1
|
Saldaña-Ahuactzi Z, Gómez-Montaño FJ, Morales-Chávez J, Salinas RA, Reyes-Betanzo C, Rojas-López M, Dutt A, Orduña-Díaz A. Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches. Mikrochim Acta 2025; 192:102. [PMID: 39843762 DOI: 10.1007/s00604-024-06924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests. This process involves specific facilities, a long-time analysis procedures, and skilled personnel. Conversely, biosensors are an emerging innovative approach to detecting pathogens in real time due to their portability, specificity, sensitivity, and low fabrication costs. These advantages can be achieved from the synergistic work between nanotechnology, materials science, and biotechnology for coupling biomolecules in nano-matrices to enhance biosensing performance. This review highlights recent advancements in electrochemical and optical biosensing techniques for detecting bacteria and viruses. Key properties, such as detection limits, are examined, as they depend on factors like the design of the biorecognition molecule, the type of transducer, the target's characteristics, and matrix interferences. Sensitivity levels reported range from 1 to 1 × 10⁸ CFU/mL, with detection times spanning 10 min to 8 h. Additionally, the review explores innovative approaches, including biosensors capable of distinguishing between live and dead bacteria, multimodal sensing, and the simultaneous detection of multiple foodborne pathogens - emerging trends in biosensor development.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| | - Francisco Javier Gómez-Montaño
- Instituto Tecnológico Superior de San Martín Texmelucan. Camino a Barranca de Pesos S/N., San Martín Texmelucan, 74120, Puebla, México
| | | | - Rafael A Salinas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Claudia Reyes-Betanzo
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
| | - Marlon Rojas-López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Abdú Orduña-Díaz
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| |
Collapse
|
2
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2025; 13:1229-1251. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
3
|
Chicea D, Nicolae-Maranciuc A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5770. [PMID: 39685206 DOI: 10.3390/ma17235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications. This review examines chitosan's unique properties, with a focus on its antibacterial activity as influenced by factors like pH, concentration, molecular weight, and deacetylation degree. Additionally, chitosan's potential as a sustainable, non-toxic material for eco-friendly packaging and water treatment is explored, highlighting the growing interest in chitosan composites with other polymers and metallic nanoparticles for enhanced biomedical and environmental applications.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
4
|
Wang J, Cui X, Liang L, Li J, Pang B, Li J. Advances in DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria. Talanta 2024; 275:126072. [PMID: 38615455 DOI: 10.1016/j.talanta.2024.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The detection of foodborne pathogenic bacteria is critical in preventing foodborne diseases. DNA-based electrochemical biosensors, with the merits of high sensitivity and short detection time, provide an effective detecting method for foodborne pathogens, attracting significant interest for the past few years. This review mainly describes the important research progress of DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria through four perspectives: representative foodborne pathogens detection using electrochemical approaches, DNA immobilization strategies of aptamers, DNA-based signal amplification strategies used in electrochemical DNA sensors, and functional DNA used in electrochemical DNA sensors. Finally, perspectives and challenges are presented in this field. This review will contribute to DNA-based electrochemical biosensor in enhancing the nucleic acid signal amplification.
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Teng M, Hao M, Ding C, Wang L, Shen H, Yu S, Chen L, Yang F. Rapid detection of Saccharomyces cerevisiae with boronic acid-decorated multivariate metal-organic frameworks and aptamers. Analyst 2023; 148:4213-4218. [PMID: 37539700 DOI: 10.1039/d3an00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Liquor brewing is a classic solid-substrate fermentation process with a unique brewing microbiome. As one of the most common fungi, Saccharomyces cerevisiae ferments saccharides and has been extensively applied in brewing production. Here, we present the facile fabrication of a selective, sensitive, and integrated fluorescent biosensor for S. cerevisiae detection. The proposed biosensor used aptamer-modified magnetic beads to specifically capture S. cerevisiae, and the enriched fungi were recognized and detected with boronic acid-decorated multivariate metal-organic frameworks. The biosensor allows rapid quantification of S. cerevisiae in the range of 10-106 CFU mL-1, showing excellent specificity and repeatability, and maintaining stable biosensing performance in long-term storage. The analytical ability of the proposed biosensor was successfully verified in distilled yeast and fermented grain samples spiked with S. cerevisiae.
Collapse
Affiliation(s)
- Mengjing Teng
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| |
Collapse
|
6
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
7
|
McLamore ES, Datta SPA. A Connected World: System-Level Support Through Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:285-309. [PMID: 37018797 DOI: 10.1146/annurev-anchem-100322-040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of protecting the health of future generations is a blueprint for future biosensor design. Systems-level decision support requires that biosensors provide meaningful service to society. In this review, we summarize recent developments in cyber physical systems and biosensors connected with decision support. We identify key processes and practices that may guide the establishment of connections between user needs and biosensor engineering using an informatics approach. We call for data science and decision science to be formally connected with sensor science for understanding system complexity and realizing the ambition of biosensors-as-a-service. This review calls for a focus on quality of service early in the design process as a means to improve the meaningful value of a given biosensor. We close by noting that technology development, including biosensors and decision support systems, is a cautionary tale. The economics of scale govern the success, or failure, of any biosensor system.
Collapse
Affiliation(s)
- Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Shoumen P A Datta
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
9
|
He X, Pu Y, Chen L, Jiang H, Xu Y, Cao J, Jiang W. A comprehensive review of intelligent packaging for fruits and vegetables: Target responders, classification, applications, and future challenges. Compr Rev Food Sci Food Saf 2023; 22:842-881. [PMID: 36588319 DOI: 10.1111/1541-4337.13093] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 01/03/2023]
Abstract
Post-harvest fruits and vegetables are extremely susceptible to dramatic and accelerated quality deterioration deriving from their metabolism and adverse environmental influences. Given their vigorous physiological metabolism, monitoring means are lacking due to the extent that unnecessary waste and damage are caused. Numerous intelligent packaging studies have been hitherto carried out to investigate their potential for fruit and vegetable quality monitoring. This state-of-the-art overview begins with recent advances in target metabolites for intelligent packaging of fruits and vegetables. Subsequently, the mechanisms of action between metabolites and packaging materials are presented. In particular, the exact categorization and function of intelligent packaging of fruits and vegetables, are all extensively and comprehensively described. In addition, for the sake of further research in this field, the obstacles that impede the scaling up and commercialization of intelligent packaging for fruits and vegetables are also explored, to present valuable references.
Collapse
Affiliation(s)
- Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
10
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
11
|
Oliveira DA, McLamore ES, Gomes CL. Rapid and label-free Listeria monocytogenes detection based on stimuli-responsive alginate-platinum thiomer nanobrushes. Sci Rep 2022; 12:21413. [PMID: 36496515 PMCID: PMC9741594 DOI: 10.1038/s41598-022-25753-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus-response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein on Listeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL-1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) for L. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.
Collapse
Affiliation(s)
- Daniela A Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Zhang W, Cui C, Chen H, Liu H, Bin S, Wang D, Wang Y. Advances in Electrochemical Aptamer Biosensors for the Detection of Food‐borne Pathogenic Bacteria. ChemistrySelect 2022. [DOI: 10.1002/slct.202202190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wensi Zhang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Chuanjin Cui
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Hongshuo Chen
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Haibin Liu
- North China University of Science and Technology College Of Life Sciences Tangshan 063210, P.R.China
| | - Shao Bin
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Dengling Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Yitao Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| |
Collapse
|
13
|
Moreira G, Casso-Hartmann L, Datta SPA, Dean D, McLamore E, Vanegas D. Development of a Biosensor Based on Angiotensin-Converting Enzyme II for Severe Acute Respiratory Syndrome Coronavirus 2 Detection in Human Saliva. FRONTIERS IN SENSORS 2022; 3:917380. [PMID: 35992634 PMCID: PMC9386735 DOI: 10.3389/fsens.2022.917380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for COVID-19. Infection in humans requires angiotensin-converting enzyme II (hACE2) as the point of entry for SARS-CoV-2. PCR testing is generally definitive but expensive, although it is highly sensitive and accurate. Biosensor-based monitoring could be a low-cost, accurate, and non-invasive approach to improve testing capacity. We develop a capacitive hACE2 biosensor for intact SARS-CoV-2 detection in saliva. Laser-induced graphene (LIG) electrodes were modified with platinum nanoparticles. The quality control of LIG electrodes was performed using cyclic voltammetry. Truncated hACE2 was used as a biorecognition element and attached to the electrode surface by streptavidin-biotin coupling. Biolayer interferometry was used for qualitative interaction screening of hACE2 with UV-attenuated virions. Electrochemical impedance spectroscopy (EIS) was used for signal transduction. Truncated hACE2 binds wild-type SARS-CoV-2 and its variants with greater avidity than human coronavirus (common cold virus). The limit of detection (LoD) is estimated to be 2,960 copies/ml. The detection process usually takes less than 30 min. The strength of these features makes the hACE2 biosensor a potentially low-cost approach for screening SARS-CoV-2 in non-clinical settings with high demand for rapid testing (for example, schools and airports).
Collapse
Affiliation(s)
- Geisianny Moreira
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
| | - Lisseth Casso-Hartmann
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Shoumen Palit Austin Datta
- Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, United States
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Eric McLamore
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
- Department of Agricultural Sciences, Clemson University, Clemson, SC, United States
| | - Diana Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
| |
Collapse
|
14
|
McLamore ES, Moreira G, Vanegas DC, Datta SPA. Context-Aware Diagnostic Specificity (CADS). BIOSENSORS 2022; 12:101. [PMID: 35200361 PMCID: PMC8869940 DOI: 10.3390/bios12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of proteins is critical in a vast array of diagnostic or monitoring applications [...].
Collapse
Affiliation(s)
- Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
| | - Geisianny Moreira
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Diana C. Vanegas
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Shoumen Palit Austin Datta
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;
- MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Suite 232, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Oliveira DA, Althawab S, McLamore ES, Gomes CL. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. BIOSENSORS 2021; 11:bios11120511. [PMID: 34940268 PMCID: PMC8699315 DOI: 10.3390/bios11120511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.
Collapse
Affiliation(s)
- Daniela A. Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
| | - Suleiman Althawab
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eric S. McLamore
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Carmen L. Gomes
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Agricultural Sciences, Clemson University, Clemson, SC 26631, USA
| |
Collapse
|
16
|
Recent Advances in Electrochemical Chitosan-Based Chemosensors and Biosensors: Applications in Food Safety. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chitosan is a biopolymer derived from chitin. It is a non-toxic, biocompatible, bioactive, and biodegradable polymer. Due to its properties, chitosan has found applications in several and different fields such as agriculture, food industry, medicine, paper fabrication, textile industry, and water treatment. In addition to these properties, chitosan has a good film-forming ability which allows it to be widely used for the development of sensors and biosensors. This review is focused on the use of chitosan for the formulation of electrochemical chemosensors. It also aims to provide an overview of the advantages of using chitosan as an immobilization platform for biomolecules by highlighting its applications in electrochemical biosensors. Finally, applications of chitosan-based electrochemical chemosensors and biosensors in food safety are illustrated.
Collapse
|
17
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
18
|
Recent progress on electrochemical sensing strategies as comprehensive point-care method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Sense–Analyze–Respond–Actuate (SARA) Paradigm: Proof of Concept System Spanning Nanoscale and Macroscale Actuation for Detection of Escherichia coli in Aqueous Media. ACTUATORS 2020. [DOI: 10.3390/act10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping).
Collapse
|
20
|
Sidhu RK, Cavallaro ND, Pola CC, Danyluk MD, McLamore ES, Gomes CL. Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5773. [PMID: 33053744 PMCID: PMC7600482 DOI: 10.3390/s20205773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Irrigation water is a primary source of fresh produce contamination by bacteria during the preharvest, particularly in hydroponic systems where the control of pests and pathogens is a major challenge. In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate the application of this system using a smartphone-based potentiostat for rapid on-site analysis of water quality. A detailed characterization of the electrochemical behavior was conducted in the presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of 3.37 ± 0.21 k log-CFU-1 mL, and the LOD was 48 ± 12 CFU mL-1 with a linear range of 102 to 104 CFU mL-1. In stagnant solution with no flow, the aptasensor performance was significantly improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to 16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in real time using a smartphone-based acquisition system for volumes that conform with the regulatory standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of times with minor washing steps.
Collapse
Affiliation(s)
- Raminderdeep K. Sidhu
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Nicholas D. Cavallaro
- Agricultural & Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Cicero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Michelle D. Danyluk
- Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Eric S. McLamore
- Agricultural & Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
21
|
Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, McLamore ES, Claussen JC, Gomes CL. Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth. ACS Sens 2020; 5:1900-1911. [PMID: 32348124 DOI: 10.1021/acssensors.9b02345] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical in-field biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL-1) and with a low detection limit (13 ± 7 CFU mL-1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.
Collapse
Affiliation(s)
- Raquel R. A. Soares
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Robert G. Hjort
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Cicero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Kshama Parate
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Efraim L. Reis
- Department of Chemistry, Federal University of Vicosa, Viçosa 36570-900, Brazil
| | - Nilda F. F. Soares
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Eric S. McLamore
- Agricultural & Biological Engineering, University of Florida, Gainesville 32611, Florida, United States
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| |
Collapse
|
22
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
23
|
|
24
|
Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
27
|
McLamore ES, Palit Austin Datta S, Morgan V, Cavallaro N, Kiker G, Jenkins DM, Rong Y, Gomes C, Claussen J, Vanegas D, Alocilja EC. SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. SENSORS 2019; 19:s19224935. [PMID: 31766116 PMCID: PMC6891700 DOI: 10.3390/s19224935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity machine-assisted decision support tool. We summarize the approaches used for mobile phone-based chemical/biological sensors, including general hardware and software requirements for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which may lend itself to dynamic composability by enabling context-specific selection of relevant units, resulting in case-based working modules. SNAPS is an element of this platform where data analytics, statistical characterization and algorithms may be delivered to the data either via embedded systems in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the physical systems with the cyber components paves the path for SNAPS to progress to higher levels of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative data and qualitative data, each operated using a mobile device (smartphone or tablet) for data acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around the value to users/stakeholders and the key performance indicators users may find helpful, for these types of machine-assisted tools.
Collapse
Affiliation(s)
- Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- Correspondence: ; Tel.: +1-(352)294-6703
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MDPnP Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Nicholas Cavallaro
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Greg Kiker
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Daniel M. Jenkins
- Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA;
| | - Yue Rong
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jonathan Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA 50011, USA;
- Ames Laboratory, Ames, IA 50011, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA;
- Nano-Biosensors Lab, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
29
|
Guo J, Zhong Z, Li Y, Liu Y, Wang R, Ju H. "Three-in-One" SERS Adhesive Tape for Rapid Sampling, Release, and Detection of Wound Infectious Pathogens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36399-36408. [PMID: 31509379 DOI: 10.1021/acsami.9b12823] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The traditional colony culture method for detection of pathogens is subjected to the laborious and tedious experimental procedure, which limits its application in point-of-care (POC) testing and quick diagnosis. This work designs an intelligent adhesive tape as a "three-in-one" platform for rapid sampling, photocontrolled release, and surface-enhanced Raman scattering (SERS) detection of pathogens from infected wounds. This tape is constructed by encapsulating densely packed gold nanostars as SERS substrates between two pieces of graphene and modified with a synthetic o-nitrobenzyl derivative molecule to form an artificial biointerface for highly efficient pathogen capture via electrostatic interaction. The captured targets can be conveniently released onto a solid culture medium by UV cleavage of o-nitrobenzyl moiety for pathogen growth and in situ SERS detection. As a proof of strategy, this "three-in-one" platform has been used for detecting the concurrent infection of Pseudomonas aeruginosa and Staphylococcus aureus by pasting the tape on a skin burn wound. The impressive detection performance with an analytical time of only several hours for these pathogens at an early growth stage demonstrates its great potential as a POC testing device for health care.
Collapse
|
30
|
Jiang Y, Wu J. Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 2019; 40:2084-2097. [PMID: 31081120 DOI: 10.1002/elps.201900066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Abstract
Recent years have witnessed ever expanding use of biosensors in the fields of environmental monitoring, homeland security, pharmaceutical, food and bioprocessing, and agricultural industries. To produce effective and reliable biosensors, good quality immobilization of biological recognition elements is critical. Chitosan and its nanocomposites emerge as an excellent immobilization matrix on biosensor surface. As a natural polysaccharide, chitosan has many useful characteristics, such as high permeability and mechanical strength, biocompatibility and non-toxicity, availability, and low cost. Due to the presence of amino and hydroxyl groups on chitosan, chitosan can easily crosslink with a variety of nanomaterials. This investigation of chitosan nanocomposite-based biosensors presents recent development and innovations in the preparation of chitosan nanocomposites in coordination with biosensors for various bio-detection applications, including chitosan nanocomposites formed with carbon nanomaterials, various inorganic and biological complexes. These chitosan nanocomposite based biosensors have demonstrated good sensitivity selectivity and stability for the detection of different types of targets ranging from glucose, proteins, DNAs, small biomolecules to bacteria. It is in our hope that this review will offer guidance for the development of novel biosensors and open up opportunities in the field of biosensor research.
Collapse
Affiliation(s)
- Yu Jiang
- Electrical and Computer Engineering, The University of Tennessee, Knoxville, USA
| | - Jayne Wu
- Electrical and Computer Engineering, The University of Tennessee, Knoxville, USA
| |
Collapse
|