1
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Casini A, Pöthig A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS CENTRAL SCIENCE 2024; 10:242-250. [PMID: 38435529 PMCID: PMC10906246 DOI: 10.1021/acscentsci.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
The discovery of the medicinal properties of platinum complexes has fueled the design and synthesis of new anticancer metallodrugs endowed with unique modes of action (MoA). Among the various families of experimental antiproliferative agents, organometallics have emerged as ideal platforms to control the compounds' reactivity and stability in a physiological environment. This is advantageous to efficiently deliver novel prodrug activation strategies, as well as to design metallodrugs acting only via noncovalent interactions with their pharmacological targets. Noteworthy, another justification for the advance of organometallic compounds for therapy stems from their ability to catalyze bioorthogonal reactions in cancer cells. When not yet ideal as drug leads, such compounds can be used as selective chemical tools that benefit from the advantages of catalytic amplification to either label the target of interest (e.g., proteins) or boost the output of biochemical signals. Examples of metallodrugs for the so-called "catalysis in cells" are considered in this Outlook together with other organometallic drug candidates. The selected case studies are discussed in the frame of more general challenges in the field of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstraße 4, D-85748 Garching b. München, Germany
| | - Alexander Pöthig
- Catalysis
Research Center & Department of Chemistry, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, D-85748 Garching b. München, Germany
| |
Collapse
|
3
|
Tolbatov I, Umari P, Marrone A. Mechanism of Action of Antitumor Au(I) N-Heterocyclic Carbene Complexes: A Computational Insight on the Targeting of TrxR Selenocysteine. Int J Mol Sci 2024; 25:2625. [PMID: 38473872 DOI: 10.3390/ijms25052625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, Via F. Marzolo 8, 35131 Padova, Italy
| | - Paolo Umari
- Department of Physics and Astronomy, University of Padova, Via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università "G d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Assadawi N, Richardson C, Ralph SF. G-quadruplex DNA binding properties of novel nickel Schiff base complexes with four pendant groups. Dalton Trans 2023; 52:12646-12660. [PMID: 37622418 DOI: 10.1039/d3dt02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Three new nickel Schiff base complexes were prepared using a two-step procedure that involves initial selective dialkylation of 2,4,6-trihydroxybenzaldehyde, followed by reaction with 1,2-phenylenediamine and nickel(II) acetate. Each of the complexes possessed the same Schiff base core but differed in the identity of the four pendant groups. All complexes were characterised by microanalysis, NMR spectroscopy and ESI mass spectrometry. In addition, two of the complexes were also characterised in the solid state using X-ray crystallography, which confirmed the presence of a square planar geometry around the metal ion. The DNA binding properties of the three nickel complexes with double stranded DNA and a range of G-quadruplex DNA structures were explored using ESI mass spectrometry, CD spectroscopy, UV melting curves, Fluorescence Resonance Energy Transfer (FRET) assays, Fluorescent Indicator Displacement (FID) assays and molecular docking studies. These techniques confirmed the ability of the three nickel complexes to bind to most of the DNA molecules examined, as well as stabilise the latter in several instances. In addition, the results of these investigations provided evidence that pendant groups with morpholine rings generally reduced DNA binding behaviour, whilst pendants featuring piperidine ring systems attached to the Schiff base core by three and not two methylene linkers often showed the greatest extent of binding or DNA stabilisation.
Collapse
Affiliation(s)
- Nawal Assadawi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.
| | - Christopher Richardson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.
| | - Stephen F Ralph
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.
| |
Collapse
|
5
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
6
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Oxidative addition of 8-bromo-9-ethyl-1,N6-ethenoadenine to d10 metals. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Masnabadi N. The study of Letrozole adsorption upon CCT nanotube: A DFT/TD-DFT and spectroscopic (excited states and UV/Vis). MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this research, the geometric structure of LTZ and CCT (5,0) was optimized with B3LYP/6-31G * method using the Gaussian 09W program package to investigate the weak interaction of Letrozole (LTZ) and carbon carbon nanotube (CCT). According to the calculation of the release energy, it was found that the drug delivery process is desirable. Also, the structural properties of the title compounds were assessed by thermodynamic and frontier molecular orbital (FMO) parameters. In this study, a series of measures have been performed to detect changes in drug loading properties and non-bonding interactions between the LTZ and CCT (5,0) nanotube. The non-bonding interaction effects of LTZ and CCT over the electronic properties were also evaluated and argued. The research is based on the fact that studies can help to understand the interaction between the LTZ drug and CCT (5,0) nanotube and the development of CCT-based drug release systems. This research aimed to determine variations in electronic properties of anticancer LTZ drug in presences CCT. Then, the reactivity and stability behavior of LTZ drug and on CCT to be examined by density functional theory (DFT). Then, frontier molecular orbital (FMO) and noncovalent interaction (NCI) analyses were performed, which decrease in reactivity described increase in the stability of LTZ drug.
Collapse
Affiliation(s)
- Nasrin Masnabadi
- Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| |
Collapse
|
9
|
Annunziata A, Ferraro G, Cucciolito ME, Imbimbo P, Tuzi A, Monti DM, Merlino A, Ruffo F. Halo complexes of gold( i) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with proteins and DNA model systems. Dalton Trans 2022; 51:10475-10485. [DOI: 10.1039/d2dt00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New neutral Au(i) glycoconjugate carbene complexes show stability in aqueous solutions and interact with both DNA and protein model systems. Cytotoxicity studies demonstrate that the activity depends on the halide ancillary ligand.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Paola Imbimbo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
10
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
11
|
Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
13
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
14
|
van der Westhuizen D, Slabber CA, Fernandes MA, Joubert DF, Kleinhans G, van der Westhuizen CJ, Stander A, Munro OQ, Bezuidenhout DI. A Cytotoxic Bis(1,2,3-triazol-5-ylidene)carbazolide Gold(III) Complex Targets DNA by Partial Intercalation. Chemistry 2021; 27:8295-8307. [PMID: 33822431 PMCID: PMC8251726 DOI: 10.1002/chem.202100598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/13/2022]
Abstract
The syntheses of bis(triazolium)carbazole precursors and their corresponding coinage metal (Au, Ag) complexes are reported. For alkylated triazolium salts, di- or tetranuclear complexes with bridging ligands were isolated, while the bis(aryl) analogue afforded a bis(carbene) AuI -CNC pincer complex suitable for oxidation to the redox-stable [AuIII (CNC)Cl]+ cation. Although the ligand salt and the [AuIII (CNC)Cl]+ complex were both notably cytotoxic toward the breast cancer cell line MDA-MB-231, the AuIII complex was somewhat more selective. Electrophoresis, viscometry, UV-vis, CD and LD spectroscopy suggest the cytotoxic [AuIII (CNC)Cl]+ complex behaves as a partial DNA intercalator. In silico screening indicated that the [AuIII (CNC)Cl]+ complex can target DNA three-way junctions with good specificity, several other regular B-DNA forms, and Z-DNA. Multiple hydrophobic π-type interactions involving T and A bases appear to be important for B-form DNA binding, while phosphate O⋅⋅⋅Au interactions evidently underpin Z-DNA binding. The CNC ligand effectively stabilizes the AuIII ion, preventing reduction in the presence of glutathione. Both the redox stability and DNA affinity of the hit compound might be key factors underpinning its cytotoxicity in vitro.
Collapse
Affiliation(s)
| | - Cathryn A. Slabber
- Molecular Sciences InstituteSchool of ChemistryUniversity of the Witwatersrand2050JohannesburgSouth Africa
| | - Manuel A. Fernandes
- Molecular Sciences InstituteSchool of ChemistryUniversity of the Witwatersrand2050JohannesburgSouth Africa
| | - Daniël F. Joubert
- Department of PhysiologyUniversity of Pretoria0031PretoriaSouth Africa
| | - George Kleinhans
- Molecular Sciences InstituteSchool of ChemistryUniversity of the Witwatersrand2050JohannesburgSouth Africa
- Chemistry DepartmentUniversity of Pretoria0028PretoriaSouth Africa
| | - C. Johan van der Westhuizen
- Chemistry DepartmentUniversity of Pretoria0028PretoriaSouth Africa
- Future Production: ChemicalsPharmaceutical Technologies Research GroupCouncil for Scientific and Industrial Research (CSIR)0184PretoriaSouth Africa
| | - André Stander
- Department of PhysiologyUniversity of Pretoria0031PretoriaSouth Africa
| | - Orde Q. Munro
- Molecular Sciences InstituteSchool of ChemistryUniversity of the Witwatersrand2050JohannesburgSouth Africa
| | - Daniela I. Bezuidenhout
- Molecular Sciences InstituteSchool of ChemistryUniversity of the Witwatersrand2050JohannesburgSouth Africa
- Laboratory of Inorganic ChemistryEnvironmental and Chemical EngineeringUniversity of Oulu3000OuluFinland
| |
Collapse
|
15
|
Farine G, Migliore C, Terenzi A, Lo Celso F, Santoro A, Bruno G, Bonsignore R, Barone G. On the G‐Quadruplex Binding of a New Class of Nickel(II), Copper(II), and Zinc(II) Salphen‐Like Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gianluca Farine
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Claudio Migliore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Fabrizio Lo Celso
- Dipartimento di Fisica e Chimica “E. Segre” Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
- Institute of Structure of Matter National Research Council Laboratorio Liquidi Ionici Rome Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Giuseppe Bruno
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Riccardo Bonsignore
- Department of Chemistry Technical University of Munich (TUM) Lichtenbergstr. 4 85748 Garching b. München Germany
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| |
Collapse
|
16
|
Rufino-Felipe E, Colorado-Peralta R, Reyes-Márquez V, Valdés H, Morales-Morales D. Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs. Anticancer Agents Med Chem 2021; 21:938-948. [PMID: 32900353 DOI: 10.2174/1871520620666200908103452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/09/2022]
Abstract
In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.
Collapse
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - Raúl Colorado-Peralta
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, Mexico
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Quimico-Biologicas, Universidad de Sonora, Luis Encinas y Rosales s/n. CP 83000. Hermosillo, Sonora, Mexico
| | - Hugo Valdés
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - David Morales-Morales
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| |
Collapse
|
17
|
Guarra F, Pratesi A, Gabbiani C, Biver T. A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes. J Inorg Biochem 2021; 217:111355. [PMID: 33596529 DOI: 10.1016/j.jinorgbio.2021.111355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
18
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. A novel palladium(II) antitumor agent: Synthesis, characterization, DFT perspective, CT-DNA and BSA interaction studies via in-vitro and in-silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119215. [PMID: 33262078 DOI: 10.1016/j.saa.2020.119215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Since numerous people annually pass away due to cancer, research in this field is essential. Thus a newly made and water like palladium(II) complex of formula [Pd(phen)(acac)]NO3, where phen is 1,10-phenanthroline and acac is acetylacetonato ligand, has been synthesized by the reaction between [Pd(phen)(H2O)2](NO3)2 and sodium salt of acetylacetone in the molar ratio of 1:1. It has been structurally characterized via the methods such as conductivity measurement, elemental analysis and spectroscopic methods (FT-IR, UV-Vis and 1H NMR). The geometry optimization of this complex at the DFT level of theory reveals that Pd(II) atom is situated in a square-planar geometry. The complex has been screened for its antitumor activity against K562 cancer cells which demonstrated efficacious activity. The interaction of above palladium(II) complex with CT-DNA as a target molecule for antitumor agents and BSA as a transport protein was studies by a variety of techniques. The results of UV-Vis absorption and fluorescence emission indicated that the Pd(II) complex interacts with EB + CT-DNA through hydrophobic and with BSA by hydrogen bonding and van der Waals forces at very low concentrations. In these processes, the fluorescence quenching mechanism of both the macromolecules seems to be the combined dynamic and static. The interaction was further supported for CT-DNA by carrying out the gel electrophoresis and viscosity measurement and for BSA by the circular dichroism and Förster resonance energy transfer experiments. Furthermore, results of partition coefficient determination showed that the [Pd(phen)(acac)]NO3 complex is more lipophilic than that of cisplatin. Moreover, molecular docking simulation confirms the obtained results from experimental tests and reveals that the complex tends to be located at the intercalation site of DNA and Sudlow's site I of BSA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
19
|
Bär SI, Gold M, Schleser SW, Rehm T, Bär A, Köhler L, Carnell LR, Biersack B, Schobert R. Guided Antitumoural Drugs: (Imidazol-2-ylidene)(L)gold(I) Complexes Seeking Cellular Targets Controlled by the Nature of Ligand L. Chemistry 2021; 27:5003-5010. [PMID: 33369765 PMCID: PMC7986617 DOI: 10.1002/chem.202005451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3 ), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b, 5 b, and 6 b, respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus (4 b), mitochondria (5 b), or lysosomes (6 b). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a/4 b, 5 a/5 b, and 6 a/6 b, carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.
Collapse
Affiliation(s)
- Sofia I. Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Madeleine Gold
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Sebastian W. Schleser
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Tobias Rehm
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Alexander Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Leonhard Köhler
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Lucas R. Carnell
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| |
Collapse
|
20
|
Hoyer C, Schwerk P, Suntrup L, Beerhues J, Nössler M, Albold U, Dernedde J, Tedin K, Sarkar B. Synthesis, Characterization, and Evaluation of Antibacterial Activity of Ferrocenyl‐1,2,3‐Triazoles, Triazolium Salts, and Triazolylidene Complexes of Gold(
i
) and Silver(
i
). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolin Hoyer
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Peter Schwerk
- Institut für Mikrobiologie und Tierseuchen Freie Universität Berlin Robert-von-Ostertag-Str. 7–13 14163 Berlin Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Maite Nössler
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Uta Albold
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Augustenburger Platz 1 13353 Berlin Germany
| | - Karsten Tedin
- Institut für Mikrobiologie und Tierseuchen Freie Universität Berlin Robert-von-Ostertag-Str. 7–13 14163 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
21
|
Pan T, Wang Y, Liu FS, Lin H, Zhou Y. Copper(I)–NHCs complexes: Synthesis, characterization and their inhibition against the biofilm formation of Streptococcus mutans. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Meier‐Menches SM, Neuditschko B, Zappe K, Schaier M, Gerner MC, Schmetterer KG, Del Favero G, Bonsignore R, Cichna‐Markl M, Koellensperger G, Casini A, Gerner C. An Organometallic Gold(I) Bis-N-Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells. Chemistry 2020; 26:15528-15537. [PMID: 32902006 PMCID: PMC7756355 DOI: 10.1002/chem.202003495] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.
Collapse
Affiliation(s)
- Samuel M. Meier‐Menches
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Benjamin Neuditschko
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Katja Zappe
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Martin Schaier
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Marlene C. Gerner
- Department of Laboratory MedicineMedical University of ViennaWaehringer Guertel 18–201090ViennaAustria
| | - Klaus G. Schmetterer
- Department of Laboratory MedicineMedical University of ViennaWaehringer Guertel 18–201090ViennaAustria
| | - Giorgia Del Favero
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Core Facility Multimodal ImagingFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Riccardo Bonsignore
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485747GarchingGermany
| | - Margit Cichna‐Markl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Gunda Koellensperger
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Angela Casini
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485747GarchingGermany
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Core Facility Multimodal ImagingFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 381090ViennaAustria
| |
Collapse
|
25
|
On the Different Mode of Action of Au(I)/Ag(I)-NHC Bis-Anthracenyl Complexes Towards Selected Target Biomolecules. Molecules 2020; 25:molecules25225446. [PMID: 33233711 PMCID: PMC7699860 DOI: 10.3390/molecules25225446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides (single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations, mass spectrometry together with melting and viscometry tests show significant differences in the binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a mechanism where intercalation plays the major role, but groove binding is also operative. The absence of an interaction with triplexes indicates the major role played by the geometrical constraints to drive the binding mode.
Collapse
|
26
|
Pham SQT, Richardson C, Kelso C, Willis AC, Ralph SF. The effect of isomerism and other structural variations on the G-quadruplex DNA-binding properties of some nickel Schiff base complexes. Dalton Trans 2020; 49:10360-10379. [PMID: 32666965 DOI: 10.1039/d0dt01370f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of novel isomeric nickel Schiff base complexes, as well as nickel complexes of related ligands having asymmetric structures have been prepared and characterised using microanalysis, 1H and 13C NMR spectroscopy and ESI-MS. The Schiff base ligands were prepared by condensation reactions involving ethylenediamine and different derivatives of benzophenone. The solid-state structures of eight of the complexes were also determined and revealed that each possessed a regular square planar coordination geometry around the metal ion. Many of the new complexes featured at least one, and in many instances two, protonatable pendant groups that enhance aqueous solubility. This enabled the DNA binding properties of the latter complexes to be explored using a variety of instrumental approaches, including ESI-MS, circular dichroism (CD) spectroscopy, FRET melting assays and FID assays, as well as molecular docking studies. The results of experiments performed using ESI-MS suggested that none of the nickel complexes exhibit a high affinity towards either a double stranded DNA (dsDNA) molecule D2, or the parallel unimolecular quadruplex DNA (qDNA) molecule Q1. In contrast, complexes (8) and (12) both gave spectra which reflected a significant level of binding to the parallel tetramolecular qDNA Q4. The results of binding experiments performed using CD spectroscopy suggested that (12) exhibits a significant level of affinity towards most types of DNA, while (4) shows a preference for interacting with parallel, unimolecular qDNA molecules. Complex (4) produced the lowest values of DC50 in FID assays performed using parallel Q1 or Q4, confirming its affinity for these qDNA molecules. The results of FRET melting experiments provided further evidence that (12), along with (8), can interact extensively with anti-parallel unimolecular qDNA. Experiments which monitored the effect of the nickel complexes on the melting temperature of D2 showed that none had a stabilising effect on this dsDNA molecule.
Collapse
Affiliation(s)
- Son Q T Pham
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia. and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia. and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia. and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Anthony C Willis
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Stephen F Ralph
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia. and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| |
Collapse
|
27
|
Meier-Menches SM, Zappe K, Bileck A, Kreutz D, Tahir A, Cichna-Markl M, Gerner C. Time-dependent shotgun proteomics revealed distinct effects of an organoruthenium prodrug and its activation product on colon carcinoma cells. Metallomics 2020; 11:118-127. [PMID: 30106070 DOI: 10.1039/c8mt00152a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation kinetics of metallo-prodrugs control the types of possible interactions with biomolecules. The intact metallo-prodrug is able to engage with potential targets by purely non-covalent bonding, while the activated metallodrug can form additional coordination bonds. It is hypothesized that the additional coordinative bonding might be favourable with respect to the target selectivity of activated metallodrugs. Thus, a time-dependent shotgun proteomics study was conducted in HCT116 colon carcinoma cells with plecstatins, which are organoruthenium anticancer drug candidates. First, the target selectivity was evaluated in a time-dependent fashion, which accounted for their hydrolysis kinetics. The binding selectivity increased from 50- to 160-fold and the average specificity from 0.72 to 0.86, respectively, from the 2 h to the 4 h target profiling experiment. Target profiling after 19 h did not reveal significant enrichments, possibly due to deactivation of the probe via arene cleavage. Up to 450 interactors were identified in the target profiling experiments. A plecstatin analogue that substituted a hydrogen bond acceptor with a hydrogen bond donor abrogated the target selectivity for plectin in HCT116 whole cell lysates, underlining the necessity of this hydrogen bond acceptor for a strong interaction between plecstatin and plectin. Second, time-dependent response profiling experiments provided evidence that plecstatin-2 induced an integrated stress response (ISR) in HCT116 cell culture. The phosphorylation of eIF2α, a key mediator of the ISR, after 3 h treatment indicated that this perturbation was initiated by the intact plecstatin-2 prodrug, while the effects of plectin-targeting are mediated by activated plecstatin-2.
Collapse
|
28
|
Wang J, Nie JJ, Guo P, Yan Z, Yu B, Bu W. Rhodium(I) Complex-Based Polymeric Nanomicelles in Water Exhibiting Coexistent Near-Infrared Phosphorescence Imaging and Anticancer Activity in Vivo. J Am Chem Soc 2020; 142:2709-2714. [DOI: 10.1021/jacs.9b11013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingxia Guo
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zihao Yan
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
29
|
Oberkofler J, Aikman B, Bonsignore R, Pöthig A, Platts J, Casini A, Kühn FE. Exploring the Reactivity and Biological Effects of Heteroleptic N‐Heterocyclic Carbene Gold(I)‐Alkynyl Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jens Oberkofler
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Brech Aikman
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Riccardo Bonsignore
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Alexander Pöthig
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - James Platts
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Angela Casini
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Fritz E. Kühn
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
30
|
Serebryanskaya TV, Kinzhalov MA, Bakulev V, Alekseev G, Andreeva A, Gushchin PV, Protas AV, Smirnov AS, Panikorovskii TL, Lippmann P, Ott I, Verbilo CM, Zuraev AV, Bunev AS, Boyarskiy VP, Kasyanenko NA. Water soluble palladium(ii) and platinum(ii) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj00060d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water soluble Pd(ii) and Pt(ii)–ADC species synthesized via the metal-mediated coupling of isocyanides and 1,2-diaminobenzene have demonstrated antitumor potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taras L. Panikorovskii
- Saint Petersburg State University
- St. Petersburg
- Russia
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic
- Kola Science Centre
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Cyril M. Verbilo
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander V. Zuraev
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander S. Bunev
- Medicinal Chemistry Center
- Togliatti State University
- 445020 Togliatti
- Russia
| | | | | |
Collapse
|
31
|
Bellemin-Laponnaz S. N-Heterocyclic Carbene Platinum Complexes: A Big Step Forward for Effective Antitumor Compounds. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900960] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg; IPCMS; CNRS Université de Strasbourg; 23, rue du Loess 67034 Strasbourg France
| |
Collapse
|
32
|
Bauer EB, Bernd MA, Schütz M, Oberkofler J, Pöthig A, Reich RM, Kühn FE. Synthesis, characterization, and biological studies of multidentate gold(i) and gold(iii) NHC complexes. Dalton Trans 2019; 48:16615-16625. [PMID: 31657405 DOI: 10.1039/c9dt03183a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and characterization of a novel macrocyclic Au(iii) N-heterocyclic carbene (NHC) imidazolyl complex, a novel macrocyclic tetra-NHC benzimidazole ligand, and the corresponding Ag(i) and Au(i) complexes are presented. Single-crystal X-ray diffraction analysis of the Au(i) benzimidazolyl complex 3 reveals an unusual structure, differing from the respective Au(i) imidazolyl complex 4. Both complexes have a Au4L2 composition; however, 3 has two C-Au(i)-C units acting as a connection between the two ligands with two Au(i) atoms being linearly coordinated inside the cavity of the macrocyclic ligand. In the case of complex 4, the structure shows a box-type coordination with all four Au(i) atoms being located between the two ligands. Stability studies in cell culture medium are performed for subsequent MTT assays and they show an unprecedented proton-to-deuterium exchange of the methylene bridge of the Au(iii) imidazolyl complex. In MTT assays, the tetranuclear acyclic Au(i) complex 5 displays the lowest IC50 values in MCF-7, PC3, and A2780cisR cells with a selective cytotoxicity for MCF-7 and A2780cisR cells.
Collapse
Affiliation(s)
- Elisabeth B Bauer
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Marco A Bernd
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany. and Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Jens Oberkofler
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Alexander Pöthig
- Single Crystal XRD Laboratory of the Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85747 Garching bei München, Germany
| | - Robert M Reich
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Fritz E Kühn
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| |
Collapse
|
33
|
Chaurasia M, Tomar D, Chandra S. Synthesis, spectroscopic characterization and DNA binding studies of Cu(II) complex of Schiff base containing benzothiazole moiety. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1681724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Madhuri Chaurasia
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Deepak Tomar
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| | - Sulekh Chandra
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| |
Collapse
|
34
|
Fan R, Bian M, Hu L, Liu W. A new rhodium(I) NHC complex inhibits TrxR: In vitro cytotoxicity and in vivo hepatocellular carcinoma suppression. Eur J Med Chem 2019; 183:111721. [PMID: 31577978 DOI: 10.1016/j.ejmech.2019.111721] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Thioredoxin reductase (TrxR) is often overexpressed in different types of cancer cells including hepatocellular carcinoma (HCC) cells and regarded as a target with great promise for anticancer drug research and development. Here, we have synthesized and characterized nine new designed rhodium(I) N-heterocyclic carbene (NHC) complexes. All of them were effective towards cancer cells, especially complex 1e was more active than cisplatin and manifested strong antiproliferative activity against HCC cells. In vivo anticancer studies showed that 1e significantly repressed tumor growth in an HCC nude mouse model and ameliorated liver lesions in a chronic HCC model caused by CCl4. Notably, a mechanistic study revealed that 1e can strongly inhibit TrxR system both in vitro and in vivo. Furthermore, 1e promoted intracellular ROS accumulation, damaged mitochondrial membrane potential, promoted cancer cell apoptosis and blocked the cells in the G1 phase.
Collapse
Affiliation(s)
- Rong Fan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Denisov MS, Dmitriev MV, Eroshenko DV, Slepukhin PA, Shavkunov SP, Glushkov VA. Cationic—Anionic Pd(II) Complexes with Adamantylimidazolium Cation: Synthesis, Structural Study, and MAO-Inhibiting Activity. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s0036023619010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Kreutz D, Gerner C, Meier-Menches SM. Enabling Methods to Elucidate the Effects of Metal-based Anticancer Agents. METAL-BASED ANTICANCER AGENTS 2019:246-270. [DOI: 10.1039/9781788016452-00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Next-generation metal-based pharmaceuticals are considered promising therapeutic agents, which may follow novel modes of action and engage with different targets compared to classical platinum(ii) anticancer agents. However, appropriate methods and assays are required to provide evidence of such unprecedented drug effects. Mass spectrometry (MS) has proved useful in probing the reactivity and selectivity of metal-based anticancer agents on a molecular level and recently also in the cellular context, especially with regard to the proteome. This chapter will discuss the design and use of competitive experiments to investigate activation pathways and binding preferences of metal-based anticancer agents by identifying reaction products via different MS setups. Moreover, cell-based approaches are described to obtain insights into novel potential targets and modes of action. Thus, mass spectrometry emerges as an enabling technology that connects molecules to mechanisms, highlighting the broad applicability of this analytical technique to the discovery and understanding of metal-based anticancer agents.
Collapse
Affiliation(s)
- D. Kreutz
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - C. Gerner
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - S. M. Meier-Menches
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| |
Collapse
|
37
|
Selvakumar J, Miles MH, Grossie DA, Arumugam K. Synthesis and molecular structure of biologically significant bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) complexes with chloride and dichloridoaurate counter-ions. Acta Crystallogr C Struct Chem 2019; 75:462-468. [PMID: 30957792 PMCID: PMC6452777 DOI: 10.1107/s2053229619003292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Diffraction-quality single crystals of two gold(I) complexes, namely bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) chloride benzene monosolvate, [Au(C29H26N2O2)2]Cl·C6H6 or [(NQMes)2Au]Cl·C6H6, 2, and bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) dichloridoaurate(I) dichloromethane disolvate, [Au(C29H26N2O2)2][AuCl2]·2CH2Cl2 or [(NQMes)2Au][AuCl2]·2CH2Cl2, 4, were isolated and studied with the aid of single-crystal X-ray diffraction analysis. Compound 2 crystallizes in a monoclinic space group C2/c with eight molecules in the unit cell, while compound 4 crystallizes in the triclinic space group P-1 with two molecules in the unit cell. The crystal lattice of compound 2 reveals C-H...Cl- interactions that are present throughout the entire structure representing head-to-tail contacts between the aromatic (C-H) hydrogens of naphthoquinone and Cl- counter-ions. Compound 4 stacks with the aid of short interactions between a naphthoquinone O atom of one molecule and the mesityl methyl group of another molecule along the a axis, leading to a one-dimensional strand that is held together by strong π-η2 interactions between the imidazolium backbone and the [AuCl2]- counter-ion. The bond angles defined by the AuI atom and two carbene C atoms [C(carbene)-Au-C(carbene)] in compounds 2 and 4 are nearly rectilinear, with an average value of ∼174.1 [2]°. Though 2 and 4 share the same cation, they differ in their counter-anion, which alters the crystal lattice of the two compounds. The knowledge gleaned from these studies is expected to be useful in understanding the molecular interactions of 2 and 4 under physiological conditions.
Collapse
Affiliation(s)
- Jayaraman Selvakumar
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Meredith H. Miles
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - David A. Grossie
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| |
Collapse
|
38
|
Synthesis, spectral characterization, and DNA binding studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base 2-((1H-1,2,4-triazol-3-ylimino)methyl)-5-methoxyphenol. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Jayawardhana AMDS, Qiu Z, Kempf S, Wang H, Miterko M, Bowers DJ, Zheng YR. Dual-action organoplatinum polymeric nanoparticles overcoming drug resistance in ovarian cancer. Dalton Trans 2019; 48:12451-12458. [DOI: 10.1039/c9dt01683j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work demonstrates the development of “dual-action” organometallic polymeric nanoparticles (OPNPs) for treating drug-resistant ovarian cancer.
Collapse
Affiliation(s)
| | - Zhihan Qiu
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Susan Kempf
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Han Wang
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Mitchell Miterko
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
41
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Pöthig A, Ahmed S, Winther-Larsen HC, Guan S, Altmann PJ, Kudermann J, Santos Andresen AM, Gjøen T, Høgmoen Åstrand OA. Antimicrobial Activity and Cytotoxicity of Ag(I) and Au(I) Pillarplexes. Front Chem 2018; 6:584. [PMID: 30542649 PMCID: PMC6277803 DOI: 10.3389/fchem.2018.00584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
The biological activity of four pillarplex compounds featuring different metals and anions was investigated. The toxicity of the compounds against four bacterial strains [Bacillus subtilis (ATCC6633), Staphylococcus aureus (ATCC6538), Escherichia coli (UVI isolate), Pseudomonas aeruginosa], one fungus (Candida albicans), and a human cell line (HepG2) was determined. Additionally, a UV-Vis titration study of the pillarplexes was carried out to check for stability depending on pH- and chloride concentration changes and evaluate the applicability in physiological media. All compounds are bioactive: the silver compounds showed higher activity against bacteria and fungi, and the corresponding gold pillarplexes were less toxic against human cells.
Collapse
Affiliation(s)
- Alexander Pöthig
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany
| | - Sara Ahmed
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Shengyang Guan
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany
| | - Philipp J Altmann
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany
| | - Jürgen Kudermann
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany
| | | | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
43
|
Lam NYS, Truong D, Burmeister H, Babak MV, Holtkamp HU, Movassaghi S, Ayine-Tora DM, Zafar A, Kubanik M, Oehninger L, Söhnel T, Reynisson J, Jamieson SMF, Gaiddon C, Ott I, Hartinger CG. From Catalysis to Cancer: Toward Structure-Activity Relationships for Benzimidazol-2-ylidene-Derived N-Heterocyclic-Carbene Complexes as Anticancer Agents. Inorg Chem 2018; 57:14427-14434. [PMID: 30406647 DOI: 10.1021/acs.inorgchem.8b02634] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The promise of the metal(arene) structure as an anticancer pharmacophore has prompted intensive exploration of this chemical space. While N-heterocyclic carbene (NHC) ligands are widely used in catalysis, they have only recently been considered in metal complexes for medicinal applications. Surprisingly, a comparatively small number of studies have been reported in which the NHC ligand was coordinated to the RuII(arene) pharmacophore and even less with an OsII(arene) pharmacophore. Here, we present a systematic study in which we compared symmetrically substituted methyl and benzyl derivatives with the nonsymmetric methyl/benzyl analogues. Through variation of the metal center and the halido ligands, an in-depth study was conducted on ligand exchange properties of these complexes and their biomolecule binding, noting in particular the stability of the M-CNHC bond. In addition, we demonstrated the ability of the complexes to inhibit the selenoenzyme thioredoxin reductase (TrxR), suggested as an important target for anticancer metal-NHC complexes, and their cytotoxicity in human tumor cells. It was found that the most potent TrxR inhibitor diiodido(1,3-dibenzylbenzimidazol-2-ylidene)(η6-p-cymene)ruthenium(II) 1bI was also the most cytotoxic compound of the series, with the antiproliferative effects in general in the low to middle micromolar range. However, since there was no clear correlation between TrxR inhibition and antiproliferative potency across the compounds, TrxR inhibition is unlikely to be the main mode of action for the compound type and other target interactions must be considered in future.
Collapse
Affiliation(s)
- Nelson Y S Lam
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Dianna Truong
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry , Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Maria V Babak
- Signalisation Moléculaire du Stress Cellulaire et Pathologies, Inserm UMR_S1113 , Université de Strasbourg , 67200 Strasbourg , France
| | - Hannah U Holtkamp
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | | | - Ayesha Zafar
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Mario Kubanik
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Luciano Oehninger
- Institute of Medicinal and Pharmaceutical Chemistry , Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Tilo Söhnel
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences , University of Auckland , Auckland 1142 , New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre , University of Auckland , Auckland 1142 , New Zealand
| | - Christian Gaiddon
- Signalisation Moléculaire du Stress Cellulaire et Pathologies, Inserm UMR_S1113 , Université de Strasbourg , 67200 Strasbourg , France
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry , Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | | |
Collapse
|
44
|
Bjelogrlić S, Todorović TR, Cvijetić I, Rodić MV, Vujčić M, Marković S, Araškov J, Janović B, Emhemmed F, Muller CD, Filipović NR. A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. J Inorg Biochem 2018; 190:45-66. [PMID: 30352315 DOI: 10.1016/j.jinorgbio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/16/2018] [Accepted: 10/03/2018] [Indexed: 11/29/2022]
Abstract
A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 μM induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.
Collapse
Affiliation(s)
- Snežana Bjelogrlić
- National Cancer Research Center of Serbia, Pasterova 14, Belgrade, Serbia; Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Tamara R Todorović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Ilija Cvijetić
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Marko V Rodić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Sanja Marković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Jovana Araškov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Barbara Janović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Fathi Emhemmed
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Nenad R Filipović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia.
| |
Collapse
|
45
|
Medicinal Applications of Gold(I/III)-Based Complexes Bearing N-Heterocyclic Carbene and Phosphine Ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Affiliation(s)
- Shigeki Kuwata
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, D-48149 Münster, Germany
| |
Collapse
|
47
|
Streciwilk W, Terenzi A, Cheng X, Hager L, Dabiri Y, Prochnow P, Bandow JE, Wölfl S, Keppler BK, Ott I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur J Med Chem 2018; 156:148-161. [PMID: 30006161 DOI: 10.1016/j.ejmech.2018.06.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
Abstract
Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well as by fluorescence microscopy indicating a general ligand dependent accumulation in the cells. An in-depth study on the interaction with DNA confirmed insertion of the naphthalimide moiety between the planar bases of B-DNA via an intercalation mechanism, as well as its stacking on top of the quartets of G-quadruplex structures. Furthermore, additional coordinative binding of the organometallic complexes to the model DNA base 9-ethylguanine could be detected. The studied compounds thus represent promising bioorganometallics featuring strong pharmacological effects in combination with excellent cellular imaging properties.
Collapse
Affiliation(s)
- Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Xinlai Cheng
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Laura Hager
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Yasamin Dabiri
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Pascal Prochnow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan Wölfl
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
48
|
Zou T, Lok CN, Wan PK, Zhang ZF, Fung SK, Che CM. Anticancer metal-N-heterocyclic carbene complexes of gold, platinum and palladium. Curr Opin Chem Biol 2018; 43:30-36. [DOI: 10.1016/j.cbpa.2017.10.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022]
|
49
|
|
50
|
Zhao ZX, Hu ZL, Yu SC, Liu QX. NHC Hg( ii) and Pd( ii) complexes based on 1,8-dihydroxy-9,10-anthraquinone: synthesis, structure and catalysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj02029a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NHC Ag(i) and Hg(ii) complexes were prepared and characterized, and the catalytic activities of the NHC Pd(ii) complex in the Suzuki–Miyaura reaction were investigated.
Collapse
Affiliation(s)
- Zhi-Xiang Zhao
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Ze-Liang Hu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Shao-Cong Yu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Qing-Xiang Liu
- Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|