1
|
Yang Z, Shao X, Wu Y, Roy A, Garcia E, Farrell A, Pradhan S, Guo W, Gan H, Korkmaz Z, Adams E, Lu Y. Decoding Potassium Homeostasis in Cancer Metastasis and Drug Resistance: Insights from a Highly Selective DNAzyme-Based Intracellular K + Sensor. J Am Chem Soc 2025. [PMID: 40367066 DOI: 10.1021/jacs.5c03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Potassium ions (K+) within the tumor microenvironment, along with dysregulation of K+ channels, play critical roles in supporting cancer cell survival and preventing their elimination. Directly monitoring changes in K+ homeostasis within cancer cells is invaluable for understanding these processes. However, achieving high selectivity over other biological metal ions, a detection dynamic range that aligns with intracellular K+ levels, and broad accessibility to research laboratories remain technically challenging for current K+ imaging probes. In this study, we report the in vitro selection of the first K+-specific RNA-cleaving DNAzyme and the development of a K+-specific DNAzyme fluorescent sensor with exceptional selectivity, achieving over 1000-fold selectivity against Na+ and more than 100-fold selectivity over other major biologically relevant metal ions. This sensor has an apparent dissociation constant (105 mM) that is close to the intracellular level of K+, and it has a broad detection range from 21 to 200 mM K+. Using this tool, we reveal a progressive decline in intracellular K+ levels in breast cancer cells with more advanced progression states. Moreover, we demonstrate that elevated extracellular K+ levels interfere with the efficacy of anticancer compounds like ML133 and Amiodarone, suggesting an underappreciated role of microenvironmental K+ in chemoresistance. Notably, blocking the Kir2.1 channel activity restored treatment sensitivity, presenting a potential strategy to overcome chemoresistance in aggressive cancers. These findings underscore the role of K+ homeostasis in tumor progression and support further exploration of ion-channel-targeted cancer therapies.
Collapse
Affiliation(s)
- Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiangli Shao
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aritra Roy
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Elijah Garcia
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annie Farrell
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shreestika Pradhan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heather Gan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zeynep Korkmaz
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Emily Adams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Dewey H, Mahmood N, Abello SM, Sultana N, Jones J, Gluck JM, Budhathoki-Uprety J. Development of Optical Nanosensors for Detection of Potassium Ions and Assessment of Their Biocompatibility with Corneal Epithelial Cells. ACS OMEGA 2024; 9:27338-27348. [PMID: 38947780 PMCID: PMC11209934 DOI: 10.1021/acsomega.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Imbalance of potassium-ion levels in the body can lead to physiological dysfunctions, which can adversely impact cardiovascular, neurological, and ocular health. Thus, quantitative measurement of potassium ions in a biological system is crucial for personal health monitoring. Nanomaterials can be used to aid in disease diagnosis and monitoring therapies. Optical detection technologies along with molecular probes emitting within the near-infrared (NIR) spectral range are advantageous for biological measurements due to minimal interference from light scattering and autofluorescence within this spectral window. Herein, we report the development of NIR fluorescent nanosensors, which can quantitatively detect potassium ions under biologically relevant conditions. The optical nanosensors were developed by using photoluminescent single-walled carbon nanotubes (SWCNTs) encapsulated in polymers that contain potassium chelating moieties. The nanosensors, polystyrene sulfonate [PSS-SWCNTs, nanosensor 1 (NS1)] or polystyrene-co-polystyrene sulfonate [PS-co-PSS-SWCNTs, nanosensor 2 (NS2)], exhibited dose-dependent optical responses to potassium ion level. The nanosensors demonstrated their biocompatibility via the evaluation of cellular viability, proliferation assays, and expression of cytokeratin 12 in corneal epithelial cells (CEpiCs). Interestingly, the nanosensors' optical characteristics and their responses toward CEpiCs were influenced by encapsulating polymers. NS2 exhibited a 10 times higher fluorescence intensity along with a higher signal-to-noise ratio as compared to NS1. NS2 showed an optical response to potassium ion level in solution within 5 min of addition and a limit of detection of 0.39 mM. Thus, NS2 was used for detailed investigations including potassium ion level detection in serum. NS2 showed a consistent response to potassium ions at the lower millimolar range in serum. These results on optical sensing along with biocompatibility show a great potential for nanotube sensors in biomedical research.
Collapse
Affiliation(s)
| | | | - Sofia Mariapaz Abello
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nigar Sultana
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jaron Jones
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessica M. Gluck
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Wang Z, Pan T, Shen M, Liao J, Tian Y. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection. SENSORS AND ACTUATORS B: CHEMICAL 2023; 390:134008. [DOI: 10.1016/j.snb.2023.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
4
|
Zhao SH, Liu L, Sun XR, Yu LJ, Ding CG. A cyanine dye probe for K + detection based on DNA construction of G-quadruplex. ANAL SCI 2023:10.1007/s44211-023-00325-5. [PMID: 37231185 DOI: 10.1007/s44211-023-00325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Potassium ion (K+) plays an important role in the maintenance of cellular biological process for human health. Thus, the detection of K+ is very important. Here, based on the interaction between thiamonomethinecyanine dye and G-quadruplex formation sequence (PW17), K+ detection spectrum was characterized by UV-Vis spectrometry. The single-stranded sequence of PW17 can fold into G-quadruplex in the presence of K+. PW17 can induce a dimer-to-monomer transition of the absorption spectrum of cyanine dyes. This method shows high specificity against some other alkali cations, even at high concentrations of Na+. Further, this detection strategy can realize the detection of K+ in tap water.
Collapse
Affiliation(s)
- Shu-Hua Zhao
- North China University of Science and Technology, Tangshan, 063210, China
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Lu Liu
- North China University of Science and Technology, Tangshan, 063210, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Xiao-Ran Sun
- North China University of Science and Technology, Tangshan, 063210, China
| | - Li-Jia Yu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| | - Chun-Guang Ding
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
5
|
Sun Y, Wang S, Wang F, Zhang H, Huang W, Wu A, Zhang Y. One-step rapid colorimetric detection of K + using silver nanoparticles modified by crown ether. Analyst 2023; 148:344-353. [PMID: 36533333 DOI: 10.1039/d2an01840c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary potassium is an important parameter in clinical health diagnosis. Rapid and convenient detection of potassium ions (K+) in urine is essential for personal healthcare and health management. Here, crown ether (4-aminodibenzo-18-crown-6, ADC) modified silver nanoparticles (ADC-Ag NPs) were successfully prepared for one-step rapid colorimetric detection of urinary potassium. The detection mechanism is as follows: due to the matching sizes of the diameter of K+ and the cavity in crown ether 6, K+ is encapsulated between the cavities of two crown ethers, resulting in the clumping of ADC-Ag NPs and the color of the solution being altered. The colorimetric detection method has a fast response and is completed within 20 minutes. It also shows good selectivity and interference immunity. The lowest detectable concentration is 20 μM with the naked eye and 2.16 μM for UV-vis absorption spectroscopy. A good linear relationship (R2 = 0.9931) between the absorption intensity ratio and K+ concentration (0-100 μM) indicates that this colorimetric probe can be used to detect K+. The method was also applied for quantitative analysis of K+ in real urine samples with recovery between 116 and 120%.
Collapse
Affiliation(s)
- Yufeng Sun
- Faculty of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China. .,Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Shengwen Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | - Fangfang Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | - Weiya Huang
- Faculty of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Hutter T, Collings TS, Kostova G, Karet Frankl FE. Point-of-care and self-testing for potassium: recent advances. SENSORS & DIAGNOSTICS 2022; 1:614-626. [PMID: 35923773 PMCID: PMC9280758 DOI: 10.1039/d2sd00062h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 01/12/2023]
Abstract
Potassium is an important bodily electrolyte which is kept within tight limits in health. Many medical conditions as well as commonly-used drugs either raise or lower blood potassium levels, which can be dangerous or even fatal. For at-risk patients, frequent monitoring of potassium can improve safety and lifestyle, but conventional venous blood draws are inconvenient, don't provide a timely result and may be inaccurate. This review summarises current solutions and recent developments in point-of-care and self-testing potassium measurement technologies, which include devices for measurement of potassium in venous blood, devices for home blood collection and remote measurement, devices for rapid home measurement of potassium, wearable sensors for potassium in interstitial fluid, in sweat, in urine, as well as non-invasive potassium detection. We discuss the practical and clinical applicability of these technologies and provide future outlooks.
Collapse
Affiliation(s)
- Tanya Hutter
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin USA
| | | | | | | |
Collapse
|
7
|
Zhao JJ, Wang W, Cai QW, Wang F, Xie R, Ju XJ, Liu Z, Chu LY. Efficient Detection of Hyperkalemia with Highly Transparent and Ion-Recognizable Hydrogel Grating Sensors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Jia Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Quan-Wei Cai
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Kang W, Lin H, Jiang H, Yao-Say Solomon Adade S, Xue Z, Chen Q. Advanced applications of chemo-responsive dyes based odor imaging technology for fast sensing food quality and safety: A review. Compr Rev Food Sci Food Saf 2021; 20:5145-5172. [PMID: 34409725 DOI: 10.1111/1541-4337.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Public attention to foodquality and safety has been increased significantly. Therefore, appropriate analytical tools are needed to analyze and sense the food quality and safety. Volatile organic compounds (VOCs) are important indicators for the quality and safety of food products. Odor imaging technology based on chemo-responsive dyes is one of the most promising methods for analysis of food products. This article reviews the sensing and imaging fundamentals of odor imaging technology based on chemo-responsive dyes. The aim is to give detailed outlines about the theory and principles of using odor imaging technology for VOCs detection, and to focus primarily on its applications in the field of quality and safety evaluation of food products, as well as its future applicability in modern food industries and research. The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods , poultry meat, aquatic products, fruits and vegetables, and tea. It has the potential for the rapid, reliable, and inline assessment of food safety and quality by providing odor-image-basedmonitoring tool. Practical Application: The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods, poultry meat, aquatic products, fruits and vegetables, and tea.
Collapse
Affiliation(s)
- Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Zhaoli Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
9
|
Wong XY, Quesada-González D, Manickam S, Muthoosamy K. Fluorescence "turn-off/turn-on" biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal Chim Acta 2021; 1175:338745. [PMID: 34330444 DOI: 10.1016/j.aca.2021.338745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Metal ions homeostasis plays an important role in biological processes. The ability to detect the concentration of metal ions in biological fluids is often challenged by the obvious interference or competitive binding nature of other alkaline metals ions. Common analytical techniques employed for metal ions detection are electrochemical, fluorescence and colorimetric methods. However, most reported metal ions sensors are complicated, time-consuming and involve costly procedures with limited effectiveness. Herein, a nanobiosensor for detecting sodium and potassium ions using folic acid-functionalised reduced graphene oxide-modified RNase A gold nanoclusters (FA-rGO-RNase A/AuNCs) based on fluorescence "turn-off/turn-on" is presented. Firstly, a facile and optimised protocol for the fabrication of RNase A/AuNCs is developed. The activity of RNase A protein after the formation of RNase A/AuNCs is studied. RNase A/AuNCs is then loaded onto FA-rGO, in which FA-rGO is used as a potential carrier and fluorescence quencher for RNase A/AuNCs. Finally, a fluorescence "turn-on" sensing strategy is developed using the as-synthesised FA-rGO-RNase A/AuNCs to detect sodium and potassium ions. The developed nanobiosensor revealed an excellent sensing performance and meets the sensitivity required to detect both sodium and potassium ions. To the best of our knowledge, this is the first work done on determining the RNase A protein activity in RNase A/AuNCs and exploring the potential application of RNase A/AuNCs as a metal ion sensor. This work serves as a proof-of-concept for combining the potential of drug delivery, active targeting and therapy on cancer cells, as well as biosensing of metal ions into a single platform.
Collapse
Affiliation(s)
- Xin Yi Wong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Daniel Quesada-González
- Paperdrop Diagnostics, Av. de Can Domènech S/n, Eureka Building, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
10
|
Ning J, Liu H, Sun X, Song G, Shen M, Liao J, Su F, Tian Y. Rational Design of a Polymer-Based Ratiometric K + Indicator for High-Throughput Monitoring Intracellular K + Fluctuations. ACS APPLIED BIO MATERIALS 2021; 4:1731-1739. [PMID: 35014519 DOI: 10.1021/acsabm.0c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Highly selective fluorescent K+ sensors are of great importance for monitoring K+ fluctuations in various biological processes. In particular, highly efficient ratiometric K+ sensors that can emit in dual wavelengths and facilitate the quantitative determination of K+ are highly anticipated. Herein, we present the first polymer-based ratiometric fluorescent K+ indicator (PK1) for quantitatively detecting K+ in aqueous solutions and high-throughput monitoring K+ fluctuations in living cells. PK1 was synthesized by conjugating a small molecular K+ probe and a red emission reference dye to a hydrophilic polymer skeleton. The newly synthesized PK1 can form highly stable nanoparticles in aqueous solutions and work in 100% water without the aid of any organic solvents or surfactants. PK1 is sensitive to K+ with a fluorescence enhancement of sevenfold after interactions with K+ at 1000 mM and inert to other metal ions, physiological pH, or dye concentration vibrations. More importantly, the fluorescence intensity ratio at 572 and 638 nm is linearly correlated with log [K+] in the range of 2-500 mM (R2 = 0.998), which will facilitate the quantitative detection of K+. Practical application of PK1 in detecting different K+-rich samples demonstrates its great potential in quantitative detection of K+. PK1 can be quickly internalized by live cells and shows no obvious cytotoxicity. We also demonstrate that PK1 could be used for monitoring K+ fluctuations under different stimulations by using a confocal microscope and especially a microplate reader, which is high throughput and time saving. The rational design of PK1 will broaden the design concept of ratiometric fluorescent K+ sensors and facilitate the quantitative detection of K+.
Collapse
Affiliation(s)
- Juewei Ning
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China
| | - Hongtian Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangzhong Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangjie Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Shen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Wang Z, Detomasi TC, Chang CJ. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells. Chem Sci 2020; 12:1720-1729. [PMID: 34163931 PMCID: PMC8179100 DOI: 10.1039/d0sc03844j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K+ homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K+ physiology and pathology owing to the large differences in intracellular versus extracellular K+ concentrations ([K+]intra = 150 mM, [K+]extra = 3-5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K+ in biological specimens that meet the dual challenges of low affinity and high selectivity for K+, particularly over Na+, currently available fluorescent K+ sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K+ detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (RPS-1), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. RPS-1 links a potassium-responsive fluorescent sensor fragment (PS525) with a low-affinity, high-selectivity crown ether receptor for K+ to a potassium-insensitive reference fluorophore (Coumarin 343) as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K+. RPS-1 responds to K+ in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, RPS-1 was applied for comparative screening of K+ pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K+ in metastatic breast cancer cell lines vs. normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.
Collapse
Affiliation(s)
- Zeming Wang
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Tyler C Detomasi
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
12
|
Schwarze T, Riemer J. Highly K
+
Selective Probes with Fluorescence Emission Wavelengths Higher than 500 nm in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Schwarze
- Institut für Chemie, Anorganische Chemie Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Golm Germany
| | - Janine Riemer
- Institut für Chemie, Anorganische Chemie Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Golm Germany
| |
Collapse
|
13
|
Ning J, Lin X, Su F, Sun A, Liu H, Luo J, Wang L, Tian Y. Development of a molecular K + probe for colorimetric/fluorescent/photoacoustic detection of K . Anal Bioanal Chem 2020; 412:6947-6957. [PMID: 32712812 DOI: 10.1007/s00216-020-02826-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
The potassium ion (K+) plays significant roles in many biological processes. To date, great efforts have been devoted to the development of K+ sensors for colorimetric, fluorescent, and photoacoustic detection of K+ separately. However, the development of molecular K+ probes for colorimetric detection of urinary K+, monitoring K+ fluxes in living cells by fluorescence imaging, and photoacoustic imaging of K+ dynamics in deep tissues still remains an open challenge. Herein, we report the first molecular K+ probe (NK2) for colorimetric, fluorescent, and photoacoustic detection of K+. NK2 is composed of 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as the chromophore and phenylazacrown-6-lariat ether (ACLE) as the K+ recognition unit. Predominate features of NK2 include a short synthetic procedure, high K+ selectivity, large detection range (5-200 mM), and triple-channel detection manner. NK2 shows good response to K+ with obvious color changes, fluorescence enhancements (about threefold), and photoacoustic intensity changes. The existence of other metal ions (including Na+, Mg2+, Ca2+, Fe2+) and pH changes (6.5-9.0) have no obvious influence on K+ sensing of NK2. Portable test strips stained by NK2 can be used to qualitatively detect urinary K+ by color changes for self-diagnosis of diseases induced by high levels of K+. NK2 can be utilized to monitor K+ fluxes in living cells by fluorescent imaging. We also find its excellent performance in photoacoustic imaging of different K+ concentrations in the mouse ear. NK2 is the first molecular K+ probe for colorimetric, fluorescent, and photoacoustic detection of K+ in urine, in living cells, and in the mouse ear. The development of NK2 will broaden K+ probes' design and extend their applications to different fields. Graphical abstract.
Collapse
Affiliation(s)
- Juewei Ning
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangwei Lin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, 999077, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, 518057, China
| | - Fengyu Su
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongtian Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, 999077, Hong Kong, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, 999077, Hong Kong, China. .,City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, 518057, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Liu C, Liu J, Zhang W, Wang Y, Liu Q, Song B, Yuan J, Zhang R. "Two Birds with One Stone" Ruthenium(II) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000458. [PMID: 32714756 PMCID: PMC7375222 DOI: 10.1002/advs.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Indexed: 05/21/2023]
Abstract
In this work, a "two birds with one stone" ruthenium(II) complex probe, Ru-NBD, is proposed as an effective tool for biothiols detection and discrimination in vitro and in vivo. Ru-NBD is nonluminescent due to the quenching of Ru(II) complex emission by photoinduced electron transfer (PET) from Ru(II) center to NBD and the quenching of NBD emission through 4-substitution with "O" ether bond. Ru-NBD is capable of reacting with Cys/Hcy to form long-lived red-emitting Ru-OH and short-lived green-emitting NBD-NR, while reacting with GSH to produce Ru-OH and nonemissive NBD-SR. The long lifetime emission of Ru(II) complex allows elimination of short lifetime background and NBD-NR fluorescence for total biothiols detection ("bird" one) by time-gated luminescence (TGL) analysis, and the remarkable difference in luminescence color response allows discrimination GSH and Cys/Hcy ("bird" two) through steady-state luminescence analysis. Ru-NBD features high sensitivity and selectivity, rapid luminescence response, and low cytotoxicity, which enables it to be used as the probe for luminescence and background-free TGL detection and visualization of biothiols in live cells, zebrafish, and mice. The successful development of this probe is anticipated to contribute to the future biological studies of biothiols roles in various diseases.
Collapse
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianping Liu
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yong‐Lei Wang
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Qi Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Bo Song
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jingli Yuan
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| |
Collapse
|
15
|
Liu H, Ning J, Song G, Sun X, Su F, Li P, Tian Y. Tricolor dual sensor for ratiometrically analyzing potassium ions and dissolved oxygen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118155. [PMID: 32088531 DOI: 10.1016/j.saa.2020.118155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
A potassium ion‑oxygen (K+-O2) dual fluorescent sensing film was developed. The film contains three probes, which are K+ probe (KS), O2 probe (OS), and reference probe (RP) in a polymer film composed of poly(ethylene glycol) methyl ether methacrylate (PEGMA), poly(ethylene glycol) dimethacrylate (PEGDMA) and methacrylic acid (MAA). The RP showed blue emission, the KS exhibited green emission, and the OS showed red emission. The emission peaks of three probes do not interfere with each other, which enable the sensing film to be used for ratiometrically and quantitatively detecting the concentrations of K+ and dissolved oxygen (DO). The sensing films showed high sensitivity and selectivity to potassium ions over other metal ions and also good sensitivity for DO from deoxygenated to oxygenated conditions. The sensing film was demonstrated to be capable of analyzing K+ and DO concentrations with experimental errors smaller than ±8.5% in aqueous solutions, showing the potential applications of the sensing films.
Collapse
Affiliation(s)
- Hongtian Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China
| | - Juewei Ning
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China
| | - Guangjie Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China
| | - Xiangzhong Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
16
|
Song G, Jiang D, Wang L, Ning J, Sun X, Su F, Chen M, Tian Y. A mitochondria-targeting NIR fluorescent potassium ion sensor: real-time investigation of the mitochondrial K+ regulation of apoptosis in situ. Chem Commun (Camb) 2020; 56:5405-5408. [DOI: 10.1039/d0cc00579g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TAC-Rh, as the first mitochondria-targeting NIR K+ sensor, was applied to explore mutual regulation between mitochondrial K+ and apoptosis.
Collapse
Affiliation(s)
- Guangjie Song
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
| | - Di Jiang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Lei Wang
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Juewei Ning
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Xiangzhong Sun
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology
- Shenzhen
- China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Yanqing Tian
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
17
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
18
|
Zong L, Han Y, Gao L, Du C, Zhang X, Li L, Huang X, Liu J, Yu HD, Huang W. A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst 2019; 144:7157-7161. [DOI: 10.1039/c9an01647c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work describes the rational design of a paper-based biosensing platform for multi-target detection with low cost and high sensitivity by wavelength-dependent absorbance/transmittance.
Collapse
|
19
|
Panchenko PA, Zubenko AD, Chernikova EY, Fedorov YV, Pashanova AV, Karnoukhova VA, Fedyanin IV, Fedorova OA. Synthesis, structure and metal ion coordination of novel benzodiazamacrocyclic ligands bearing pyridyl and picolinate pendant side-arms. NEW J CHEM 2019. [DOI: 10.1039/c9nj03488a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex formation of benzodiazacrown ethers with heavy and transition metal ions was studied using NMR spectroscopy, potentiometry and X-ray crystallography.
Collapse
Affiliation(s)
- Pavel A. Panchenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
- D. Mendeleev University of Chemical Technology of Russia
- Moscow
| | - Anastasia D. Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
| | - Ekaterina Y. Chernikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
| | - Yuri V. Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
| | - Anna V. Pashanova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
- D. Mendeleev University of Chemical Technology of Russia
- Moscow
| | - Valentina A. Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
| | - Ivan V. Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
- Plekhanov Russian University of Economics
- Moscow
| | - Olga A. Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russia
- D. Mendeleev University of Chemical Technology of Russia
- Moscow
| |
Collapse
|
20
|
Wang R, Du X, Wu Y, Zhai J, Xie X. Graphene Quantum Dots Integrated in Ionophore-Based Fluorescent Nanosensors for Na + and K .. ACS Sens 2018; 3:2408-2414. [PMID: 30387340 DOI: 10.1021/acssensors.8b00918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To enrich the recipes of ion-selective nanosensors, graphene quantum dots (GQDs) were integrated into ionophore-based fluorescent nanosensors with exquisite selectivity and high sensitivity for Na+ and K+. The unique property of GQDs gave the nanosensors ultrasmall size (ca. 10 nm), high brightness, good biocompatibility, and potential pH sensing possibility. At pH 7.4, the sensors exhibited a detection range from 0.1 mM to 1 M for Na+ and from 3 μM to 1 mM for K+. The nanosensors were successfully applied to blood serum and urine samples. Chemically induced intracellular sodium concentration change in HeLa cells was also qualitatively monitored.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yaotian Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
21
|
Schwarze T, Riemer J, Holdt HJ. A Ratiometric Fluorescent Probe for K + in Water Based on a Phenylaza-18-Crown-6 Lariat Ether. Chemistry 2018; 24:10116-10121. [PMID: 29863303 DOI: 10.1002/chem.201802306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 01/24/2023]
Abstract
This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+ /Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+ -induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (Kd ) value of 38 mm in water. Further, for 2+K+ , we observed a dual emission behavior at 405 and 505 nm. K+ increases the fluorescence intensity of 2 at 405 nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505 nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a Kd value of approximately 8 mm in Na+ -free solutions and in combined K+ /Na+ solution a similar Kd value of about 9 mm was found, reflecting the high K+ /Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels.
Collapse
Affiliation(s)
- Thomas Schwarze
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| | - Janine Riemer
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| | - Hans-Jürgen Holdt
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| |
Collapse
|
22
|
Mueller BJ, Zhdanov AV, Borisov SM, Foley T, Okkelman IA, Tsytsarev V, Tang Q, Erzurumlu RS, Chen Y, Zhang H, Toncelli C, Klimant I, Papkovsky DB, Dmitriev RI. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1704598. [PMID: 30271316 PMCID: PMC6157274 DOI: 10.1002/adfm.201704598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The imaging of real-time fluxes of K+ ions in live cell with high dynamic range (5-150 mM) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney and other tissues. In particular, the research on high-performance deep-red fluorescent nanoparticle-based biosensors is highly anticipated. We found that BODIPY-based FI3 K+-sensitive fluoroionophore encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability and fluorescence lifetime imaging microscopy (FLIM) we confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. We evaluated FI3 nanoparticles in real-time live cell imaging and found that it is highly useful for monitoring intra- and extracellular K+ dynamics in cultured neurons. Proof-of-concept in vivo brain imaging confirmed applicability of the biosensor for visualization of epileptic seizures. Collectively, this data makes fluoroionophore FI3 a versatile cross-platform fluorescent biosensor, broadly compatible with diverse experimental models and that crown ether-based polymer nanoparticles can provide a new venue for design of efficient fluorescent probes.
Collapse
Affiliation(s)
- Bernhard J. Mueller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Alexander V. Zhdanov
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Irina A. Okkelman
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, 20740 MD, USA
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, 20740 MD, USA
| | - Haijiang Zhang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Claudio Toncelli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Dmitri B. Papkovsky
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Ruslan I. Dmitriev
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Kolanowski JL, Liu F, New EJ. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev 2018; 47:195-208. [DOI: 10.1039/c7cs00528h] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review identifies and discusses fluorescent sensors that are capable of simultaneously reporting on the presence of two analytes for biological application.
Collapse
Affiliation(s)
- Jacek L. Kolanowski
- School of Chemistry
- The University of Sydney
- Australia
- Institute of Bio-organic Chemistry
- Polish Academy of Sciences
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangdong
- People's Republic of China
| | | |
Collapse
|
24
|
Du X, Xie X. Non-Equilibrium Diffusion Controlled Ion-Selective Optical Sensor for Blood Potassium Determination. ACS Sens 2017; 2:1410-1414. [PMID: 28949507 DOI: 10.1021/acssensors.7b00614] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood electrolyte measurements play important roles in clinical diagnostics. Optical ion sensors as simple and elegant as a mercury thermometer are in high demand. We present here an analytical method to quantify potassium ions in undiluted human blood and plasma by measuring the distance or the rate of the color propagation. The sensor was composed of K+-selective nanospheres embedded in an agarose hydrogel where mass transport was diffusion controlled. The sensor's color-changing rate and the distance of color propagation depended linearly on the logarithm of K+ activity. A theoretical model was established and fully supported the experimental findings. This work lays the foundation of a new family of optical ion sensors for direct determination of common blood electrolytes.
Collapse
Affiliation(s)
- Xinfeng Du
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaojiang Xie
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
25
|
Li Y, Chen L, Ai Y, Hong EYH, Chan AKW, Yam VWW. Supramolecular Self-Assembly and Dual-Switch Vapochromic, Vapoluminescent, and Resistive Memory Behaviors of Amphiphilic Platinum(II) Complexes. J Am Chem Soc 2017; 139:13858-13866. [DOI: 10.1021/jacs.7b07638] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yongguang Li
- Lehn
Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ling Chen
- Lehn
Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yeye Ai
- Lehn
Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Eugene Yau-Hin Hong
- Institute
of Molecular Functional Materials [Areas of Excellence Scheme, University
Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Alan Kwun-Wa Chan
- Institute
of Molecular Functional Materials [Areas of Excellence Scheme, University
Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Lehn
Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Institute
of Molecular Functional Materials [Areas of Excellence Scheme, University
Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|