1
|
Bazzal AA, Hoteit BH, Chokor M, Safawi A, Zibara Z, Rizk F, Kawssan A, Danaf N, Msheik L, Hamdar H. Potential therapeutic applications of medical gases in cancer treatment. Med Gas Res 2025; 15:309-317. [PMID: 39829166 PMCID: PMC11918469 DOI: 10.4103/mgr.medgasres-d-24-00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.
Collapse
Affiliation(s)
- Abbas Al Bazzal
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassel H. Hoteit
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Mariam Chokor
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Abdallah Safawi
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Zahraa Zibara
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Fatima Rizk
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Aya Kawssan
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Naseeb Danaf
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Layal Msheik
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Hiba Hamdar
- Research Department, Plovdiv Medical University, Plovdiv, Bulgaria
- Research Department, Medical Learning Skills Academy, Beirut, Lebanon
| |
Collapse
|
2
|
Khan M, Ullah R, Shah SM, Farooq U, Li J. Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:3571-3600. [PMID: 40293195 DOI: 10.1021/acsabm.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Breast cancer (BC) is one of the most common cancers among women and is associated with high mortality. Traditional modalities, including surgery, radiotherapy, and chemotherapy, have achieved certain advancements but continue to combat challenges including harm to healthy tissues, resistance to treatment, and adverse drug reactions. The rapid advancements in nanotechnology recently facilitated the exploration of innovative strategies for breast cancer therapy. Manganese-based nanotherapeutics have attracted great attention because of their unique characteristics such as tunable structures/morphologies, versatility, magnetic/optical properties, strong catalytic activities, excellent biodegradability, and biocompatibility. In this review, we highlighted different types of Mn-based nanotherapeutics to modulate TME, including metal-immunotherapy, alleviating tumor hypoxia, and increasing reactive oxygen species production, and we emphasized its role in magnetic resonance imaging (MRI)-guided therapy, photoacoustic imaging, and theranostic-based therapy along with a therapeutic carrier, all of which were discussed in the context of breast cancer. Hopefully, the present review will provide insights into the current landscape and future directions of multifunctional applications of Mn-based nanotherapeutics in the field of breast cancer treatment.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Syed Mubassir Shah
- Department of Biotechnology, Abdul Wali Khan University, KPK, Mardan 23200, Pakistan
| | - Umar Farooq
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| |
Collapse
|
3
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
4
|
Cao L, Liu C, Mu C, Li Q, Wu M, Liu L, Liu B. Ultrasound-Responsive Carbon Monoxide Microneedle for Enhanced Healing of Infected Diabetic Wounds. Adv Healthc Mater 2025; 14:e2402910. [PMID: 39573876 DOI: 10.1002/adhm.202402910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/09/2024] [Indexed: 01/29/2025]
Abstract
Efficient management of difficult-to-heal diabetic wounds remains a clinical challenge owing to bacterial infections, as well as oxidative and hyperglycemic complex pathology. Therefore, developing intelligent strategies for diabetic wound healing is urgently needed. Herein, an ultrasound (US)-responsive microneedle (MN) patch (MN@GOX@TiO2-X@CO) capable of controlled delivery of carbon monoxide (CO) gas within the skin for effective treatment of diabetic infected wounds is developed. Benefiting from the specific form of microneedle (MN) patch, sonosensitizer (TiO2-X), •OH-responsive CO prodrug (MPA-CO), and glucose oxidase (GOX) can be loaded together and effectively delivered to infectious wounds. With the semi-fluidic hyaluronic acid (HA) coating under the physiological condition, CO could be released efficiently in situ and directly acted on infected wound tissue upon US triggering. Both in vitro and in vivo results showed that US-triggered CO release from MN@GOX@TiO2-X@CO not only effectively inhibited the S. aureus and MRSA infection but also promoted fibroblasts proliferation and migration under hyperglycemic physiology, thereby accelerating diabetic wound healing. Collectively, the approach effectively addresses the impaired skin regeneration function in diabetic wounds and offers a promising therapeutic strategy for the efficient healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Chuang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chuan Mu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
| | - Luntao Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300110, P. R. China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Yu Y, Zhang L, Jia H, Ji C, Liu Y, Zhao Z, Dai C, Ding D, Tang BZ, Feng G. Dual-Mode Reactive Oxygen Species-Stimulated Carbon Monoxide Release for Synergistic Photodynamic and Gas Tumor Therapy. ACS NANO 2024; 18:31286-31299. [PMID: 39475554 DOI: 10.1021/acsnano.4c10277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Controllable carbon monoxide (CO) release simulated by light-generated reactive oxygen species (ROS) represents a promising approach for cancer therapy but is hampered by low CO release rate and low ROS generation of conventional photosensitizers in hypoxia tumor microenvironments. In this study, we developed a highly efficient nanoplatform (TPyNO2-FeCO NPs) through co-encapsulating organic AIE photosensitizers (PSs) and CO prodrug (Fe3(CO)12), which are capable of light-triggered robust ROS generation and CO release for synergistic photodynamic therapy (PDT) and CO gas therapy. The success of this nanoplatform leverages the design of a PS, TPyNO2, with exceptional type I and type II ROS generation capabilities, achieved through the introduction of the α-photoinduced electron transfer (α-PET) process. With the incorporation of a 4-nitrobenzyl unit as a typical PET donor, the intramolecular α-PET process not only suppresses the radiative decay to redirect the excited-state energy to intersystem crossing for more triplet-state formation but also promotes electron separation and transfer processes for radical-type ROS generation. The resultant TPyNO2 demonstrates superior singlet oxygen, superoxide anion, and hydroxyl radial generation capabilities in the aggregate state. Upon light irradiation, TPyNO2-FeCO NPs release CO via the type I and type II dual-mode ROS-mediated processes in a controlled and targeted manner, overcoming the limitations of conventional CO release systems. TPyNO2-FeCO NPs also demonstrate a self-accelerating ROS-CO-ROS loop as the released CO induces intracellular oxidative stress, depolarizes mitochondria membrane potentials, and inhibits ATP production, leading to further intracellular ROS generation. Both in vitro and in vivo experiments validated the excellent antitumor performance of the combined PDT and CO gas therapy. This study provides valuable insights into the development of advanced PSs and establishes TPyNO2-FeCO NPs as promising nanoplatforms for safe and effective antitumor applications.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Hanyu Jia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Yucheng Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Zexian Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Yang C, Ming H, Li B, Liu S, Chen L, Zhang T, Gao Y, He T, Huang C, Du Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J Control Release 2024; 376:659-677. [PMID: 39442888 DOI: 10.1016/j.jconrel.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dihydroartemisinin (DHA), a compound extracted from the herbal medicine Artemisia annua, has shown promise as a clinical treatment strategy for colorectal cancer. However, its clinical use is hindered by its low water solubility and bioavailability. A pH/glutathione (GSH) dual-responsive nano-herb delivery system (PMDC NPs) has been developed for the targeted delivery of DHA, accompanied by abundant carbon monoxide (CO) release. Due to the passive enhanced permeability and retention (EPR) effect and active targeting mediated by pHCT74 peptide binding to overexpressed α-enolase on colorectal cancer cells, the pHCT74/MOF-5@DHA&CORM-401 nanoparticles (PMDC NPs) exhibited specific targeting capacity against colorectal cancer cells. Once reaching the tumor site, the pH/GSH dual-responsive behavior of metal-organic framework-5 (MOF-5) enabled the rapid release of cargo, including DHA and CORM-401, in the acidic tumor microenvironment. Subsequently, DHA stimulated CORM-401 to release CO, which facilitated ROS-induced ferroptosis and apoptosis, leading to immunogenic cell death (ICD) and a sustained antitumor response through the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Overall, PMDC NPs enhanced the bioavailability of DHA and exhibited outstanding therapeutic effectiveness both in vitro and in vivo, indicating their potential as a promising and feasible alternative for synergistic treatment with immunotherapy and gas therapy in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Zhang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
7
|
Zhang C, Huang S, Ding K, Wu H, Li M, Li T, Shen Z, Tai S, Li W. Tumor-Targeted CO Nanodelivery System Design and Therapy for Hepatocellular Carcinoma. Mol Pharm 2024; 21:5015-5027. [PMID: 39302817 DOI: 10.1021/acs.molpharmaceut.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In recent years, carbon monoxide (CO) has garnered increased attention as a novel green therapy for hepatocellular carcinoma (HCC) treatment. However, the CO donor is still limited in clinical application due to its lack of targeted ability and unstable release rate. Here, self-assembled amphiphilic nanomicelles glucose-polyethylene glycol (PEG)-lipoic acid (LA)-Fe2(CO)6 (Glu-Fe2(CO)6) are first designed as a CO donor and synthesized via a chemical method, combining glucose with Fe2(CO)6 through PEG-LA. Some advantages of this tumor-targeted Glu-Fe2(CO)6 delivery system include (I) good water-solubility, (II) the glutathione responsive CO slow release, (III) the active tumor-targeted ability of glucose as targeted ligands, and (IV) outstanding efficacy of antitumor and safety of CO therapy of HCC both in vitro and in vivo. These findings suggest that Glu-Fe2(CO)6 nanomicelles hold promise for enhancing antitumor therapeutic capabilities, presenting a novel tumor-targeted delivery strategy in gas therapy for HCC treatment.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kunhao Ding
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| | - Haotian Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Minghui Li
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Zibo Shen
- Department of Biomedical and Life Science, Institute of Life Sciences & Medicine, King's College London, London SE1 1UL, U.K
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenhua Li
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| |
Collapse
|
8
|
Zhou M, Li G, Yu J, Zhou Q, Wang K, Kang J, Wang T, Li P, Wei H. Interfacial delivery of carbon monoxide via smart titanium implant coating for enhanced soft tissue integration with switchable antibacterial and immunomodulatory properties. Bioact Mater 2024; 40:318-333. [PMID: 38978805 PMCID: PMC11228469 DOI: 10.1016/j.bioactmat.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Soft tissue integration around titanium (Ti) implants is weaker than that around natural teeth, compromising long-term success of Ti implants. Carbon monoxide (CO) possesses distinctive therapeutic properties, rendering it as a highly promising candidate for enhancing STI. However, achieving controlled CO generation at the STI interface remains challenging. Herein, a controlled CO-releasing dual-function coating was constructed on Ti surfaces. Under near-infrared (NIR) irradiation, the designed surface could actively accelerate CO generation for antibiosis against both aerobic and anaerobic bacteria. More importantly, in the absence of NIR, the slow release of CO induces macrophage polarization from pro-inflammatory phenotype towards pro-regenerative phenotype. In a rat implantation model with induced infection, the designed surface effectively controlled the bacterial infection, alleviates accompanying inflammation and modulated immune microenvironment, leading to enhanced STI. Single-cell sequencing revealed that the coating alters the cytokine profile within the soft tissue, thereby influencing cellular functions. Differentially expressed genes in macrophages are highly enriched in the PIK3-Akt pathway. Furthermore, the cellular communication between fibroblasts and macrophages was significantly enhanced through the CXCL12/CXCL14/CXCR4 and CSF1-CSF1R ligand-receptor pair. These findings indicate that our coating showed an appealing prospect for enhancing STI around Ti implants, which would ultimately contribute to the improved long-term success of Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Jingwei Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Jiaxin Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, PR China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, PR China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, PR China
| | - Hongbo Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
9
|
Wang W, Kang W, Zhang X, Zheng X, Jin Y, Ma Z, Wang Y, Dai R, Ma X, Zheng Z, Zhang R. Microenvironment-Responsive Targeted Nanomedicine for a Collaborative Integration of Tumor Theranostics and Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400715. [PMID: 38822808 DOI: 10.1002/adhm.202400715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Despite advancements in breast cancer treatment, bone metastases remain a significant concern for advanced breast cancer patients. Current theranostics strategies face challenges in integrating tumor theranostics and bone formation. Herein, this work develops an activatable targeted nanomedicine AuMnCO@BSA-N3 (AMCBN) to enable a novel collaborative integration of second near-infrared (NIR-II) fluorescence imaging guided precise theranostics for breast cancer bone metastases and osteogenic microenvironment remolding. This strategy employs a chemical coordination between noble metal complex and metal carbonyl (MnCO), with surface modification of azide groups to enhance tumor affinity through passive and active targeting. The initiated respondent behavior of AMCBN by tumor microenvironment accelerate the degradation of coordinated MnCO, resulting in a rapid release of multifunctional agents for efficient chemodynamic therapy (CDT)/gas synergistic therapy. Meanwhile, the exceptional bone-binding properties enable the efficient and controlled release of Mn2+ ions and carbon monoxide (CO) in the bone microenvironment, thereby facilitating the expression of osteogenesis-related proteins and establishing a novel synchronous theranostics process for tumor-bone repair.
Collapse
Affiliation(s)
- Wenxuan Wang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Weiwei Kang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Xiaochun Zheng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yarong Jin
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhuo Ma
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Yuhang Wang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Rong Dai
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xun Ma
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Ziliang Zheng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
10
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
11
|
Cao L, Yang Y, Zheng Y, Cheng W, Chen M, Wang T, Mu C, Wu M, Liu B. X-Ray-Triggered CO-Release from Gold Nanocluster: All-in-One Nanoplatforms for Cancer Targeted Gas and Radio Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401017. [PMID: 38573785 DOI: 10.1002/adma.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Glycolysis-dominant metabolic pathway in cancer cells can promote their therapeutic resistance against radiotherapy (RT). Carbon monoxide (CO) as a glycolysis inhibitor can enhance the efficiency of RT. Herein, an X-ray responsive CO-releasing nanocomposite (HA@AuNC@CO) based on strong host-guest interactions between the radiosensitizer and CO donor for enhanced RT is developed. The encapsulated gold nanoclusters (CD-AuNCs) can effectively generate cytotoxic reactive oxygen species (ROS) under X-ray radiation, which not only directly inactivate cancer cells but also induce in situ CO gas generation from adamantane modified metal carbonyl (Ada-CO) for glycolysis inhibition. Both in vitro and in vivo results demonstrate that HA@AuNC@CO exhibits active targeting toward CD44 overexpressed cancer cells, along with excellent inhibition of glycolysis and efficient RT against cancer. This study offers a new strategy for the combination of gas therapy and RT in tumor treatment.
Collapse
Affiliation(s)
- Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yanlin Zheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Cheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Minghong Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Tongtong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Chuan Mu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
12
|
Gao X, Jin B, Zhou X, Bai J, Zhong H, Zhao K, Huang Z, Wang C, Zhu J, Qin Q. Recent advances in the application of gasotransmitters in spinal cord injury. J Nanobiotechnology 2024; 22:277. [PMID: 38783332 PMCID: PMC11112916 DOI: 10.1186/s12951-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Bingrong Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zongrui Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Qin Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
13
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
14
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
15
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
16
|
Li Y, Sun L, Chen R, Ni W, Liang Y, Zhang H, He C, Shi B, Petropoulos S, Zhao C, Shi L. Single-Cell Analysis Reveals Cxcl14 + Fibroblast Accumulation in Regenerating Diabetic Wounds Treated by Hydrogel-Delivering Carbon Monoxide. ACS CENTRAL SCIENCE 2024; 10:184-198. [PMID: 38292600 PMCID: PMC10823591 DOI: 10.1021/acscentsci.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-β signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
Collapse
Affiliation(s)
- Ya Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Lu Sun
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Ranxi Chen
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Wenpeng Ni
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Yuyun Liang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Hexu Zhang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Chaoyong He
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Bi Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Sophie Petropoulos
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Département
de Médecine, Université de
Montréal, Montreal Canada, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal, Axe Immunopathologie, H2X 19A 708 Montreal Canada
| | - Cheng Zhao
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Liyang Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
18
|
Opoku-Damoah Y, Zhang R, Ta HT, Xu ZP. Simultaneous Light-Triggered Release of Nitric Oxide and Carbon Monoxide from a Lipid-Coated Upconversion Nanosystem Inhibits Colon Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038959 DOI: 10.1021/acsami.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Gas therapy has gained noteworthy attention in biomedical research, with the rise of gas-releasing molecules enhancing their therapeutic potential, especially when integrated into nano-based drug delivery systems. Herein, we present a lipid-coated gas delivery system to simultaneously shuttle two gas-releasing molecules carrying nitric oxide (NO) and carbon monoxide (CO), respectively. Upconversion nanoparticles (UCNPs) are designed to generate photons at 360 nm upon 808 nm of near-infrared (NIR) irradiation. These in situ-generated UV photons trigger simultaneous NO and CO release from S-nitrosoglutathione (GSNO) and the CO-releasing molecule (CORM), respectively, which are coloaded into lipid-coated UCNP/GSNO/CORM/FA nanoparticles (LUGCF). LUGCF with a GSNO/CORM mass ratio of 2:1 is determined to be optimal in terms of synergistically instigating apoptosis in HCT116 and CT26 colon cancer cells, where both NO/CO are released and subsequent production of ROS are detected. This CO/NO combination nanoplatform exhibits a very effective inhibition of colon tumor growth in vivo at relatively low doses upon a mild 808 nm irradiation. Overall, we effectively integrated two therapeutic gas-releasing molecules in one NIR-responsive nanosystem, presenting a promising therapeutic strategy for future biomedical applications in dual-gas cancer therapy.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Li Z, Wang Y, Liu M, Pan Y, Ni Z, Min Q, Wang B, Ke H, Ji X. Reactive Oxygen Species-Activated Metal-Free Carbon Monoxide Prodrugs for Targeted Cancer Treatment. J Med Chem 2023; 66:14583-14596. [PMID: 37909153 DOI: 10.1021/acs.jmedchem.3c01056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Carbon monoxide has shown promise as a therapeutic agent against cancers. Reactive oxygen species (ROS)-activated CO prodrugs are highly demanded for targeted cancer treatment but remain sporadic. In addition, little attention is on how the release rate affects CO's biological effects. Herein, we describe a new type of ROS-activated metal-free CO prodrug, which releases CO with tunable release rates in response to multiple ROS and exhibits very pronounced tumor suppression effects in a mouse 4t1 breast tumor model. Importantly, for the first time, we observe both in vitro and in vivo that CO release rate has a direct impact on its antiproliferative potency and a correlation between release rate and antiproliferative activity is observed. In aggregates, our results not only deliver ROS-sensitive CO prodrugs for cancer treatment but also represent a promising starting point for further in-depth studies of how CO release kinetics affect anticancer activity.
Collapse
Affiliation(s)
- Zhang Li
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yongming Wang
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yiyao Pan
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zihui Ni
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hengte Ke
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
20
|
Cao L, Lin X, Liu X, Wu M, Liu S, Wang T, Mao D, Liu B. Type-I Photosensitizer-Triggered Controllable Carbon Monoxide Release for Effective Treatment of Staph Skin Infection. NANO LETTERS 2023; 23:9769-9777. [PMID: 37616496 DOI: 10.1021/acs.nanolett.3c02434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Staphylococcus aureus (S. aureus) infection is a major infectious skin disease that is highly resistant to conventional antibiotic treatment and host immune defense, leading to recurrence and exacerbation of bacterial infection. Herein, we developed a photoresponsive carbon monoxide (CO)-releasing nanocomposite by integrating anion-π+ type-I photosensitizer (OMeTBP) and organometallic complex (FeCO) for the treatment of planktonic S. aureus and biofilm-associated infections. After optimizing the molar ratio of FeCO and OMeTBP, the prepared nanoparticles, OMeTBP@FeCONPs, not only ensured sufficient loading of CO donors and efficient CO generation but also showed negligible free ROS leakage under light irradiation, which helped to avoid tissue damage caused by excessive ROS. Both in vitro and in vivo results demonstrated that OMeTBP@FeCONPs could effectively inhibit S. aureus methicillin-resistant S. aureus (MRSA), and bacterial biofilm. Our design has the potential to overcome the resistance of conventional antibiotic treatment and provide a more effective option for bacterial infections.
Collapse
Affiliation(s)
- Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Xuan Lin
- Precision Medicine Institute The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
- Inner Mongolia Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010017, People's Republic of China
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
| | - Shitai Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Tongtong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Duo Mao
- Precision Medicine Institute The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
21
|
Zhang Y, Liu X, He P, Tang B, Xiao C, Chen X. Thiol-Responsive Polypeptide Sulfur Dioxide Prodrug Nanoparticles for Effective Tumor Inhibition. Biomacromolecules 2023; 24:4316-4327. [PMID: 37611178 DOI: 10.1021/acs.biomac.3c00767] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Sulfur dioxide (SO2) based gas therapy has emerged as a novel anticancer therapeutic strategy because of its high therapeutic efficacy and biosafety. To precisely adjust the SO2 content and control gas release, herein, a thiol-responsive polypeptide SO2 prodrug mPEG-block-poly(2-amino-6-(2,4-dinitrophenylsulfonamido)hexanoic acid) (PEG-b-PLys-DNs) was designed and facilely synthesized by polymerization of a novel N-carboxyanhydride SO2-NCA. The anticancer potential of the self-assembled nanoparticles (SO2-NPs) was investigated in detail. First, PEG-b-PLys-DNs were synthesized by ring-opening polymerization of SO2-NCA, which self-assembled into NPs sized 88.4 nm in aqueous. Subsequently, SO2-NPs were endocytosed into 4T1 cells and quickly released SO2 under a high concentration of glutathione in tumor cells. This process depleted cellular glutathione, generated reactive oxygen species, and dramatically increased oxidative stress, which led to cancer cell apoptosis. Finally, the in vivo anticancer efficacy of SO2-NPs was verified in 4T1-tumor-bearing mice. Our results indicated that this novel SO2 polymeric prodrug has great potential in eradicating tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
22
|
Huang J, Liao D, Han Y, Chen Y, Raza S, Lu C, Liu J, Lan Q. Current status of porous coordination networks (PCNs) derived porphyrin spacers for cancer therapy. Expert Opin Drug Deliv 2023; 20:1209-1229. [PMID: 37776531 DOI: 10.1080/17425247.2023.2260309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Porous coordination networks (PCNs) have been widely used in large number of applications such as light harvesting, catalysis, and biomedical applications. Inserting porphyrins into PCNs scaffolds can alleviate the solubility and chemical stability problems associated with porphyrin ligands and add functionality to PCNs. The discovery that some PCNs materials have photosensitizer and acoustic sensitizer properties has attracted significant attention in the field of biomedicine, particularly in cancer therapy. This article describes the latest applications of the porphyrin ligand-based family of PCNs in cancer chemodynamic therapy (CDT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and combination therapies and offers some observations and reflections on them. AREAS COVERED This article discusses the use of the PCN family of MOFs in cancer treatment, specifically focusing on chemodynamic therapy, sonodynamic therapy, photodynamic therapy, photothermal therapy, and combination therapy. EXPERT OPINION Although a large number of PCNs have been developed for use in novel cancer therapeutic approaches, further improvements are needed to advance the use of PCNs in the clinic. For example, the main mechanism of action of PCNs against cancer and the metabolic processes in organisms, and how to construct PCNs that maintain good stability in the complex environment of organisms.
Collapse
Affiliation(s)
- Jeifeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuting Han
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
23
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Yang F, Yu W, Yu Q, Liu X, Liu C, Lu C, Liao X, Liu Y, Peng N. Mitochondria-Targeted Nanosystem with Reactive Oxygen Species-Controlled Release of CO to Enhance Photodynamic Therapy of PCN-224 by Sensitizing Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206124. [PMID: 36693788 DOI: 10.1002/smll.202206124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The apoptosis-resistant mechanism of photodynamic therapy (PDT) usually results in limited therapeutic efficacy. The development of new strategies for sensitizing targeted ferroptosis that bypass apoptosis resistance is of great significance to improve the antitumor efficacy of PDT. In this study, a novel amphiphilic copolymer whose main chain contains reactive oxygen species (ROS)-responsive groups and the end of side chains contains triphenylphosphine is synthesized, to encapsulate porphyrinic metal-organic framework PCN-224 via self-assembly which are hydrothermally synthesized by coordination of zirconium (IV) with tetra-kis(4-caboxyphenyl) porphyrin, and loaded carbon monoxide releasing molecule 401 (CORM-401) by their hollow structures (PCN-CORM), and finally, surface-coated with hyaluronic acid. The nanosystem can sequentially localize to mitochondria which is an important target to induce apoptosis and ferroptosis in cancer cells. Upon excitation with near-infrared light, PCN-224 is activated to produce amounts of ROS, and simultaneously triggers the rapid intracellular release of CO. More importantly, the released CO can sensitize ferroptosis and promote apoptosis to significantly enhance the antitumor efficacy of PCN-224 both in vitro and in vivo. These results illustrate that the mitochondria-targeted drug delivery system combined PDT with CO leads to an effective antitumor efficacy, which maybe a promising way to enhance the treatment efficiency of PDT.
Collapse
Affiliation(s)
- Futing Yang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Wenjie Yu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Qiying Yu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiyu Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chunping Liu
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Lu
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghua Liao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering & College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
25
|
Liu J, Sheng Z, Zhang M, Li J, Zhang Y, Xu X, Yu S, Cao M, Hou X. Non-Newtonian fluid gating membranes with acoustically responsive and self-protective gas transport control. MATERIALS HORIZONS 2023; 10:899-907. [PMID: 36541214 DOI: 10.1039/d2mh01182d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Control of gas transport through porous media is desired in multifarious processes such as chemical reactions, interface absorption, and medical treatment. Liquid gating technology, based on dynamically adaptive interfaces, has been developed in recent years and has shown excellent control capability in gas manipulation-the reversible opening and closing of a liquid gate for gas transport as the applied pressure changes. Here, we report a new strategy to achieve self-protective gas transport control by regulating the dynamic porous interface in a non-Newtonian fluid gating membrane based on the shear thickening fluid. The gas transport process can be suspended and restored via modulation of the acoustic field, owing to the transition of particle-to-particle interactions in a confined geometry. Our experimental and theoretical results support the stability and tunability of the gas transport control. In addition, relying on the shear thickening behaviour of the gating fluid, the transient response can be achieved to resist high-impact pressure. This strategy could be utilized to design integrated smart materials used in complex and extreme environments such as hazardous and explosive gas transportation.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Mengchuang Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal H3A 0G4, Canada
- Department of Biomedical Engineering, McGill University, Montreal H3A 0G4, Canada
- Department of Surgery, McGill University, Montreal H3A 0G4, Canada
| | - Yunmao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xue Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shijie Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Min Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
27
|
Hu R, Dai C, Dai X, Dong C, Huang H, Song X, Feng W, Ding L, Chen Y, Zhang B. Topology regulation of nanomedicine for autophagy-augmented ferroptosis and cancer immunotherapy. Sci Bull (Beijing) 2023; 68:77-94. [PMID: 36621435 DOI: 10.1016/j.scib.2022.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Iron accumulation and lipid peroxidation form the basis of ferroptosis, potentially circumventing the limitations of apoptosis in cancer treatment. Owing to the lack of potent ferroptosis inducers, the development of efficient ferroptosis-based therapeutic agents and protocols against cancers is highly challenging. Inspired by the topological effect of nanoparticles in modulating cellular function/status, a specific tetrapod ferroptosis-inducer iron-palladium (FePd) nanocrystal was rationally engineered for physically activated autophagy-augmented ferroptosis and enhanced cancer immunotherapy. Specifically, the tetrapod FePd nanocrystal featured strong peroxidase-/glutathione oxidase-mimicking bioactivities, which promoted cancer cell ferroptosis. The special spiky morphology and nanostructure of the FePd nanocrystal simultaneously induced autophagy, which augmented ferroptosis in cancer cells and triggered the release of inflammatory cytokines in macrophages for strengthening anti-PD-L1-antibody mediated immunotherapy, synergistically achieving the maximal antineoplastic effect in three tumor-bearing animal models. This unique physical activation strategy for efficient cancer treatment via precise morphological tuning represents a paradigm for nanomedicine design for efficient tumor treatment.
Collapse
Affiliation(s)
- Ruizhi Hu
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Chen Dai
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xinran Song
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| |
Collapse
|
28
|
Wang Y, Jing D, Yang J, Zhu S, Shi J, Qin X, Yin W, Wang J, Ding Y, Chen T, Lu B, Yao Y. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs. Acta Biomater 2022; 154:467-477. [PMID: 36244597 DOI: 10.1016/j.actbio.2022.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) as one of the therapeutic gaseous molecules has been widely applied for treating various diseases, especially in cancer therapy. However, the in situ-triggered and efficient transport of CO to tumors are the primary obstacles that limit its clinical applicability. To address this obstacle, herein, a H2O2-triggered CO gas releasing nanoplatform has been designed by embedding manganese carbonyl (MnCO) into Zr (IV)-based metal-organic frameworks (MOFs). The porous structures of MOFs provide encapsulation capacity for glucose oxidase (GOx) loading, thereby catalyzing the endogenous glucose into gluconic acid and H2O2 to accelerate CO release and energy depletion. In the meantime, the Mn2+ produced by MnCO can react with intracellular H2O2 via the Fenton reaction to form cytotoxic •OH. Therefore, the synthesized gas nanogenerator demonstrated a synergistic efficacy of CO gas therapy, reactive oxygen species (ROS)-mediated therapy, and energy starvation to prevent tumor growth. Both in vitro and in vivo studies indicated that this multifunctional nanoplatform not only successfully inhibited tumors through a synergistic effect, but also provided a new technique for the creation of starvation/gas/chemodynamic combination therapy in a single material. STATEMENT OF SIGNIFICANCE: In this study, we developed a H2O2 responsive CO gas nanogenerator to augment the in-situ generation of CO gas for combined modality therapy of tumors. The nanogenerator was constructed by encapsulating glucose oxidase (GOx) and manganese carbonyl (MnCO) into UiO-67-bpy, which can catalyze the conversion of intracellular glucose to H2O2 for cutting off energy supply of cancer cells. Meanwhile, the cumulated H2O2 can trigger the release of CO for gas therapy and generation of •OH for chemodynamic therapy (CDT) via the Fenton-like reaction, thereby resulting in apoptosis of the cancer cells. Collectively, our designed nanotherapeutic agent not only displays the synergistic therapy efficacy of starvation-enhanced CO gas therapy and CDT, but also provides an efficient strategy for developing the intelligent nanocarrier for CO gas delivery and release.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Jiawen Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jian Shi
- Nantong University Analysis & Testing Center, Nantong, Jiangsu 226019, PR China
| | - Xiru Qin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Wujie Yin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China..
| |
Collapse
|
29
|
Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J Control Release 2022; 352:313-327. [PMID: 36272661 DOI: 10.1016/j.jconrel.2022.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
As an endogenous gasotransmitter, CO has achieved tremendous advances in cancer treatment through selectively killing cancer cells. However, the application of CO in tumor immunotherapy has not been reported and the tumor targeting delivery is still a tremendous challenge. Herein, thermosensitive boronic acid group-containing CO prodrug was synthesized and fabricated with tannic acid (TA) and iron (Fe) to form metal-phenolic networks, and then loaded with near-infrared (NIR) photothermal agent IR820 to form FeCO-IR820@FeIIITA for combinational therapy of CO and photothermal therapy. Ferroptosis can also be enhanced due to the Fe3+ incorporation. After TA reduced Fe3+ into Fe2+, Fe2+ might lead to intracellular Fenton reaction. Furthermore, in combination with CTLA-4 blockade immunotherapy, FeCO-IR820@FeIIITA remarkably inhibited breast tumor growth, suppressed the lung metastasis and improved the antitumor immune response. To summarize, FeCO-IR820@FeIIITA provides a potential novel option for CO/photothermal/immune synergistic therapy with enhanced ferroptosis through simple compositions and facile synthesis process.
Collapse
|
30
|
Li Y, Pan Y, Chen C, Li Z, Du S, Luan X, Gao Y, Han X, Song Y. Multistage-Responsive Gene Editing to Sensitize Ion-Interference Enhanced Carbon Monoxide Gas Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204244. [PMID: 36055775 DOI: 10.1002/smll.202204244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2 O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+ -driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.
Collapse
Affiliation(s)
- Yayao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Chao Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zekun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
32
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
33
|
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202044. [PMID: 35785450 DOI: 10.1002/adma.202202044] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Yifu Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Yandai Lin
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Linxi Hou
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| |
Collapse
|
34
|
Zhang CX, Li HW, Zhang R, Ren Z, Wu Y. Tumor Microenvironments-Adaptive Apoptotic Effects of Cytidine 5'-monophosphate-Capped Gold Nanoclusters. ACS APPLIED BIO MATERIALS 2022; 5:3452-3460. [PMID: 35714365 DOI: 10.1021/acsabm.2c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, cytidine 5'-monophosphate capped gold nanoclusters (AuNCs@CMP) are reported as a catalyst for redox reactions, which show both oxidase- and excellent peroxidase-like activity. When employing 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate in the presence of hydrogen peroxide (H2O2), the maximum velocity (Vmax) was 175 × 10-8 M s-1 in vitro. Besides, the AuNCs@CMP exhibited high catalytic activity for reactive oxygen species (ROS) generation with H2O2. Particularly, they also displayed excellent catalytic activity for ROS generation in tumor cells, being activated and promoted by the tumor microenvironment (TME). Consequently, the AuNCs@CMP show an excellent antitumor effect on HeLa and SW480 cells as assayed by flow cytometry. The antitumor mechanism of AuNCs@CMP was attributed to the high ROS generation based on the specific environments of the TME. Therefore, the present study provides TME-adaptive AuNCs@CMP with excellent mimetic peroxidase activity, producing significant ROS to kill the tumor cells in TME.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Renwen Zhang
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Zhongyuan Ren
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
35
|
Sono-ReCORMs for synergetic sonodynamic-gas therapy of hypoxic tumor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
37
|
Liu B, Zhang X, Li J, Yao S, Lu Y, Cao B, Liu Z. X-ray-Triggered CO Release Based on GdW 10/MnBr(CO) 5 Nanomicelles for Synergistic Radiotherapy and Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7636-7645. [PMID: 35109649 DOI: 10.1021/acsami.1c22575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) therapy has become a hot topic in the field of gas therapy because of its application prospect in the treatment of various diseases. Due to the high affinity for human hemoglobin, the main challenge of CO-loaded nanomedicine is the lack of selectivity and toxicity in the delivery process. Although many commercial CO-releasing molecules (CORMs) have been widely developed because of their ability to deliver CO, CORMs still have some disadvantages, including difficult on-demand controlled CO release, poor solubility, and potential toxicity, which are limiting their further application. Herein, an X-ray-triggered CO-releasing nanomicelle system (GW/MnCO@PLGA) based on GdW10 nanoparticles (NPs) (GW) and MnBr(CO)5 (MnCO) encapsulating in the poly(lactic-co-glycolic acid) (PLGA) polymer was constructed for synergistic CO radiotherapy (RT). The production of strongly oxidative superoxide anion (O2-•) active species can lead to cell apoptosis under the X-ray sensitization of GW. Moreover, strongly oxidative O2-• radicals further oxidize and compete with the Mn center, resulting in the on-demand release of CO. The radio/gas therapy synergy to enhance the efficient tumor inhibition of the nanomicelles was investigated in vivo and in vitro. Therefore, the establishment of an X-ray-triggered controlled CO release system has great application potential for further synergistic RT CO therapy in deep tumor sites.
Collapse
Affiliation(s)
- Bin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaolei Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jinkai Li
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bingqiang Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Zongming Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
38
|
Fang Y, Cheng J, Shen Z, You T, Ding S, Hu J. Ultrasound-Mediated Release of Gaseous Signaling Molecules for Biomedical Applications. Macromol Rapid Commun 2022; 43:e2100814. [PMID: 35032066 DOI: 10.1002/marc.202100814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Indexed: 11/07/2022]
Abstract
Although nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have been considered as notorious gas pollutants for decades, they are considered as endogenous gaseous signaling molecules (GSMs), which have been widely recognized for their important signaling functions and prominent medical applications in human physiology. To achieve local delivery of GSMs to optimize therapeutic efficacy and reduce systemic side effects, stimuli-responsive nanocarriers have been successfully developed. Among them, ultrasound is considered as an attractive theranostic modality that can be used to track drug carriers, trigger drug release, and improve drug deposition, etc. In this minireview, we summarize recent achievements in designing ultrasound-responsive nanocarriers for the controlled delivery of GSMs and their biomedical applications. This emerging research direction enables the controlled delivery of GSMs to deep tissues, and the combination of ultrasound imaging techniques offers many possibilities for the fabrication of new theranostic platforms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuanmeng Fang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tao You
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
Affiliation(s)
- Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
40
|
Chen G, Wang Y, Kong X, Li HW, Li B, Yu X, Wu L, Wu Y. Synergistic TME-manipulation Effects of a Molybdenum-based Polyoxometalate Enhanced the PTT Effects on Cancer Cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intrinsic features of tumors often give rise to unsatisfied outcomes of photothermal treatment (PTT). Remarkably, the tumor microenvironment (TME) with abundant anti-oxidants, elevated hydrogen peroxide (H2O2), and low pH...
Collapse
|
41
|
Liu J, Xu X, Lei Y, Zhang M, Sheng Z, Wang H, Cao M, Zhang J, Hou X. Liquid Gating Meniscus-Shaped Deformable Magnetoelastic Membranes with Self-Driven Regulation of Gas/Liquid Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107327. [PMID: 34762328 DOI: 10.1002/adma.202107327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xue Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi Lei
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mengchuang Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Min Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen, Fujian, 361102, China
| |
Collapse
|
42
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun (Camb) 2021; 57:12417-12435. [PMID: 34734601 DOI: 10.1039/d1cc04846e] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent organic frameworks (COFs), as a new type of crystalline porous materials, mainly consist of light-weight elements (H, B, C, N and O) linked by dynamic covalent bonds to form periodical structures of two or three dimensions. As an attribute of their low density, large surface area, and excellent adjustable pore size, COFs show great potential in many fields including energy storage and separation, catalysis, sensing, and biomedicine. However, compared with metal organic frameworks (MOFs), the relatively large size and irregular morphology of COFs affect their biocompatibility and bioavailability in vivo, thus impeding their further biomedical applications. This Review focuses on the controlled design strategies of nanoscale COFs (NCOFs), unique properties of NCOFs for biomedical applications, and recent progress in NCOFs for cancer therapy. In addition, current challenges for the biomedical use of NCOFs and perspectives for further improvements are presented.
Collapse
Affiliation(s)
- Xuelu He
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
44
|
Tang Q, Yu YT, Zhang HL, Wang Y, Liu J, Yang SP, Liu JG. NIR light-controlled mitochondria-targeted delivery of carbon monoxide combined with histone deacetylase inhibition for synergistic anticancer therapy. J Inorg Biochem 2021; 226:111656. [PMID: 34798307 DOI: 10.1016/j.jinorgbio.2021.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
A multifunctional nanoplatform APIPB-MnCO@TPP@N,P-GQDs (APIPB = N-(2-aminophen-yl)-4-(1H-imidazo[4,5-f] [1, 10] phenanthrolin-2-yl) benzamide, TPP = triphenylphosphine, Mn = manganese, CO = carbon monoxide, and GQDs = graphene quantum dots), nanoplatform (1), was synthesized, which consists of a fluorescent N, P-doped GQDs carrier with its surface covalently functionalized by an CO donor APIPB-MnCO with histone deacetylases (HDAC) inhibitory property and a TPP derivative directing group. Nanoplatform (1) selectively localized in the mitochondria of HeLa cells to inhibit HDAC activity, and released CO upon 808 nm near-infrared light irradiation, destroying the mitochondria and thus inducing cancer cells apoptosis. The targeted subcellular mitochondrial CO delivery combined with inhibitory HDAC activity maximized the cytotoxicity of the nanoplatform which may provide new insights for CO-mediated multimodal therapies for cancer treatment.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ya-Ting Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
45
|
Pei S, Li JB, Wang Z, Xie Y, Chen J, Wang H, Sun L. A CORM loaded nanoplatform for single NIR light-activated bioimaging, gas therapy, and photothermal therapy in vitro. J Mater Chem B 2021; 9:9213-9220. [PMID: 34698754 DOI: 10.1039/d1tb01561c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon monoxide (CO) can cause mitochondrial dysfunction, inducing apoptosis of cancer cells, which sheds light on a potential alternative for cancer treatment. However, the existing CO-based compounds are inherently limited by their chemical nature, such as high biological toxicity and uncontrolled CO release. Therefore, a nanoplatform - UmPF - that addresses such pain points is urgently in demand. In this study, we have proposed a nanoplatform irradiated by near-infrared (NIR) light to release CO. Iron pentacarbonyl (Fe(CO)5) was loaded in the mesoporous polydopamine layer that was coated on rare-earth upconverting nanoparticles (UCNPs). The absorption wavelength of Fe(CO)5 overlaps with the emission bands of the UCNPs in the UV-visible light range, and therefore the emissions from the UCNPs can be used to incite Fe(CO)5 to control the release of CO. Besides, the catechol groups, which are abundant in the polydopamine structure, serve as an ideal locating spot to chelate with Fe(CO)5; in the meantime, the mesoporous structure of the polydopamine layer improves the loading efficiency of Fe(CO)5 and reduces its biological toxicity. The photothermal effect (PTT) of the polydopamine layer is highly controllable by adjusting the external laser intensity, irradiation time and the thickness of the polydopamine layer. The results illustrate that the combination of CO gas therapy (GT) and polydopamine PTT brought by the final nanoplatform can be synergistic in killing cancer cells in vitro. More importantly, the possible toxic side effects can be effectively prevented from affecting the organism, since CO will not be released in this system without near-infrared light radiation.
Collapse
Affiliation(s)
- Shihao Pei
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China.
| | - Jiabo Chen
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
46
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C, Ngo L, Sepunaru L, Iretskii AV, Ford PC. Redox-mediated carbon monoxide release from a manganese carbonyl-implications for physiological CO delivery by CO releasing moieties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211022. [PMID: 34804570 PMCID: PMC8580448 DOI: 10.1098/rsos.211022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.
Collapse
Affiliation(s)
- Jacob A. Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John V. Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Emily Wein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Dongyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Camden Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Loc Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Alexei V. Iretskii
- Department of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, MI 49783, USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
48
|
Light-activated nitric-oxide overproduction theranostic nanoplatform based on long-circulating biomimetic nanoerythrocyte for enhanced cancer gas therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Li Y, Liu Z, Zeng W, Wang Z, Liu C, Zeng N, Zhong K, Jiang D, Wu Y. A Novel H 2O 2 Generator for Tumor Chemotherapy-Enhanced CO Gas Therapy. Front Oncol 2021; 11:738567. [PMID: 34631573 PMCID: PMC8496405 DOI: 10.3389/fonc.2021.738567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
Carbon monoxide (CO) gas therapy is a promising cancer treatment. However, gas delivery to the tumor site remains problematic. Proper tunable control of CO release in tumors is crucial to increasing the efficiency of CO treatment and reducing the risk of CO poisoning. To overcome such challenges, we designed ZCM, a novel stable nanotechnology delivery system comprising manganese carbonyl (MnCO) combined with anticancer drug camptothecin (CPT) loaded onto a zeolitic imidazole framework-8 (ZIF-8). After intravenous injection, ZCM gradually accumulates in cancerous tissues, decomposing in the acidic tumor microenvironment, releasing CPT and MnCO. CPT acts as a chemotherapy agent destroying tumors and producing copious H2O2. MnCO can react with the H2O2 to generate CO, powerfully damaging the tumor. Both in vitro and in vivo experiments indicate that the ZCM system is both safe and has excellent tumor inhibition properties. ZCM is a novel system for CO controlled release, with significant potential to improve future cancer therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weng Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziqi Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chunping Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keli Zhong
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dazhen Jiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Tang Q, Zhang HL, Wang Y, Liu J, Yang SP, Liu JG. Mitochondria-targeted carbon monoxide delivery combined with singlet oxygen production from a single nanoplatform under 808 nm light irradiation for synergistic anticancer therapy. J Mater Chem B 2021; 9:4241-4248. [PMID: 34008693 DOI: 10.1039/d1tb00478f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A multifunctional nanoplatform (1), MnCO@TPP@C-TiO2, which consists of a carrier of carbon-doped TiO2 nanoparticles with surface covalent functionalization of manganese carbonyls and a directing group of triphenylphosphine, was prepared for mitochondria-targeted carbon monoxide (CO) delivery combined with photodynamic therapy (PDT). MnCO@TPP@C-TiO2 selectively localized in the mitochondria of HeLa cells where the overexpressed-H2O2 triggered CO release resulting in mitochondrial damage. And singlet oxygen species generated upon 808 nm near infrared light irradiation further destroyed the mitochondria and induced cancer cells apoptosis. Cytotoxicity assays revealed that the nanoplatform with mitochondria-targeted CO delivery and PDT exhibited the highest lethality against cancer cells in comparison with all the other control samples tested, and it showed good dark biocompatibility with normal cells that express low H2O2 levels. This work may provide new insights into combining CO-based gas therapy with traditional PDT for efficient cancer treatment.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|