1
|
Zhu J, Zhou C, Yang J, Wang Z. Dual Targeting of Neuropilin-1 and Glucose Transporter for Efficient Fluorescence Imaging of Cancer. Mol Imaging Biol 2025; 27:250-259. [PMID: 40048021 PMCID: PMC12062102 DOI: 10.1007/s11307-025-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE Early diagnosis and complete resection of cancer are pivotal for enhancing patient survival rates and prognosis. However, a significant current challenge lies in the lack of specific imaging probes for the identifying various tumor types. The expression levels of neuropilin-1 (NRP1) and glucose transporter 1 (GLUT1) in most tumors, including breast cancer, are closely linked to tumor proliferation and metastasis. This study seeks to develop a novel near-infrared fluorescence (NIRF) probe aimed at precise tumor detection by targeting NRP1 and GLUT1. PROCEDURES G0 was conjugated with N3-PEG4-ALKADK and 2-Azido-2-deoxy-D-glucose to synthesize the NGF probe. The spectral properties (fluorescence and absorbance spectra) of NGF were studied in both methanol and water. The targeting specificity of NGF towards NRP1 and GLUT1 was evaluated using confocal fluorescence microscopy imaging, flow cytometry assays and in vivo IVIS spectrum imaging. RESULTS A dual-targeting fluorescent probe named NGF was successfully synthesized to bind to both NRP1 and GLUT1 receptors. NGF exhibited greater hydrophilicity (Log P = -0.95 ± 0.07) and superior optical properties compared to its precursor, G0. Confocal fluorescence imaging, flow cytometry assays, and blocking studies revealed that the cellular uptake of NGF correlated with the NRP1 and GLUT1 expression levels across cell lines. Moreover, a strong linear relationship (R2 = 0.98) was observed between fluorescence intensity and increasing NGF concentrations in MDA-MB-231 cells. In vivo IVIS imaging in animal models demonstrated specific binding of NGF to breast cancer (MDA-MB-231) and colorectal cancer (HCT116), with prolonged retention observed up to 72 h. CONCLUSIONS This study highlighted the efficient targeting and sustained retention of the dual-target heterodimeric fluorescent probe NGF, binding to NRP1 and GLUT1 receptors. These findings suggest significant potential for clinical applications in early cancer detection and fluorescence image-guided surgery.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Gastroenterology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Can Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Zhenhua Wang
- Department of Gastroenterology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China.
| |
Collapse
|
2
|
Zhou X, Belavek KJ, Navarro MX, Martinez KN, Hinojosa A, Miller EW. Ratio-based indicators for cytosolic Ca 2+ with visible light excitation. Proc Natl Acad Sci U S A 2025; 122:e2410436122. [PMID: 39937863 PMCID: PMC11848355 DOI: 10.1073/pnas.2410436122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
Calcium ions (Ca2+) play central roles in cellular physiology. Fluorescent indicators for Ca2+ ions revolutionized our ability to make rapid, accurate, and highly parallel measurement of Ca2+ concentrations in living cells. The use of ratio-based imaging with one particular indicator, fura-2, allowed practitioners to correct for a number of experimental confounds, including dye bleaching, variations in sample thickness, and fluctuations in illumination intensity. Ratio-based imaging with fura-2 was the most accurate and reliable method for measuring Ca2+ concentrations. Two drawbacks to fura-2 exist. First, it requires ultraviolet (UV) excitation, which is more toxic to living cells than visible light. Second, our ability to use fura-2 for accurate, stable, ratio-based determinations of Ca2+ concentration in living cells is fast becoming a method of the past. This is due, in part, because modern microscopes are phasing out the use of mercury arc lamps that provide the UV excitation needed for fura-2 imaging. To address this problem, we describe the design, synthesis, and cellular application of benzo[b]phosphole-based fluorescent Ca2+ indicators for ratio-based imaging of Ca2+ in living cells that can be used with modern light emitting diode (LED)-equipped fluorescence microscopes. We report isoCaRed-1Me, a Ca2+ indicator that enables ratio-based imaging in immortalized cell lines, primary mammalian hippocampal neurons, and human-induced pluripotent stem cell-derived cardiomyocytes. These data show that isoCaRed-1Me will be useful for ratio-based Ca2+ imaging using modern microscopes.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Kayla J. Belavek
- Department of Chemistry, University of California, Berkeley94720-1460
| | | | - Kayli N. Martinez
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Abigail Hinojosa
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley94720-1460
- Department of Molecular and Cell Biology, University of California, Berkeley94720-1460
- Helen Wills Neuroscience Institute, University of California, Berkeley94720-1460
| |
Collapse
|
3
|
Du Y, Zhang Y, Liu S, Zhang X, Wang T. Novel D-π-A hemicyanine dye as photoinitiators for in situ hydrogel formation and DLP printing. Photochem Photobiol 2024; 100:1759-1772. [PMID: 38623769 DOI: 10.1111/php.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The field of biofabrication imposes stringent requirements on the polymerization activity and biosafety of photopolymeric hydrogel systems. In this investigation, we designed and synthesized four hemicyanine dyes with a D-π-A structure specifically tailored for biofabrication purposes. These novel dyes, incorporating carbazole (CZ), triphenylamine (TPA), anthracene (AN), and benzodithiophene (BDT) as electron donors, along with heterocyclic salt (IN) as electron acceptors, were prepared using a straightforward synthesis method. The absorption maxima of ANIN, CZIN, and TPAIN exceeded 500 nm, rendering them suitable co-initiators for the free radical photopolymerization of acrylates under green-red light exposure facilitated by light-emitting diodes (LEDs) and the co-initiator iodonium salt (ION). Notably, CZIN and TPAIN, due to their robust dye absorption and efficient electron transfer to ION, functioned as high-performance photosensitizers. Meanwhile, BDTIN, with its strong and broad absorption range (400-600 nm), enhanced the accuracy of visible light photopolymerization. These dyes exhibit characteristics such as facile synthesis, heightened photo stability, and non-toxicity and also demonstrate the ability to discern the alkalinity of a solution to some extent. Furthermore, we explored the application of these hemicyanine dyes in 3D printing, showing potential to enhance printing resolution in DLP 3D printing (digital light process 3D printing).
Collapse
Affiliation(s)
- Yao Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Yating Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Shitao Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Xiwang Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Tao Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Andreeva VD, Regeni I, Yang T, Elmanova A, Presselt M, Dietzek-Ivanšić B, Bonnet S. Red-to-Blue Triplet-Triplet Annihilation Upconversion for Calcium Sensing. J Phys Chem Lett 2024; 15:7430-7435. [PMID: 39007727 DOI: 10.1021/acs.jpclett.4c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Triplet-triplet annihilation upconversion is a bimolecular process converting low-energy photons into high-energy photons. Here, we report a calcium-sensing system working via triplet-triplet annihilation (TTA) upconverted emission. The probe itself was obtained by covalent conjugation of a blue emitter, perylene, with a calcium-chelating moiety, and it was sensitized by the red-light-absorbing photosensitizer palladium(II) tetraphenyltetrabenzoporphyrin (PdTPTBP). Sensing was selective for Ca2+ and occurred in the micromolar domain. In deoxygenated conditions, the TTA upconverted luminescence gradually appeared upon adding an increasing concentration of calcium ions, to reach a maximum upconversion quantum yield of 0.0020.
Collapse
Affiliation(s)
- Valeriia D Andreeva
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Irene Regeni
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Tingxiang Yang
- School of BiosciencesUniversity of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anna Elmanova
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- SciClus GmbH & Co. KG, Moritz-von-Rohr-Straße 1a, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- SciClus GmbH & Co. KG, Moritz-von-Rohr-Straße 1a, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
5
|
He H, Li K, Li H, Zhu S, Qin S, Mao Y, Lin J, Qiu L, Yu C. Development of a multifunctional platform for near-infrared imaging and targeted radionuclide therapy for tumors. Eur J Pharm Biopharm 2023; 185:107-115. [PMID: 36858246 DOI: 10.1016/j.ejpb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Biotin receptor (BR) is overexpressed in several human tumor cell lines and has become an important biomarker for tumor diagnosis and treatment. Therefore, much attention has been attracted in the field of developing BR-targeting agents. In clinical practice, a multifunctional platform that can be used for both diagnosis and treatment is much desirable. In this study, to improve diagnostic and therapeutic efficacy of BR-positive tumors, we developed a multifunctional platform RT-H2 to combine with the cyanine scaffold for near infrared (NIR) imaging and the radioisotope 131I for targeted radionuclide therapy (TRT). In vitro experiments showed that RT-H2 possessed favorable NIR properties and could selectively accumulate in BR-positive HeLa cells. In vivo NIR imaging of HeLa tumor-bearing mice exhibited high accumulation and long retention time (72 h) of RT-H2 in the tumor. Furthermore, RT-H2 was also employed as a carrier to develop 131I-labeled TRT agent due to its favorable properties in vivo. The radiolabeling conditions were optimized and the optimal conditions determined to be 1.2 equiv of Idogen, reaction time 4 min and room temperature, yielding the radiotracer [131I]I-RT-H2 with the radiochemical purity (RCP) of > 95% after a simple purification by a C18 column. In vitro cell experiments indicated that [131I]I-RT-H2 could specifically target Hela cells and displayed dose-dependent antitumor effect. In vivo experiments demonstrated that [131I]I-RT-H2 obviously inhibited the tumor proliferation in HeLa tumor-bearing mice within 4 weeks. All these results indicate that RT-H2 has the potential to serve as a multifunctional platform for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huihui He
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hang Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shiliang Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shuai Qin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yong Mao
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
6
|
Qin S, Liu Q, Li K, Qiu L, Xie M, Lin J. Neuropilin 1-targeted near-infrared fluorescence probes for tumor diagnosis. Bioorg Med Chem Lett 2023; 84:129196. [PMID: 36828298 DOI: 10.1016/j.bmcl.2023.129196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Two neuropilin 1 (NRP1)-targeted near-infrared fluorescence probes for tumor imaging were synthesized via click reaction. These two probes achieve excellent solubility and less aggregation. Importantly, they were able to rapidly target NRP1-overexpressing tumors and had long retention within tumors. Additionally, QS-1 with appropriate hydrophilicity displays higher tumor to muscle (T/M) ratio. And QS-1 can be easily modified with other functional group, and serve as a platform for constructing dual-modal or dual-targeting probes.
Collapse
Affiliation(s)
- Shuai Qin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
7
|
A “crossbreeding” dyad strategy for bright and small-molecular weight near-infrared fluorogens: From the structural design to boost aggregation-induced emission. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chem Soc Rev 2022; 51:1795-1835. [PMID: 35142301 DOI: 10.1039/d1cs00307k] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of a near-infrared (NIR, 650-900 nm) fluorescent chromophore hemicyanine dye with high structural tailorability is of great significance in the field of detection, bioimaging, and medical therapeutic applications. It exhibits many outstanding advantages including absorption and emission in the NIR region, tunable spectral properties, high photostability as well as a large Stokes shift. These properties are superior to those of conventional fluorogens, such as coumarin, fluorescein, naphthalimides, rhodamine, and cyanine. Researchers have made remarkable progress in developing activity-based multifunctional fluorescent probes based on hemicyanine skeletons for monitoring vital biomolecules in living systems through the output of fluorescence/photoacoustic signals, and integration of diagnosis and treatment of diseases using chemotherapy or photothermal/photodynamic therapy or combination therapy. These achievements prompted researchers to develop more smart fluorescent probes using a hemicyanine fluorogen as a template. In this review, we begin by describing the brief history of the discovery of hemicyanine dyes, synthetic approaches, and design strategies for activity-based functional fluorescent probes. Then, many selected hemicyanine-based probes that can detect ions, small biomolecules, overexpressed enzymes and diagnostic reagents for diseases are systematically highlighted. Finally, potential drawbacks and the outlook for future investigation and clinical medicine transformation of hemicyanine-based activatable functional probes are also discussed.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,Research Institute of Dalian University of Technology in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
9
|
Huang H, Qiu R, Yang H, Ren F, Wu F, Zhang Y, Zhang H, Li C. Advanced NIR ratiometric probes for intravital biomedical imaging. Biomed Mater 2021; 17. [PMID: 34879355 DOI: 10.1088/1748-605x/ac4147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Near-infrared (NIR) fluorescence imaging technology (NIR-I region, 650-950 nm and NIR-II region, 1000-1700 nm), with deeper tissue penetration and less disturbance from auto-fluorescence than that in visible region (400-650 nm), is playing a more and more extensive role in the field of biomedical imaging. With the development of precise medicine, intelligent NIR fluorescent probes have been meticulously designed to provide more sensitive, specific and accurate feedback on detection. Especially, recently developed ratiometric fluorescent probes have been devoted to quantify physiological and pathological parameters with a combination of responsive fluorescence changes and self-calibration. Herein, we systemically introduced the construction strategies of NIR ratiometric fluorescent probes and their applications in biological imagingin vivo, such as molecular detection, pH and temperature measurement, drug delivery monitoring and treatment evaluation. We further summarized possible optimization on the design of ratiometric probes for quantitative analysis with NIR fluorescence, and prospected the broader optical applications of ratiometric probes in life science and clinical translation.
Collapse
Affiliation(s)
- Haoying Huang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Ruijuan Qiu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
10
|
Zhou X, Belavek KJ, Miller EW. Origins of Ca 2+ Imaging with Fluorescent Indicators. Biochemistry 2021; 60:3547-3554. [PMID: 34251789 DOI: 10.1021/acs.biochem.1c00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In 1980, Roger Tsien published a paper, in this journal [Tsien, R. Y. (1980) Biochemistry, 19 (11), 2396], titled "New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures". These new buffers included 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or BAPTA, which is still widely used today. And so, the world was set alight with new ways in which to visualize Ca2+. The ability to watch fluctuations in intracellular Ca2+ revolutionized the life sciences, although the fluorescent indicators used today, particularly in neurobiology, no longer rely exclusively on BAPTA but on genetically encoded fluorescent Ca2+ indicators. In this Perspective, we reflect on the origins of Ca2+ imaging with a special focus on the contributions made by Roger Tsien, from the early concept of selective Ca2+ binding described in Biochemistry to optical Ca2+ indicators based on chemically synthesized fluorophores to genetically encoded fluorescent Ca2+ indicators.
Collapse
|
11
|
Hiruta Y, Shindo Y, Oka K, Citterio D. Small Molecule-based Alkaline-earth Metal Ion Fluorescent Probes for Imaging Intracellular and Intercellular Multiple Signals. CHEM LETT 2021. [DOI: 10.1246/cl.200917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Li H, Wang X, Miao Y, Liu Q, Li K, Lin J, Xie M, Qiu L. Development of biotin-tagged near-infrared fluorescence probes for tumor-specific imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112172. [PMID: 33713894 DOI: 10.1016/j.jphotobiol.2021.112172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/16/2023]
Abstract
Near-infrared (NIR) probes are applicable for tumor imaging due to deep tissue penetration and low background signal. And cyanine dyes with long emission wavelength are excellent fluorophores to develop NIR probes. However, the aggregation of cyanine dyes in aqueous solution reduces the utilization of light. To solve this problem, polyethylene glycol (PEG) was introduced into the probes to reduce their aggregation. In our work, two new NIR probes G1 and G2 were designed and prepared by conjugating the cyanine dye G0 with Biotin-PEG5-Azide. The conjugated biotin could enhance the target specificity of probes. And the photophysical and photochemical parameters demonstrated that G1 and G2 had a reduced aggregation tendency. In vitro fluorescence imaging proved that these two probes could be specifically taken up by HeLa cells, and in vivo imaging demonstrated that these two probes could specifically target tumors with large tumor-to-muscle (T/M) ratios. All these results indicated that G1 and G2 are promising NIR fluorescent contrast agents for tumor-specific imaging.
Collapse
Affiliation(s)
- Hang Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xiuting Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
13
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
14
|
Reza AM, Tavakoli J, Zhou Y, Qin J, Tang Y. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Bou S, Wang X, Anton N, Klymchenko AS, Collot M. Near infrared fluorogenic probe as a prodrug model for evaluating cargo release by nanoemulsions. J Mater Chem B 2020; 8:5938-5944. [DOI: 10.1039/d0tb00783h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We developed Pro-HD, a NIR fluorogenic prodrug model. We evaluated its efficient cell delivery using biocompatible nanoemulsions and its hydrolysis into the fluorescent HD drug model once delivered in cancer cells.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratory of Biophotonic and Pathologies
- CNRS UMR 7021
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 Illkirch
| | - Xinyue Wang
- Université de Strasbourg
- CNRS
- CAMB UMR 7199
- F-67000 Strasbourg
- France
| | - Nicolas Anton
- Université de Strasbourg
- CNRS
- CAMB UMR 7199
- F-67000 Strasbourg
- France
| | - Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies
- CNRS UMR 7021
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 Illkirch
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies
- CNRS UMR 7021
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 Illkirch
| |
Collapse
|
16
|
Roopa, Kumar N, Kumar M, Bhalla V. Design and Applications of Small Molecular Probes for Calcium Detection. Chem Asian J 2019; 14:4493-4505. [PMID: 31549484 DOI: 10.1002/asia.201901149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The physiological significance of calcium ions such as the role in cellular signalling, cell growth, etc. have driven the development of methods to detect and monitor the level of Ca2+ ions, both in vivo and in vitro. Although various approaches for the detection of calcium ions have been reported, methods based on small molecular fluorescent probes have unique advantages including small probe size, easy monitoring of detection processes and applicability in biological systems. In this review article, we will discuss the progress in the development of Ca2+ -binding fluorescent probes by taking into account the types of chelating groups that have been employed for Ca2+ binding.
Collapse
Affiliation(s)
- Roopa
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala, 144603, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, Kanya Maha Vidyalaya, Jalandhar, 144004, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar-, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar-, 143005, Punjab, India
| |
Collapse
|
17
|
Nam S, Ware DC, Brothers PJ. Macrocyclic pentamers functionalised around their periphery as potential building blocks. RSC Adv 2019; 9:8389-8393. [PMID: 35518683 PMCID: PMC9061804 DOI: 10.1039/c8ra10446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The elaboration of a five-fold symmetric macrocyclic aromatic pentamer bearing peripheral benzyloxy and hydroxyl groups is described. These could be used to explore further functionalisation for use as pentagonal building blocks. The internal fluorine-substituted macrocycle has been prepared via a one-pot procedure which is an improvement on the stepwise chain growth approach reported in the literature. The elaboration of a five-fold symmetric macrocyclic aromatic pentamer bearing peripheral benzyloxy and hydroxyl groups is described. The macrocycle bearing internal fluorine substituents has been prepared via a one-pot procedure.![]()
Collapse
Affiliation(s)
- Seong Nam
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - David C. Ware
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| |
Collapse
|
18
|
Chen G, Zhou Z, Feng H, Zhang C, Wang Y, Qian Z, Pan J. An aggregation-induced phosphorescence probe for calcium ion-specific detection and live-cell imaging in Arabidopsis thaliana. Chem Commun (Camb) 2019; 55:4841-4844. [DOI: 10.1039/c9cc01580a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular probe with aggregation-induced phosphorescence (AIP) properties for calcium ion-specific detection and imaging in vivo was designed.
Collapse
Affiliation(s)
- Guilin Chen
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zaicai Zhou
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hui Feng
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Chenyan Zhang
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yifan Wang
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zhaosheng Qian
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Jianwei Pan
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations
| |
Collapse
|
19
|
Zhu C, Huang M, Lan J, Chung LW, Li X, Xie X. Colorimetric Calcium Probe with Comparison to an Ion-Selective Optode. ACS OMEGA 2018; 3:12476-12481. [PMID: 31457978 PMCID: PMC6644788 DOI: 10.1021/acsomega.8b01813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
Design strategies for small molecular probes lay the foundation of numerous synthetic chemosensors. A water-soluble colorimetric calcium molecular probe inspired by the ionophore-based ion-selective optode is presented here with a tunable detection range (around micromolar at pH 7). The binding of Ca2+ resulted in the deprotonation of the probe and thus a significant spectral change, mimicking the ion-exchange process in ion-selective optodes. The 1:1 exchange between Ca2+ and H+ was confirmed with Job's plot. Computational studies revealed possible monomer and dimer forms of the probe-Ca2+ complexes.
Collapse
|
20
|
Deo C, Lavis LD. Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 2018; 50:101-108. [DOI: 10.1016/j.conb.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
21
|
Ogasawara H, Grzybowski M, Hosokawa R, Sato Y, Taki M, Yamaguchi S. A far-red fluorescent probe based on a phospha-fluorescein scaffold for cytosolic calcium imaging. Chem Commun (Camb) 2018; 54:299-302. [PMID: 29239411 DOI: 10.1039/c7cc07344e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The far-red emissive fluorescent probe CaPF-1 based on a phospha-fluorescein scaffold enables the detection of cytosolic calcium ions in living cells. The probe can be excited in the red region (λabs = 636 nm) and exhibits a sufficiently high fluorescence turn-on response in the far-red region (λem = 663 nm) upon complexation with calcium ions. The hydrophilic and anionic characteristics of this phospha-fluorescein fluorophore allowed the cytosolic localization of CaPF-1. Moreover, it was possible to visualize histamine-induced calcium oscillation in HeLa cells using CaPF-1.
Collapse
Affiliation(s)
- Hiroaki Ogasawara
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Azarias C, Ponce-Vargas M, Navizet I, Fleurat-Lessard P, Romieu A, Le Guennic B, Richard JA, Jacquemin D. Rationalisation of the optical signatures of nor-dihydroxanthene-hemicyanine fused near-infrared fluorophores by first-principle tools. Phys Chem Chem Phys 2018; 20:12120-12128. [DOI: 10.1039/c8cp01587b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The perfect pair towards more effective nor-DXH-hemicyanine fused NIR fluoroohores.
Collapse
Affiliation(s)
- Cloé Azarias
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM)
- UMR CNRS no. 6230
- BP 92208
- Université de Nantes
- 44322 Nantes Cedex 3
| | - Miguel Ponce-Vargas
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
- Université Paris-Est
| | - Isabelle Navizet
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME
- UMR 8208 CNRS
- UPEM
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
- Institut Universitaire de France
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- 35000 Rennes
- France
| | - Jean-Alexandre Richard
- Organic Chemistry
- Institute of Chemical and Engineering Sciences
- (ICES)
- Agency for Science, Technology and Research (A_STAR)
- Singapore
| | - Denis Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM)
- UMR CNRS no. 6230
- BP 92208
- Université de Nantes
- 44322 Nantes Cedex 3
| |
Collapse
|
23
|
Ponsot F, Shen W, Ashokkumar P, Audinat E, Klymchenko AS, Collot M. PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience. ACS Sens 2017; 2:1706-1712. [PMID: 29019233 DOI: 10.1021/acssensors.7b00665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monitoring calcium concentration in the cytosol is of main importance as this ion drives many biological cascades within the cell. To this end, molecular calcium probes are widely used. Most of them, especially the red emitting probes, suffer from nonspecific interactions with inner membranes due to the hydrophobic nature of their fluorophore. To circumvent this issue, calcium probes conjugated to dextran can be used to enhance the hydrophilicity and reduce the nonspecific interaction and compartmentalization. However, dextran conjugates also feature important drawbacks including lower affinity, lower dynamic range, and slow diffusion. Herein, we combined the advantage of molecular probes and dextran conjugate without their drawbacks by designing a new red emitting turn-on calcium probe based on PET quenching, Rhod-PEG, in which the rhodamine fluorophore bears four PEG4 units. This modification led to a high affinity calcium probe (Kd = 748 nM) with reduced nonspecific interactions, enhanced photostability, two-photon absorbance, and brightness compared to the commercially available Rhod-2. After spectral characterizations, we showed that Rhod-PEG quickly and efficiently diffused through the dendrites of pyramidal neurons with an enhanced sensitivity (ΔF/F0) at shorter time after patching compared to Rhod-2.
Collapse
Affiliation(s)
- Flavien Ponsot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch, France
| | - Weida Shen
- INSERM, U1128, Paris, France
- Laboratory
of Neurophysiology and New Microscopies, Paris Descartes University, 75006 Paris, France
| | - Pichandi Ashokkumar
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch, France
| | - Etienne Audinat
- INSERM, U1128, Paris, France
- Laboratory
of Neurophysiology and New Microscopies, Paris Descartes University, 75006 Paris, France
| | - Andrey S. Klymchenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch, France
| | - Mayeul Collot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch, France
| |
Collapse
|