions. Such adhesive and easily manipulated AuNPs provide a facile and time-saving technology to achieve sophisticated surface coatings using AuNPs.
Collapse
Affiliation(s)
- Jue Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Junfeng Liang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
12
|
Susini V, Ferraro G, Fierabracci V, Ursino S, Sanguinetti C, Caponi L, Romiti N, Rossi VL, Sanesi A, Paolicchi A, Franzini M, Fratini E. Orientation of capture antibodies on gold nanoparticles to improve the sensitivity of ELISA-based medical devices. Talanta 2023; 260:124650. [PMID: 37167679 DOI: 10.1016/j.talanta.2023.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The sensitivity of ELISA-based devices strongly depends on the right orientation of antibodies on the sensor surface. The aim of this work was to increase the analytical performance of a commercial ELISA-based medical device (VIDAS®), thanks to the specific orientation of antibodies on gold nanostructured disposables. For this purpose, fPSA VIDAS® assay was used as model and the disposable providing the antigen binding surface (SPR®) was functionalized with gold nanostructures coated with monovalent half-fragment antibodies (reduced IgG, rIgG). The functionalization of polystyrene SPRs® with gold nanostructures was achieved through a one-step incubation of gold dispersions in a mixture of non-toxic solvents. Five different concentrations of gold nanoparticles (NPs) were tested with a maximum fluorescence enhancement for NPs density around 3-8 *103 NPs/μm2 (752 ± 11 RFV vs 316 ± 5 RFV of bare SPRs®). The comparison of the dose-response curve obtained with commercial and gold coated-SPRs® revealed a significant improvement (p < 0.0001) of the analytical sensitivity of the VIDAS® system using nanostructured disposables. This improved version of SPRs® allows to distinguish small variations of fPSA concentrations opening the way to the application of this biomarker to other kinds of cancer as recently described in the literature.
Collapse
Affiliation(s)
- Vanessa Susini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy.
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" & Center for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Vanna Fierabracci
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Silvia Ursino
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Chiara Sanguinetti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Laura Caponi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Nadia Romiti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Veronica Lucia Rossi
- BioMérieux Italia S.p.a., Via di Campigliano 58, Bagno a Ripoli, 50012, Florence, Italy
| | - Antonio Sanesi
- BioMérieux Italia S.p.a., Via di Campigliano 58, Bagno a Ripoli, 50012, Florence, Italy
| | - Aldo Paolicchi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" & Center for Colloid and Surface Science (CSGI), University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
13
|
Ligiero CBP, Fernandes TS, D'Amato DL, Gaspar FV, Duarte PS, Strauch MA, Fonseca JG, Meirelles LGR, Bento da Silva P, Azevedo RB, Aparecida de Souza Martins G, Archanjo BS, Buarque CD, Machado G, Percebom AM, Ronconi CM. Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering. MATERIALS TODAY. CHEMISTRY 2022; 25:100924. [PMID: 35475288 PMCID: PMC9023328 DOI: 10.1016/j.mtchem.2022.100924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen-antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (K D ) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.
Collapse
Affiliation(s)
- C B P Ligiero
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - T S Fernandes
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - D L D'Amato
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - F V Gaspar
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - P S Duarte
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - M A Strauch
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - J G Fonseca
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - L G R Meirelles
- Fazenda Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - P Bento da Silva
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - R B Azevedo
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - G Aparecida de Souza Martins
- Programa de Pós-graduação Em Ciência e Tecnologia de Alimentos, Universidade Federal Do Tocantins, 77001-090, Brazil
| | - B S Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ, 25250-020, Brazil
| | - C D Buarque
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - G Machado
- Centro de Tecnologias Estratégicas Do Nordeste, Av. Prof. Luiz Freire 01, Recife, Pernambuco, 50740-540, Brazil
| | - A M Percebom
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - C M Ronconi
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| |
Collapse
|
14
|
The Effect of Capping Agents on Gold Nanostar Stability, Functionalization, and Colorimetric Biosensing Capability. NANOMATERIALS 2022; 12:nano12142470. [PMID: 35889694 PMCID: PMC9319646 DOI: 10.3390/nano12142470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022]
Abstract
Capping agents (organic ligands, polymers, and surfactants) are pivotal for stabilizing nanoparticles; however, they may influence the surface chemistry, as well as the physico-chemical and biological characteristics, of gold nanostar (AuNS)-based biosensors. In this study, we proved that various capping agents affected capped and bioconjugated AuNS stability, functionality, biocatalysis, and colorimetric readouts. Capped and bioconjugated AuNSs were applied as localized surface plasmon resonance (LSPR)-based H2O2 sensors using glucose oxidase (GOx) as a model enzyme. Furthermore, our analyses revealed that the choice of capping agent influenced the properties of the AuNSs, their stability, and their downstream applications. Our analyses provide new insights into factors governing the choice of capping agents for gold nanostars and their influences on downstream applications with conjugated enzymes in confined environments.
Collapse
|
15
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
16
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
17
|
Zhou S, Hu J, Chen X, Duan H, Shao Y, Lin T, Li X, Huang X, Xiong Y. Hydrazide-assisted directional antibody conjugation of gold nanoparticles to enhance immunochromatographic assay. Anal Chim Acta 2021; 1168:338623. [PMID: 34052002 DOI: 10.1016/j.aca.2021.338623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The analytical performance of immunochromatographic assay (ICA) is usually determined by the biological activity of antibody and gold nanoparticle conjugates (AuNP probes). However, conventional probes are constructed using the nondirectional coupling method that can cause the improper orientation of antibodies with the poor accessibility of antigen-binding sites. To address these issues, we report a site-specific directional coupling strategy to enhance the bioactivity of AuNP probes through the specific covalent binding of the aldehyde group in the Fc domain of antibodies with the hydrazide group modified on the surface of AuNPs. Through this design, the antibodies can be erected on the AuNP surface to fully expose the Fab domain and achieve the maximized functional availability. Leveraging these AuNP probes as ICA labels, we demonstrate an improved detection of the hepatitis B surface antigen with less used amount of labeled antibody (0.2 mg/pmol AuNPs), shorter reaction time (10 min), better antibody bioactivity, and higher detection sensitivity (2 ng/mL) compared with the carbodiimide method. Overall, this work provides great promise for the design and the construction of high-performance probes to enhance the detection performance of ICA sensors.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Jing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Tong Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China
| | - Xiangmin Li
- School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
18
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. High-Affinity Points of Interaction on Antibody Allow Synthesis of Stable and Highly Functional Antibody-Gold Nanoparticle Conjugates. Bioconjug Chem 2021; 32:1753-1762. [PMID: 34228917 DOI: 10.1021/acs.bioconjchem.1c00261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many emerging nanobiotechnologies rely on the proper function of proteins immobilized on gold nanoparticles. Often, the surface chemistry of the AuNP is engineered to control the orientation, surface coverage, and structure of the adsorbed protein to maximize conjugate function. Here, we chemically modified antibody to investigate the effect of protein surface chemistries on adsorption to AuNPs. A monoclonal anti-horseradish peroxidase IgG antibody (anti-HRP) was reacted with N-succinimidyl acrylate (NSA) or reduced dithiobissuccinimidyl propionate (DSP) to modify lysine residues. Zeta potential measurements confirmed that both chemical modifications reduced the localized regions of positive charge on the protein surface, while the DSP modification incorporated additional free thiols. Dynamic light scattering confirmed that native and chemically modified antibodies adsorbed onto AuNPs to form bioconjugates; however, adsorption kinetics revealed that the NSA-modified antibody required significantly more time to allow for the formation of a hard corona. Moreover, conjugates formed with the NSA-modified antibody lost antigen-binding function, whereas unmodified and DSP-modified antibodies adsorbed onto AuNPs to form functional conjugates. These results indicate that high-affinity functional groups are required to prevent protein unfolding and loss of function when adsorbed on the AuNP surface. The reduced protein charge and high-affinity thiol groups on the DSP-modified antibody enabled pH-dependent control of protein orientation and the formation of highly active conjugates at solution pHs (<7.5) that are inaccessible with unmodified antibody due to conjugate aggregation. This study establishes parameters for protein modification to facilitate the formation of highly functional and stable protein-AuNP conjugates.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
19
|
López-Lorente ÁI. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review. Anal Chim Acta 2021; 1168:338474. [PMID: 34051992 DOI: 10.1016/j.aca.2021.338474] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful technique for sensitive analysis which is attracting great attention in the last decades. In this review, different gold nanostructures that have been exploited for SERS analysis are described, ranging from gold nanospheres to anisotropic and complex-shaped gold nanostructures, in which the presence of high aspect ratio features leads to an increment of the electromagnetic field at the surface of the nanomaterial, resulting in enhanced SERS response. In addition to the shape of the nanostructure, the interparticle nanogaps play a prominent role in the SERS efficiency. In this sense, different approaches such as nanoaggregation and formation of assemblies and ordered structures lead to the creation of the so-called hot spots. SERS measurements may be performed in solution, while usually the nanostructures are deposited building a SERS substrate, which can be created via attachment of chemically prepared gold nanostructures, as well as via top-down physical methods. Among the classical supports for creating the SERS substrates, in the last years there is a trend towards the development of flexible supports based on polymers as well as paper. Finally, some recent applications of gold nanostructures-based SERS substrates within the analytical field are discussed to spotlight the potential of this technique in real-world analytical scenarios.
Collapse
Affiliation(s)
- Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
20
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. Probing the Mechanism of Antibody-Triggered Aggregation of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2993-3000. [PMID: 33621098 DOI: 10.1021/acs.langmuir.1c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique physicochemical properties of gold nanoparticles (AuNPs) provide many opportunities to develop novel biomedical technologies. The surface chemistry of AuNPs can be engineered to perform a variety of functions, including targeted binding, cellular uptake, or stealthlike properties through the immobilization of biomolecules, such as proteins. It is well established that proteins can spontaneously adsorb onto AuNPs, to form a stable and functional bioconjugate; however, the protein-AuNP interaction may result in the formation of less desirable protein-AuNP aggregates. Therefore, it is imperative to investigate the protein-AuNP interaction and elucidate the mechanism by which protein triggers AuNP aggregation. Herein, we systematically investigated the interaction of immunoglobulin G (IgG) antibody with citrate-capped AuNPs as a function of solution pH. We found that the addition of antibody triggers the aggregation of AuNPs for pH < 7.5, whereas a monolayer of antibody adsorbs onto the AuNP to form a stable bioconjugate when the antibody is added to AuNPs at pH ≥ 7.5. Our data identifies electrostatic bridging between the antibody and the negatively charged AuNPs as the mechanism by which aggregation occurs and rules out protein unfolding and surface charge depletion as potential causes. Furthermore, we found that the electrostatic bridging of AuNPs is reversible within the first few hours of interaction, but the protein-AuNP interactions strengthen over 24 h, after which the protein-AuNP aggregate is irreversibly formed. From this data, we developed a straightforward approach to acrylate the basic residues on the antibody to prevent protein-induced aggregation of AuNP over a wide pH range. The results of this study provide additional insight into antibody-nanoparticle interactions and provide a pathway to control the interaction with the potential to enhance the conjugate function.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
21
|
Cheng X, Chen K, Dong B, Filbrun SL, Wang G, Fang N. Resolving cargo-motor-track interactions with bifocal parallax single-particle tracking. Biophys J 2020; 120:1378-1386. [PMID: 33359832 DOI: 10.1016/j.bpj.2020.11.2278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 01/18/2023] Open
Abstract
Resolving coordinated biomolecular interactions in living cellular environments is vital for understanding the mechanisms of molecular nanomachines. The conventional approach relies on localizing and tracking target biomolecules and/or subcellular organelles labeled with imaging probes. However, it is challenging to gain information on rotational dynamics, which can be more indicative of the work done by molecular motors and their dynamic binding status. Herein, a bifocal parallax single-particle tracking method using half-plane point spread functions has been developed to resolve the full-range azimuth angle (0-360°), polar angle, and three-dimensional (3D) displacement in real time under complex living cell conditions. Using this method, quantitative rotational and translational motion of the cargo in a 3D cell cytoskeleton was obtained. Not only were well-known active intracellular transport and free diffusion observed, but new interactions (tight attachment and tethered rotation) were also discovered for better interpretation of the dynamics of cargo-motor-track interactions at various types of microtubule intersections.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Gufeng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
22
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
23
|
Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03397-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Bang Y, Kim YY, Song YK. An efficient cell type specific conjugating method for incorporating various nanostructures to genetically encoded AviTag expressed optogenetic opsins. Biochem Biophys Res Commun 2020; 530:581-587. [PMID: 32753317 DOI: 10.1016/j.bbrc.2020.07.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022]
Abstract
Here, we report genetically encoded AviTag conjugating system for Channelrhodopsin-2(ChR2) in order to attach various nanostructures to the membrane protein in a cell type specific manner. First, AviTag peptide sequence is cloned to N-terminal site of ChR2 construct and expressed at the membrane of primary-cultured hippocampal neurons via lentiviral transduction. Second, with the help of BirA enzyme and ATP, biotin coated quantum dots (Qdots) and streptavidin (SAv) coated Qdots are successfully bound to AviTag sites at the membrane where ChR2 is located and confirmed by fluorescence imaging. Moreover, we synthesize biotinylated Traptavidin-DNA conjugate probes containing a desthio-biotin that has weaker affinity than a regular biotin, and successfully exchange them with pre-conjugated Biotin-AviTag-ChR2 site at the membrane of neuronal cells which can potentially solve the crosslinking issue of Avidin linked probes. Therefore, we expect the AviTag-ChR2 fusion platform to become a great tool for incorporating various nanostructures at the specific sites of a cellular membrane in order to overcome the limits of optogenetic opsins.
Collapse
Affiliation(s)
- Yongbin Bang
- Program in Nano Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Young-Youb Kim
- Program in Nano Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Yoon-Kyu Song
- Program in Nano Science and Technology, Seoul National University, Seoul, 08826, South Korea; Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea.
| |
Collapse
|
25
|
A Mechanism of Gold Nanoparticle Aggregation by Immunoglobulin G Preparation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conjugates of gold nanoparticles (GNPs) and antibodies are widely used in various fields of biochemistry and microbiology. However, the procedure for obtaining such conjugates remains precarious, and the properties of conjugates differ significantly for different antibody clones. One of the most common problems is the aggregation of GNPs in the course of their conjugation with antibodies. This article considers an example of the conjugation of monoclonal antibodies with non-stable aggregating product. The composition of the antibody preparation was studied using electrophoresis, asymmetrical flow field-flow fractionation, and ultracentrifugation. It was shown that the component that causes the aggregation of the GNPs is the light chains of immunoglobulins that appear due to the spontaneous decay of the antibodies. After separation of the fraction with a molecular weight of less than 30 kDa, stable conjugates of antibodies with GNPs were obtained. The high functional activity of the obtained conjugates was confirmed by immunochromatography.
Collapse
|
26
|
Gai M, Simon J, Lieberwirth I, Mailänder V, Morsbach S, Landfester K. A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polym Chem 2020. [DOI: 10.1039/c9py01136f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching targeting ligands on the surface of self-assembled drug delivery systems is one of the key requests for a controlled transport of the drug to a desired location.
Collapse
Affiliation(s)
- Meiyu Gai
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Dermatology
- University Medical Center of the Johannes Gutenberg-University Mainz
| | | | - Volker Mailänder
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Dermatology
- University Medical Center of the Johannes Gutenberg-University Mainz
| | | | | |
Collapse
|
27
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
28
|
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019; 204:875-881. [DOI: 10.1016/j.talanta.2019.05.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
|
29
|
Ruiz G, Ryan N, Rutschke K, Awotunde O, Driskell JD. Antibodies Irreversibly Adsorb to Gold Nanoparticles and Resist Displacement by Common Blood Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10601-10609. [PMID: 31335148 DOI: 10.1021/acs.langmuir.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles (AuNPs) functionalized with proteins to impart desirable surface properties have been developed for many nanobiotechnology applications. A strong interaction between the protein and nanoparticle is critical to the formation of a stable conjugate to realize the potential of these emerging technologies. In this work, we examine the robustness of a protein layer adsorbed onto gold nanoparticles while under the stress of a physiological environment that could potentially lead to protein exchange on the nanoparticle surface. The adsorption interaction of common blood plasma proteins (transferrin, human serum albumin, and fibrinogen) and anti-horseradish peroxidase antibody onto AuNPs is investigated by nanoparticle tracking analysis. Our data show that a monolayer of protein is formed at saturation for each protein, and the maximum size increase for the conjugate, relative to the AuNP core, correlates with the protein size. The binding affinity of each protein to the AuNP is extracted from a best fit of the adsorption isotherm to the Hill equation. The antibody displays the greatest affinity (Kd = 15.2 ± 0.8 nM) that is ∼20-65 times stronger than the affinity of the other plasma proteins. Antibody-AuNP conjugates were prepared, purified, and suspended in solutions of blood plasma proteins to evaluate the stability of the antibody layer. An enzyme-mediated assay confirms that the antibody-AuNP interaction is irreversible, and the adsorbed antibody resists displacement by the plasma proteins. This work provides insight into the capabilities and potential limitations of antibody-AuNP-enabled technologies in biological systems.
Collapse
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Nicki Ryan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Kylie Rutschke
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Olatunde Awotunde
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Jeremy D Driskell
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
30
|
Moses Phiri M, Wingrove Mulder D, Mason S, Christiaan Vorster B. Facile immobilization of glucose oxidase onto gold nanostars with enhanced binding affinity and optimal function. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190205. [PMID: 31218060 PMCID: PMC6549951 DOI: 10.1098/rsos.190205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/05/2019] [Indexed: 05/11/2023]
Abstract
Gold nanoparticles provide a user-friendly and efficient surface for immobilization of enzymes and proteins. In this paper, we present a novel approach for enzyme bioconjugation to gold nanostars (AuNSs). AuNSs were modified with l-cysteine (Cys) and covalently bound to N-hydroxysulfosuccinimide (sulfo-NHS) activated intermediate glucose oxidase (GOx) to fabricate a stable and sensitive AuNSs-Cys-GOx bioconjugate complex. Such a strategy has the potential for increased attachment affinity without protein adsorption onto the AuNSs surface. Good dispersity in buffer suspension was observed, as well as stability in high ionic environments. Using the AuNSs-Cys-GOx bioconjugates showed greater sensitivity in the measuring of low concentrations of glucose based on plasmonic and colorimetric detection. Such a novel approach for enzyme immobilization can lead to AuNSs-Cys-GOx bioconjugate complexes that can be used as catalytic nanodevices in nanobiosensors based on oxidases in biomedical applications.
Collapse
Affiliation(s)
- Masauso Moses Phiri
- Centre for Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, South Africa
| | | | | | - Barend Christiaan Vorster
- Centre for Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, South Africa
| |
Collapse
|
31
|
Ruiz G, Tripathi K, Okyem S, Driskell JD. pH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug Chem 2019; 30:1182-1191. [DOI: 10.1021/acs.bioconjchem.9b00123] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Kiran Tripathi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D. Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
32
|
Chen XY, Ha W, Shi YP. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Talanta 2019; 194:475-484. [DOI: 10.1016/j.talanta.2018.10.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
|
33
|
Phiri MM, Mulder DW, Vorster BC. Seedless gold nanostars with seed-like advantages for biosensing applications. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181971. [PMID: 30891302 PMCID: PMC6408411 DOI: 10.1098/rsos.181971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 05/04/2023]
Abstract
Gold nanostars (AuNSs) are seen as promising building blocks for biosensors with potential for easy readouts based on naked-eye and ultraviolet-visible spectroscopy detection. We present a seedless synthesis strategy for AuNSs that has the advantages of the seeded methods. The method used ascorbic acid as a reducing agent and silver nitrate as an anisotropic growth control assisting agent. AuNSs with multiple branches and a diameter of 59 nm were produced. They showed good stability when capped with PVP and modified with an enzyme in relatively strong ionic conditions. We investigated their application in plasmonic sensing by modifying them with glucose oxidase and detection of glucose. The AuNSs were found to be a good scaffold for the enzyme, proved to be stable and sensitive as transducers. Thus, the AuNSs showed good promise for further applications in plasmonic biosensing for in vivo biomedical diagnosis.
Collapse
Affiliation(s)
- Masauso Moses Phiri
- Centre for Human Metabolomics, North-West University, P/Bag X6001, Hoffman Street, Potchefstroom 2520, South Africa
| | | | | |
Collapse
|
34
|
de Araujo WR, Cardoso TM, da Rocha RG, Santana MH, Muñoz RA, Richter EM, Paixão TR, Coltro WK. Portable analytical platforms for forensic chemistry: A review. Anal Chim Acta 2018; 1034:1-21. [DOI: 10.1016/j.aca.2018.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
|
35
|
Zou Q, Li X, Xue T, Mo S, Su Q, Zheng J. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip. ANAL SCI 2018; 35:493-498. [PMID: 30298820 DOI: 10.2116/analsci.18p381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of Hg2+ ions was reported, based on poly-thymine (T) aptamer/2-naphthalenethiol (2-NT)-modified gold nanoparticles (AuNPs), which was an oligonucleotide-functionalized nanosensor and SERS chip. 2-NT was used as a Raman reporter, and T aptamer could form a T-Hg2+-T structure with Hg2+ ions making an SERS nanosensor absorbed to the SERS chip. The optimum concentrations of DNA and 2-NT were obtained. An average of 960 DNA molecules attached to each AuNP were measured. The limit of detection (LOD) was 1.0 ppt (1.0 × 10-12 g/mL), which is far below the limit of 10.0 ppb for drinking water, stipulated by the World Health Organization. The sensor has the advantages of low detection cost, a simple sample pretreatment, a green solution and reducing false positives. Furthermore, the nanosensor was used for the determination of trace Hg2+ in the water of a lake; a reliable result was obtained accurately.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University.,School of Microelectronics, Tianjin University.,Xuanhuai School of Innovation and Entrepreneurship, Tianjin University
| | - Xin Li
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University
| | - Tao Xue
- College of Material Science and Engineering, Tianjin University
| | - Shentong Mo
- School of Microelectronics, Tianjin University
| | - Qi Su
- School of Microelectronics, Tianjin University
| | - Jia Zheng
- School of Microelectronics, Tianjin University
| |
Collapse
|
36
|
Li J, Yang Y, Zhang X, Zhang B, Chang H, Wei W. Resonance Rayleigh scattering assay for EGFR using antibody immobilized gold nanoparticles. LUMINESCENCE 2018; 33:1326-1332. [PMID: 30264501 DOI: 10.1002/bio.3550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
A highly selectivity determination of epidermal growth factor receptor (EGFR) has been described in the article. Antibody immobilized cysteamine (Cys) functionalized gold nanoparticles (AuNP) were proposed as immunosensors, and resonance Rayleigh scattering (RRS) was used for detection. First, Cys stabilized AuNPs (Cys-AuNP) were prepared by the reduction of chloroauric acid with sodium borohydride in the presence of Cys. Further, anti-EGFR antibody (Cetuximab, C225) was covalently linked to the Cys-AuNP by carbodiimide-mediated amidation protocol to yield the C225-AuNP immunoprobe. The prepared conjugations were characterized by ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the specific binding of C225 to EGFR, an RRS method was established to determine the concentration of EGFR. Under the optimal conditions, the concentration of EGFR was related to the intensity of RRS in the range 30-130 ng ml-1 with a low detection limit of 4.0 ng ml-1 . Meanwhile, the proposed immunosensor exhibited excellent selectivity and anti-interference property. The method was applied to the determination of EGFR in human serum and cancer cell lysate samples with satisfactory results.
Collapse
Affiliation(s)
- Junbo Li
- Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China.,Pharmaceutical Department, Changzhi Medical College, Changzhi, P.R. China
| | - Yanqiang Yang
- Changzhi Entry-exit Inspection and Quarantine Bureau, Changzhi, P.R. China
| | - Xinxin Zhang
- Changzhi Entry-exit Inspection and Quarantine Bureau, Changzhi, P.R. China
| | - Bing Zhang
- Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Honghong Chang
- Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Wenlong Wei
- Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| |
Collapse
|