1
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Wang M, Liao S, Zang X, Fu Z, Yin S, Wang T. Long-term hypoxia stress-induced oxidative stress, cell apoptosis, and immune response in the intestine of Pelteobagrus vachelli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:585-597. [PMID: 37222964 DOI: 10.1007/s10695-023-01204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Hypoxia is a common phenomenon in aquaculture. With the dissolved oxygen (DO) 3.75 ± 0.25 mg O2 /L for hypoxia group and 7.25 ± 0.25 mg O2 /L for control group for 30, 60, and 90 days, long-term hypoxia stress was used to investigate the oxidative stress, apoptosis, and immunity in the intestine of Pelteobagrus vachelli. According to the results of measurement of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) activities and malondialdehyde (MDA) content, the oxidative stress ability of the intestine was activated at 30 days and impaired at 60 and 90 days. The upregulation of Bcl-2-associated x (Bax); downregulation of B cell lymphoma-2 (Bcl-2); increased activities of caspase-3, caspase-9, and Na+-K+-ATPase; decreased activities of succinate dehydrogenase (SDH); and the release of cytochrome c (Cyt-c) in mitochondria revealed that hypoxia induced the apoptosis. Moreover, heat shock protein 70 (HSP 70), heat shock protein 90 (HSP 90), immunoglobulin M (IgM), and C-lysozyme (C-LZM) were activated to inhibit apoptosis, but the immunoregulatory function might be damaged at 60 and 90 days. This study provides a theoretical foundation for understanding the mechanisms of hypoxia stress and aquaculture management of P. vachelli.
Collapse
Affiliation(s)
- Min Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Shujia Liao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Xuechun Zang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Zhineng Fu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
3
|
Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023; 11:500-518. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, graphene-based composites have received increasing attention due to their high biocompatibility, large specific surface area, high electrical conductivity and unique mechanical properties. The combination of biomacromolecules and graphene provides a promising route for the preparation of novel graphene-based nanocomposites. Novel graphene-based nanocomposites with unique functions could be applied to medicine, biology, biosensors, environmental science, energy storage and other fields. Graphene-biomacromolecule nanocomposites have excellent biocompatibility, outstanding biofunctionality and low cytotoxicity, and have more advantages and development prospects than other traditional graphene-based materials in biological and biomedical fields. In this work, we summarize the research on the covalent and non-covalent interactions between different biomacromolecules (peptides, DNA/RNA, proteins and enzymes) and graphene, as well as the synthesis methods of novel functionalized graphene-biomacromolecule composites in recent years. We mainly introduce the recent advances (last 5 years) of graphene-biomacromolecule nanocomposites in medical applications, such as medical detection and disease treatment. We hope that this review will help readers to understand the methods and mechanisms of biomolecules modifying the surface of graphene, as well as the synthesis and application of graphene-based nanocomposites, which will promote the future developments of graphene-biomolecule composites in biomedicine, tissue engineering, materials engineering, and so on.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jinhui Yu
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Li Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
4
|
Simultaneous Visualization of MiRNA-221 and Caspase-3 in Cancer Cells for Investigating the Feasibility of MiRNA-Targeted Therapy with a Dual-Color Fluorescent Nanosensor. BIOSENSORS 2022; 12:bios12070444. [PMID: 35884247 PMCID: PMC9312853 DOI: 10.3390/bios12070444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
MiRNA-targeted therapy holds great promise for precision cancer therapy. It is important to investigate the effect of changes in miRNA expression on apoptosis in order to evaluate miRNA-targeted therapy and achieve personalized therapy. In this study, we designed a dual-color fluorescent nanosensor consisting of grapheme oxide modified with a molecular beacon and peptide. The nanosensor can simultaneously detect and image miRNA-221 and apoptotic protein caspase-3 in living cells. Intracellular experiments showed that the nanosensor could be successfully applied for in situ monitoring of the effect of miRNA-221 expression changes on apoptosis by dual-color imaging. The current strategy could provide new avenues for investigating the feasibility of miRNA-targeted therapy, screening new anti-cancer drugs targeting miRNA and developing personalized treatment plans.
Collapse
|
5
|
Kumar N, Wang W, Ortiz-Marquez JC, Catalano M, Gray M, Biglari N, Hikari K, Ling X, Gao J, van Opijnen T, Burch KS. Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosens Bioelectron 2020; 156:112123. [PMID: 32174552 DOI: 10.1016/j.bios.2020.112123] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 01/19/2023]
Abstract
The rapid increase in antibiotic resistant pathogenic bacteria has become a global threat, which besides the development of new drugs, requires rapid, cheap, scalable, and accurate diagnostics. Label free biosensors relying on electrochemical, mechanical, and mass based detection of whole bacterial cells have attempted to meet these requirements. However, the trade-off between selectivity and sensitivity of such sensors remains a key challenge. In particular, point-of-care diagnostics that are able to reduce and/or prevent unneeded antibiotic prescriptions require highly specific probes with sensitive and accurate transducers that can be miniaturized and multiplexed, and that are easy to operate and cheap. Towards achieving this goal, we present a number of advances in the use of graphene field effect transistors (G-FET) including the first use of peptide probes to electrically detect antibiotic resistant bacteria in a highly specific manner. In addition, we dramatically reduce the needed concentration for detection by employing dielectrophoresis for the first time in a G-FET, allowing us to monitor changes in the Dirac point due to individual bacterial cells. Specifically, we realized rapid binding of bacterial cells to a G-FET by electrical field guiding to the device to realize an overall 3 orders of magnitude decrease in cell-concentration enabling a single-cell detection limit, and 9-fold reduction in needed time to 5 min. Utilizing our new biosensor and procedures, we demonstrate the first selective, electrical detection of the pathogenic bacterial species Staphylococcus aureus and antibiotic resistant Acinetobacter baumannii on a single platform.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Physics, Boston College, Chestnut Hill, MA, 02467, United States
| | - Wenjian Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, United States
| | | | - Matthew Catalano
- Department of Physics, Boston College, Chestnut Hill, MA, 02467, United States
| | - Mason Gray
- Department of Physics, Boston College, Chestnut Hill, MA, 02467, United States
| | - Nadia Biglari
- Department of Physics, Boston College, Chestnut Hill, MA, 02467, United States
| | - Kitadai Hikari
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA, 02215, United States; Division of Materials Science and Engineering, Boston University, Boston, MA, 02214, United States; The Photonics Center, Boston University, Boston, MA, 02214, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, United States.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, United States.
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, MA, 02467, United States.
| |
Collapse
|
6
|
Liu X, Song X, Luan D, Hu B, Xu K, Tang B. Real-Time in Situ Visualizing of the Sequential Activation of Caspase Cascade Using a Multicolor Gold-Selenium Bonding Fluorescent Nanoprobe. Anal Chem 2019; 91:5994-6002. [PMID: 30942074 DOI: 10.1021/acs.analchem.9b00452] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The caspase cascade is an ensemble of very important signaling molecules that plays a critical role in cell apoptosis. Real-time monitoring of the upstream and downstream activation relationships of the caspases in the signal pathway is of great significance for understanding the regulatory mechanisms of these signaling molecules in the development of various diseases. Herein, a multicolor fluorescent nanoprobe, GNP-Se-Casp, has been developed based on Au-Se bonding for real-time in situ monitoring caspase- (casp-) 3, 8, and 9 during cell apoptosis. In the real-time fluorescence imaging of apoptotic HeLa cells induced by staurosporine using GNP-Se-Casp, the fluorescence signals corresponding to casp-8 and casp-9 sequentially turn on, followed by the appearance of the fluorescence of casp-3, which visualizes the upstream and downstream relationships of casp-3, -8, and -9. Thus, GNP-Se-Casp is an effective tool for real-time in situ monitoring of caspase cascade activation in the apoptosis process of tumor cells. This design strategy is easily adaptable to in situ detection of other signal molecules, especially those with upstream and downstream activation relationships.
Collapse
Affiliation(s)
- Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Dongrui Luan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|