1
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Zhang Y, Fardous J, Inoue Y, Doi R, Obata A, Sakai Y, Aishima S, Ijima H. Subcutaneous angiogenesis induced by transdermal delivery of gel-in-oil nanogel dispersion. BIOMATERIALS ADVANCES 2023; 154:213628. [PMID: 37769531 DOI: 10.1016/j.bioadv.2023.213628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Subcutaneous transplantation aims to enhance the growth and functionality of transplanted cells for therapeutic outcomes in tissue engineering. However, the limited subcutaneous vascular network poses a challenge. Conventional methods involve co-transplantation with endothelial cells or angiogenic scaffold implantation, but they have drawbacks like tissue inflammation, compromised endothelial cell functionality, and the risk of repeated scaffold transplantation. Effective techniques are needed to overcome these challenges. This study explores the potential of G/O-NGD, a gel-in-oil nanogel dispersion, as a transdermal carrier of proliferative factors to promote angiogenesis in subcutaneous graft beds before cell transplantation. We observed robust subcutaneous angiogenesis by delivering varying amounts of bFGF using the G/O-NGD emulsion. Quantitative analysis of several parameters confirmed the efficacy of this method for building a subcutaneous vascular network. G/O-NGD is a biodegradable material that facilitates localized transdermal delivery of bFGF while maintaining its activity. The findings of this study have significant implications in both medical and industrial fields.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jannatul Fardous
- Department of Pharmacy, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh
| | - Yuuta Inoue
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryota Doi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Asami Obata
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Sakai
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinichi Aishima
- Department of Scientific Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Tasci O, Dogan K. Evaluation of tumour necrosis factor alpha-stimulated gene-6 and fibroblast growth factor-2 levels in patients diagnosed with multi-system inflammatory syndrome in children. Cardiol Young 2023; 33:1086-1091. [PMID: 36918343 DOI: 10.1017/s1047951123000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Investigations are still ongoing about the pathophysiology of multi-system inflammatory syndrome in children, which can progress with serious morbidity and mortality after COVID-19 infection. In this study, we aimed to investigate whether fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels play a role in the diagnosis of the disease and on cardiac involvement. Twenty-three patients (11 girls, 12 boys) and 26 healthy controls (10 girls, 16 boys) were included in the study. The mean age of the patient and control group was 8.45 ± 2.43 and 10.73 ± 4.27 years, respectively. There was no difference between the fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels of the patient and control groups. When the patients with myocardial involvement in the patient group were compared with the patients without myocardial involvement in terms of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels, no difference was found between these groups. The correlation of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels with other laboratory parameters was investigated in the patient group. Fibroblast growth factor-2 was moderately inversely correlated with white blood cell count (r = -0.541, p = 0.008), absolute neutrophil count (r = -0.502, p = 0.015) and C-reactive protein (r = -0.528, p = 0.010). Fibroblast growth factor-2 was strongly inversely correlated with erythrocyte sedimentation rate (r = -0.694, p =<0.001). Our data show that fibroblast growth factor-2 and tumour necrosis factor alpha stimulated gene-6 do not provide sufficient information about diagnosis and cardiac involvement in multi-system inflammatory syndrome in children.
Collapse
Affiliation(s)
- Onur Tasci
- Sivas Numune Hospital, Department of Pediatric Cardiology, Sivas, Turkey
| | - Kubra Dogan
- Sivas Numune Hospital, Department of Biochemistry, Sivas, Turkey
| |
Collapse
|
4
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Ding P, Lu E, Li G, Sun Y, Yang W, Zhao Z. Research Progress on Preparation, Mechanism, and Clinical Application of Nanofat. J Burn Care Res 2022; 43:1140-1144. [PMID: 35015870 PMCID: PMC9435497 DOI: 10.1093/jbcr/irab250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autologous adipose tissue is an ideal soft tissue filling material in theory, which has the advantages of easy access, comprehensive source, and high biocompatibility and is now widely used in clinical practice. Based on the above benefits of autologous fat, autologous fat grafting is an essential technique in plastic surgery. Conventional macrofat is used to improve structural changes after soft tissue damage or loss caused by various causes such as disease, trauma, or aging. Due to the large diameter of particles and to avoid serious complications such as fat embolism, blunt needles with larger diameters (2 mm) are required, making the macrofat grafting difficult to the deep dermis and subdermis. Nanofat grafting is a relatively new technology that has gained popularity in cosmetic surgery in recent years. Nanofat is produced by mechanical shuffling and filtration of microfat, which is harvested by liposuction. The harvesting and processing of nanofat are cost-effective as it does not require additional equipment or culture time. Unlike microfat, nanofat particles are too small to provide a notable volumizing effect. Studies have shown that nanofat contains abundant stromal vascular fraction cells and adipose-derived stem cells, which help reconstruct dermal support structures, such as collagen, and regenerate healthier, younger-looking skin. Moreover, the fluid consistency of nanofat allows application in tissue regeneration, such as scars, chronic wounds, and facial rejuvenation. This article reviews the current research progress on the preparation, mechanism, and clinical application of nanofat.
Collapse
Affiliation(s)
- Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yidan Sun
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wenhui Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
7
|
Phase separation on cell surface facilitates bFGF signal transduction with heparan sulphate. Nat Commun 2022; 13:1112. [PMID: 35236856 PMCID: PMC8891335 DOI: 10.1038/s41467-022-28765-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) plays important roles in various cellular processes, facilitating membrane-less organelles construction, chromatin condensation, signal transduction on inner membrane and many other processes. Current perception is that LLPS relies on weak multivalent interactions and crowded environments intracellularly. In this study, we demonstrate that heparan sulfate can serve as a platform to induce the phase separation of basic fibroblast growth factor on cell surface. The phase separation model provides an alternative mechanism how bFGF is enriched to its receptors, therefore triggering the signaling transduction. The research provides insights on the mechanism how growth factors can be recruited to cell surface by heparan sulfate and execute their functions, extending people’s view on phase separation from intracellular to extracellular proteins at cellular level. Liquid-liquid phase separation (LLPS) is reported to occur in the intracellular environment. Here the authors show that heparan sulphate serves as a platform for basic fibroblast growth factor to undergo LLPS on the cell surface, therefore facilitating downstream signalling
Collapse
|
8
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
9
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Pan X, Xu S, Zhou Z, Wang F, Mao L, Li H, Wu C, Wang J, Huang Y, Li D, Wang C, Pan J. Fibroblast growth factor-2 alleviates the capillary leakage and inflammation in sepsis. Mol Med 2020; 26:108. [PMID: 33187467 PMCID: PMC7662026 DOI: 10.1186/s10020-020-00221-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute lung injury (ALI), which is induced by numerous pathogenic factors, especially sepsis, can generate alveolar damage, pulmonary edema and vascular hyper-permeability ultimately leading to severe hypoxemia. Fibroblast growth factor-2 (FGF2) is an important member of the FGF family associated with endothelial cell migration and proliferation, and injury repairment. Here, we conducted this study aiming to evaluate the therapeutic effect of FGF2 in sepsis-induced ALI. Methods Recombinant FGF2 was abdominally injected into septic mice induced by cecal ligation and puncture (CLP), and then the inflammatory factors of lung tissue, vascular permeability and lung injury-related indicators based on protein levels and gene expression were detected. In vitro, human pulmonary microvascular endothelial cells (HPMEC) and mouse peritoneal macrophages (PMs) were challenged by lipopolysaccharides (LPS) with or without FGF2 administration in different groups, and then changes in inflammation indicators and cell permeability ability were tested. Results The results revealed that FGF2 treatment reduced inflammation response, attenuated pulmonary capillary leakage, alleviated lung injury and improved survival in septic mice. The endothelial injury and macrophages inflammation induced by LPS were inhibited by FGF2 administration via AKT/P38/NF-κB signaling pathways. Conclusion These findings indicated a therapeutic role of FGF2 in ALI through ameliorating capillary leakage and inflammation.
Collapse
Affiliation(s)
- Xiaojun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Shunyao Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Zhen Zhou
- Department of Intensive Care Unit, Hangzhou Third Hospital, Hangzhou, 310000, Zhejiang, P. R. China
| | - Fen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Lingjie Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Hao Li
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Caixia Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Junfeng Wang
- The Yiwu Affiliated Hospital of Wenzhou Medical University, Jinhua, 322000, Zhejiang, P. R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| |
Collapse
|
11
|
Yasami-Khiabani S, Karkhaneh A, Shokrgozar MA, Amanzadeh A, Golkar M. Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation. Biomater Sci 2020; 8:4832-4840. [PMID: 32760979 DOI: 10.1039/d0bm00183j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation of growth factors to a carrier is a favorable method to improve their efficacy as therapeutic molecules. Here, we report the carrier size effect on bioactivity of human epidermal growth factor (hEGF) conjugated to polystyrene particles. BALB/3T3 cells were treated with hEGF-conjugated particles (hEGF-conjs) sized from 20 to 1000 nm. At hEGF concentrations less than 0.5 ng ml-1, free hEGF was more potent than the hEGF-conjs at inducing cell proliferation. However, cell proliferation was size-dependent at higher concentrations of hEGF i.e. hEGF-conjs sized equal to or less than 200 nm displayed lower cell proliferation, compared to free hEGF, but larger particles showed increased cell proliferation. This is in agreement with previous studies showing accumulation of activated-EGFRs in early endosomes triggers apoptosis of A431 and HeLa cells. The confocal microscopy and co-localization fluorescence staining showed the 500 and 1000 nm hEGF-conjs exclusively remained on the cell surface, probably enabling them to activate EGF receptors for a longer time. Conversely, smaller particles were mostly inside the cells, indicating their rapid endocytosis. Similarly, A431 cells treated with 20 nm hEGF-conj, endocytosed the particles and experienced decreased cell proliferation, while the 500 and 1000 nm hEGF-conjs were not internalized, and induced partial cell proliferation. Moreover, we showed multivalency of hEGF-conjs is not the cause of enhanced cell proliferation by large particles, as the degree of EGFR phosphorylation by free EGF was higher, compared to hEGF-conjs. Our results suggest the potential of micron-sized particles as a carrier for hEGF to enhance cell proliferation, which could be explored as a promising approach for topical application of growth factors for accelerating wound healing.
Collapse
Affiliation(s)
- Setayesh Yasami-Khiabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | | | | | | | | |
Collapse
|
12
|
Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X, Chang Y, Zheng J, Wu J. Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:965-976. [DOI: 10.1021/acsabm.9b01000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Hu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yi Song
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Cuiyun Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wen Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Susu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanxin Chen
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chaodong Tu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jianhui Liu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuan Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
13
|
Browne S, Hossainy S, Healy K. Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels. ACS Biomater Sci Eng 2020; 6:1135-1143. [PMID: 33464856 DOI: 10.1021/acsbiomaterials.9b01419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ-forming hydrogels present a promising approach for minimally invasive cell transplantation and tissue regeneration. Among prospective materials, hyaluronic acid (HyA) has displayed great potential, owing to its inherent biocompatibility, biodegradation, and ease of chemical modification. However, current studies in the literature use a broad range of HyA macromer molecular weights (MWs) from <100 kDa to 1 MDa with no consensus regarding an optimal MW for a specific application. We investigated the effects of different HyA macromer MWs on key biophysical properties of semisynthetic hydrogels, such as viscosity, gelation time, shear storage modulus, molecular diffusion, and degradation. Using higher-MW HyA macromers leads to quicker gelation times and stiffer, more stable hydrogels with smaller mesh sizes. Assessment of the potential for HyA hydrogels to support network formation by encapsulated vascular cells derived from human-induced pluripotent stem cells reveals key differences between HyA hydrogels dependent on macromer MW. These effects must be considered holistically to address the multifaceted, nonmonotonic nature of HyA MW on hydrogel behavior. Our study identified an intermediate HyA macromer MW of 500 kDa as providing optimal conditions for a readily injectable, in situ-forming hydrogel with appropriate biophysical properties to promote vascular cell spreading and sustain vascular network formation in vitro.
Collapse
|
14
|
The possible role of basic fibroblast growth factor in dental pulp. Arch Oral Biol 2019; 109:104574. [PMID: 31585238 DOI: 10.1016/j.archoralbio.2019.104574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factors (FGFs) are growth factors that play an important role in tooth development, repair, and regeneration. Of the FGF families, basic fibroblast growth factor (bFGF) has been the most frequently investigated in dentistry. Numerous studies have reported advantages of bFGF, while others did not find any additional benefit. This review gives a comprehensive summary of the potential role of bFGF in dental pulp wound healing and regeneration in connection with cell proliferation and differentiation, angiogenesis, and neural differentiation from both in vitro and in vivo studies. Furthermore, the possible underlying mechanisms associated with bFGF in promoting dental pulp wound healing are discussed in this review.
Collapse
|
15
|
Biological Effects of New Hydraulic Materials on Human Periodontal Ligament Stem Cells. J Clin Med 2019; 8:jcm8081216. [PMID: 31416236 PMCID: PMC6722926 DOI: 10.3390/jcm8081216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study was: to evaluate the biological properties of new hydraulic materials: Bio-C Repair and Bio-C Sealer. Methods: Periodontal ligament stem cells were exposed to several dilutions of Bio-C Repair and Bio-C Sealer. The ion release profile and pH were determined. Metabolic activity, cell migration and cell survival were assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), wound-healing assays and Annexin assays, respectively. Cells were cultured in direct contact with the surface of each material. These were then analyzed via scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Statistical differences were assessed using a two-way ANOVA (α < 0.05). Results: Similar pH was observed in these cements. Bio-C Sealer released significantly more Ca and Si ions (p < 0.05) in comparison with Bio-C Repair. Undiluted Bio-C Sealer induced a significant reduction on cellular viability, cell survival and cell migration when compared to the control (p < 0.05). Moreover, SEM showed abundant cells adhered on Bio-C Repair and a moderate number of cells attached on Bio-C Sealer. Finally, EDX analysis identified higher percentages of Ca and O in the case of Bio-C repair than with Bio-C sealer, while other elements such as Zr and Si were more abundant in Bio-C sealer. Conclusions: Bio-C Repair displayed higher cell viability, cell adhesion and migration rates than Bio-C Sealer.
Collapse
|
16
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opin Drug Deliv 2019; 16:715-740. [PMID: 31215823 DOI: 10.1080/17425247.2019.1634051] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The main goal in the management of chronic wounds is the development of multifunctional dressings able to promote a rapid recovery of skin structure and function, improving patient compliance. AREAS COVERED This review discusses the use of nanosystems, based on hyaluronic acid and chitosan or their derivatives for the local treatment of chronic wounds. The bioactive properties of both polysaccharides will be described, as well as the results obtained in the last decade by the in vitro and in vivo evaluation of the wound healing properties of nanosystems based on such polymers. EXPERT OPINION In the last decades, there has been a progressive change in the local treatments of chronic wounds: traditional inert dressings have been replaced by more effective bioactive ones, based on biopolymers taking part in wound healing and able to release the loaded active agents in a controlled way. With the advance of nanotechnologies, the scenario has further changed: nanosystems, characterized by a large area-to-volume ratio, show an improved interaction with the biological substrates, amplifying the activity of the constituent biopolymers. In the coming years, a deeper insight into wound healing mechanisms and the development of new techniques for nanosystem manufacturing will results in the design of new scaffolds with improved performance.
Collapse
Affiliation(s)
- Barbara Vigani
- a Department of Drug Science, University of Pavia , Pavia , Italy
| | - Silvia Rossi
- a Department of Drug Science, University of Pavia , Pavia , Italy
| | | | | | | | - Franca Ferrari
- a Department of Drug Science, University of Pavia , Pavia , Italy
| |
Collapse
|
17
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Liu W, Wong-Noonan S, Pham NB, Pradhan I, Spigelmyer A, Funk R, Nedzesky J, Cohen H, Gawalt ES, Fan Y, Meng WS. A genetically engineered Fc-binding amphiphilic polypeptide for congregating antibodies in vivo. Acta Biomater 2019; 88:211-223. [PMID: 30822553 DOI: 10.1016/j.actbio.2019.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Abstract
We report herein an affinity-based hydrogel used in creating subcutaneous depots of antibodies in vivo. The biomaterials design centered on pG_EAK, a polypeptide we designed and expressed in E. coli. The sequence consists of a truncated protein G (pG) genetically fused with repeats of the amphiphilic sequence AEAEAKAK ("EAK"). Capture of IgG was demonstrated in vitro in gels prepared from admixing pG_EAK and EAK ("pG_EAK/EAK gel"). The binding affinities and kinetics of pG for IgG were recapitulated in the pG_EAK polypeptide. Injecting IgG antibodies formulated with pG_EAK/EAK gel into subcutaneous space resulted in retention of the antibodies at the site for at least six days, whereas only signal at background levels was detected in grafts injected with IgG formulated in saline or diffusion-driven gel. The local retention of IgG in pG_EAK/EAK gel was correlated with limited distribution of the antibody in liver, spleen and lymph nodes, in contrast to those injected with antibodies formulated in saline or non-Fc binding EAK gel. In addition, antibodies formulated with pG_EAK/EAK gel and injected in mouse footpads were found to retain at the site for 19 days. As a demonstration of potential bioengineering applications, thymic epithelial cells (TECs), the primary population of thymic stromal cells that are critical for the development of T-lymphocytes, were mixed with pG_EAK/EAK gel formulated with TEC-specific anti-EpCAM antibodies and injected subcutaneously into athymic nude mice. The injected TECs congregated into functional thymic units in vivo, supporting the development of both CD4+ and CD8+ T cells as well as Foxp3+ regulatory T cells in the mice. In conclusion, pG_EAK/EAK gel can be used to retain IgG locally in vivo, and can be tailored as scaffolds for controlling deposition of molecular and/or cellular therapeutics. STATEMENT OF SIGNIFICANCE: The unique concept of the work centers on the genetic fusion of an Fc-binding domain and a self-assembling domain into a single polypeptide. To our knowledge, such bi-functional peptide has not been reported in the literature. The impact of the work lies in the ability to display IgG antibodies and Fc-fusion proteins of any specificity. The data shown demonstrate the platform can be used to localize IgG in vivo, and can be tailored for controlling deposition of primary thymic epithelial cells (TECs). The results support a biomaterials-based strategy by which TECs can be delivered as functional units to support T-lymphocyte development in vivo. The platform described in the study may serve as an important tool for immune engineering.
Collapse
|
19
|
Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801168. [PMID: 30725530 PMCID: PMC6589032 DOI: 10.1002/adhm.201801168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Although skeletal muscle is highly regenerative following injury or disease, endogenous self-regeneration is severely impaired in conditions of volume traumatic muscle loss. Consequently, tissue engineering approaches are a promising means to regenerate skeletal muscle. Biological scaffolds serve as not only structural support for the promotion of cellular ingrowth but also impart potent modulatory signaling cues that may be beneficial for tissue regeneration. In this work, the progress of tissue engineering approaches for skeletal muscle engineering and regeneration is overviewed, with a focus on the techniques to create biomimetic engineered tissue using extracellular cues. These factors include mechanical and electrical stimulation, geometric patterning, and delivery of growth factors or other bioactive molecules. The progress of evaluating the therapeutic efficacy of these approaches in preclinical models of muscle injury is further discussed.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Luo Y, Luan XL, Sun YJ, Zhang L, Zhang JH. Effect of recombinant bovine basic fibroblast growth factor gel on repair of rosacea skin lesions: A randomized, single-blind and vehicle-controlled study. Exp Ther Med 2019; 17:2725-2733. [PMID: 30930972 PMCID: PMC6425269 DOI: 10.3892/etm.2019.7258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to assess the effect of topical use of recombinant bovine basic fibroblast growth factor (rbFGF) gel on the repair of facial skin lesions in patients with rosacea. In the present single-blind study, a total of 1,287 patients with Demodex mite-induced rosacea who received treatment with ornidazole tablets were randomized to rbFGF gel treatment group (n=651) or control group (n=636) without revealing the group identity. Patients in the treatment group were treated with topical application of rbFGF gel over the skin lesions (0.2 g/cm2) for up to 8 weeks, whereas patients in the control group received gel vehicle treatment unless ulceration occurred. Skin lesions of all patients were scored prior to and following treatment with rbFGF gel and subjected to histological analysis. All patients were followed up for 6 months. Significant improvement in the total effective rates for erythema, papules, desquamation and dryness were observed in the rbFGF treatment group. At the end of the 2, 4 and 6 months of follow-up, the total effective rates for patients in the treatment group were significantly higher than those in the control group (81.67 vs. 28.84%; 85.11 vs. 40.81%, and 96.56 vs. 55.82%, respectively). Following treatment for 6 months, none of the patients in the rbFGF group exhibited ulceration or scar formation. In the control group, 61% of patients experienced exacerbation of skin lesions, of which, 12% exhibited ulceration and were treated with rbFGF gel to prevent scar formation. Histological analysis revealed gradual reduction in epidermal hyperplasia and resolution of dermal edema in skin lesions treated with rbFGF gel. In conclusion, rbFGF gel may improve the repair of facial rosacea skin lesions in patients treated with anti-Demodex.
Collapse
Affiliation(s)
- Yang Luo
- Department of Dermatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Xiu-Li Luan
- Department of Dermatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yu-Jiao Sun
- Department of Dermatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Li Zhang
- Department of Dermatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Jian-Hong Zhang
- Department of Dermatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
21
|
Bray C, Gurnani P, Mansfield EDH, Peltier R, Perrier S. Sulfonated Copolymers as Heparin-Mimicking Stabilizer of Fibroblast Growth Factor: Size, Architecture, and Monomer Distribution Effects. Biomacromolecules 2019; 20:285-293. [PMID: 30543415 DOI: 10.1021/acs.biomac.8b01451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factors (FGF) are involved in a wide range of biological processes such as cell proliferation and differentiation. In living organisms, the binding of FGF to its receptors are mediated through electrostatic interactions between FGF and naturally occurring heparin. Despite its prevalent use in medicine, heparin carries notable limitations; namely, its extraction from natural sources (expensive, low yield and extensive purification), viral contamination, and batch-to-batch heterogeneity. In this work a range of synthetic homopolymers and copolymers of sodium 2-acrylamido-2-methylpropanesulfonate were evaluated as potential FGF stabilizers. This was studied by measuring the proliferation of BaF3-FR1c cells, as a model assay, and the results will be compared with the natural stabilization and activation of FGF by heparin. This study explores the structure-activity relationship of these polysulfonated polymers with a focus on the effect of molecular weight, comonomer type, charge dispersion, and polymer architecture on protein stabilization.
Collapse
Affiliation(s)
- Caroline Bray
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Pratik Gurnani
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Edward D H Mansfield
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Raoul Peltier
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Sébastien Perrier
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
- Warwick Medical School , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
22
|
Arsiwala A, Castro A, Frey S, Stathos M, Kane RS. Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery. Chem Asian J 2019; 14:244-255. [DOI: 10.1002/asia.201801677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ammar Arsiwala
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ana Castro
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Steven Frey
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Mark Stathos
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| |
Collapse
|