1
|
Xu J, Xu J, Sun C, He X, Shu Y, Huangfu Q, Meng L, Liang Z, Wei J, Cai M, Wen J, Wang B. Effective delivery of CRISPR/dCas9-SAM for multiplex gene activation based on mesoporous silica nanoparticles for bladder cancer therapy. Acta Biomater 2025; 197:460-475. [PMID: 40113021 DOI: 10.1016/j.actbio.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The molecular complexity of bladder cancer restricts reliance on single-feature or single-gene targeted therapies, necessitating integrated individualized treatments and multi-gene interventions. In this study, we introduced the CRISPR/dCas9-SAM system to BCa treatment, known for its high specificity, low off-target effects, and reduced genetic toxicity, making it ideal for multiplexed gene activation at minimal cost-just 20 nucleotides per target. However, despite its potential in complex gene therapy and cellular engineering, challenges persist due to safety concerns associated with viral vectors and the risk of off-target effects during in vivo delivery, necessitating the development of new vectors. Herein, we reported pH-sensitive hollow mesoporous silica nanoparticles modified with PLZ4 ligands (PLZ4-Lip@AMSN/CRISPR/dCas9-SAM, PLACS NPs) for precise targeting of bladder tumors and co-delivery of CRISPR/dCas9-SAM system. With good stability and high plasmid loading capacity, they efficiently co-delivered dCas9-VP64, MS2-P65-HSF1, and sgRNA. Compared to Lipofectamine 3000, these nanoparticles exhibited superior lysosomal escape capability, significantly enhancing transfection efficiency in bladder cancer cells. Moreover, PLACS NPs simultaneously activated the expression of four target genes, inhibiting proliferation and migration, and promoting apoptosis in bladder cancer cells. In vivo, they achieved efficient gene editing at tumor sites, significantly inhibiting bladder tumor growth. Real-time imaging revealed their substantial accumulation and prolonged retention at bladder tumor sites without significant liver targeting and major organ damage, showcasing good specificity and biosafety. This study overcomes in vivo delivery challenges of multi-component CRISPR/dCas9 systems, enabling precise gene editing and anti-tumor effects, presenting an innovative strategy for targeted therapy in bladder cancer treatment. STATEMENT OF SIGNIFICANCE: This study introduces a newly-developed approach to address key challenges in bladder cancer gene therapy, namely low gene upregulation efficiency, limited targeting specificity, and inefficient nucleic acid delivery. By integrating the CRISPR/dCas9-SAM system, we achieve highly specific gene activation with minimal off-target effects, enabling the addition of treatment targets with just 20 nucleotides per target. To improve bladder cancer targeting, we developed PLACS NPs, a mesoporous silica nanoparticle system that enhances plasmid delivery, transfection efficiency, and endosomal escape. This system shows good tumor targeting and significant anti-tumor effects in bladder cancer, without significant liver targeting and major organ toxicity, offering promising therapeutic potential and broad clinical applications.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jiaju Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chengfang Sun
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xuhong He
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yichang Shu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Qi Huangfu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Longxiyu Meng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhengxin Liang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jingchao Wei
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ming Cai
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Zhu B, Zhou J, He H, Liao Y, Li Q. An Auto-Reading probe system for detecting deletion mutations In liquid biopsy with direct quantification of mutation abundance. Heliyon 2024; 10:e35530. [PMID: 39220964 PMCID: PMC11365318 DOI: 10.1016/j.heliyon.2024.e35530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Deletion mutations have been confirmed to be closely related to the occurrence and progression of different hereditary diseases and tumors. Specifically, the deletion of a small number of bases is more challenging to be captured and differentiated. In non-invasive prenatal testing (NIPT) and liquid biopsy targeting circulating tumor DNA, obtaining accurate mutation abundance in targeted DNA is a crucial step in the detection process. However, the quantification of mutation abundance with existing methods is not accurate enough. Results Herein, we developed the " Auto-Reading" probe detection system based on our previous work. Through theoretical modeling and experimental calculations, we verified the successful application of our system in NIPT and early cancer diagnosis, enabling effective discrimination of different mutant abundances. Significance Our method overcomes the interference of reaction concentrations on signal detection, allowing direct quantification of mutation abundance without the need for purification of PCR products. The detection system is cost-effective and feasible for laboratory use. We believe the system will facilitate broad applications in mutation detection.
Collapse
Affiliation(s)
- Bang Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China
- Southern Medical University, Guangzhou, 510515, China
| | - Jingcong Zhou
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hong He
- Department of Nuclear Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China
| | - Yangwei Liao
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiaolin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China
- Digestive Disease Research Institution of Yangtze University, Clinical Medical College, Yangtze University, Jingzhou of Hubei Province, China
| |
Collapse
|
4
|
Liu Z, Li X, Zhang R, Ji L, Gong L, Ji Y, Zhou F, Yin Y, Li K, Sun P, Pu Z, Wang Q, Zou J. Identification of DNA variants at ultra-low variant allele frequencies via Taq polymerase cleavage of wild-specific blockers. Anal Bioanal Chem 2023; 415:6537-6549. [PMID: 37702773 DOI: 10.1007/s00216-023-04931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Detecting mutations related to tumors holds immense clinical significance for cancer diagnosis and treatment. However, the presence of highly redundant wild DNA poses a challenge for the advancement of low-copy mutant ctDNA genotyping in cancer cases. To address this, a Taqman qPCR strategy to identify rare mutations at low variant allele fractions (VAFs) has been developed. This strategy combines mutant-specific primers with wild-specific blockers. Diverging from other blocker-mediated PCRs, which rely on primer-induced strand displacement or the use of modified oligos resistant to Taq polymerase, our innovation is built upon the cleavage of specific blockers by Taq polymerase. Given its unique design, which does not hinge on strand displacement or base modification, we refer to this novel method as unmodified-blocker cleavage PCR (UBC-PCR). Multiple experiments consistently confirmed that variant distinction was improved significantly by introduction of 5' unmatched blockers into the reaction. Moreover, UBC-PCR successfully detected mutant DNA at VAFs as low as 0.01% across six different variant contexts. Multiplex UBC-PCR was also performed to identify a reference target and three mutations with a sensitivity of 0.01% VAFs in one single tube. In profiling the gene status from 12 lung cancer ctDNA samples and 22 thyroid cancer FNA DNA samples, UBC-PCR exhibited a 100% concordance rate with ddPCR and a commercial ARMS kit, respectively. Our work demonstrates that UBC-PCR can identify low-abundance variants with high sensitivity in multiplex reactions, independent of strand displacement and base modification. This strategy holds the potential to significantly impact clinical practice and precision medicine.
Collapse
Affiliation(s)
- Zhaocheng Liu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiushuai Li
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214122, Jiangsu Province, China
| | - Rui Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Li Ji
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Lingli Gong
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Fengsheng Zhou
- Department of Ultrasound, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Koukou Li
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, 214023, Jiangsu, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214122, Jiangsu Province, China.
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
5
|
Wu K, Kong F, Zhang J, Tang Y, Chen Y, Chao L, Nie L, Huang Z. Recent Progress in Single-Nucleotide Polymorphism Biosensors. BIOSENSORS 2023; 13:864. [PMID: 37754098 PMCID: PMC10527258 DOI: 10.3390/bios13090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
Single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in the human genome, are the main cause of individual differences. Furthermore, such attractive genetic markers are emerging as important hallmarks in clinical diagnosis and treatment. A variety of destructive abnormalities, such as malignancy, cardiovascular disease, inherited metabolic disease, and autoimmune disease, are associated with single-nucleotide variants. Therefore, identification of SNPs is necessary for better understanding of the gene function and health of an individual. SNP detection with simple preparation and operational procedures, high affinity and specificity, and cost-effectiveness have been the key challenge for years. Although biosensing methods offer high specificity and sensitivity, as well, they suffer drawbacks, such as complicated designs, complicated optimization procedures, and the use of complicated chemistry designs and expensive reagents, as well as toxic chemical compounds, for signal detection and amplifications. This review aims to provide an overview on improvements for SNP biosensing based on fluorescent and electrochemical methods. Very recently, novel designs in each category have been presented in detail. Furthermore, detection limitations, advantages and disadvantages, and challenges have also been presented for each type.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| |
Collapse
|
6
|
Ren L, Ming Z, Zhang W, Liao Y, Tang X, Yan B, Lv H, Xiao X. Shared-probe system: An accurate, low-cost and general enzyme-assisted DNA probe system for detection of genetic mutation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Jiang H, Xi H, Juhas M, Zhang Y. Biosensors for Point Mutation Detection. Front Bioeng Biotechnol 2021; 9:797831. [PMID: 34976987 PMCID: PMC8714947 DOI: 10.3389/fbioe.2021.797831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hanlin Jiang
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Hui Xi
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Yang Zhang,
| |
Collapse
|
8
|
Zhang Z, Hu Y, Yuan W, Hu M, Deng Y, Xiao X, Wu T. Endonuclease IV-Regulated DNAzyme Motor for Universal Single-nucleotide Variation Discrimination. Anal Chem 2021; 93:9939-9948. [PMID: 34235928 DOI: 10.1021/acs.analchem.1c02230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-nucleotide variation (SNV) detection plays significant roles in disease diagnosis and treatment. Generally, auxiliary probe, restricted design rules, complicated detection system, and repeated experimental parameter optimization are needed to obtain satisfactory tradeoff between sensitivity and selectivity for SNV discrimination, especially when different mutant sites need to be distinguished. To overcome these limitations, we developed a universal, straightforward, and relatively cheap SNV discrimination strategy, which simultaneously possessed high sensitivity and selectivity. The excellent performance of this strategy was ascribed to the SNV discrimination property of endonuclease IV (Endo IV) and the different hydrolysis behavior between free deoxyribozyme (DNAzyme) and the trapped DNAzyme to the substrates modified on gold nanoparticles (AuNPs). When Endo IV recognized the mutant-type target (MT), free DNAzyme was released from the probe, and the DNAzyme motor was activated with the help of cofactor Mn2+ to generate an amplified fluorescence signal. On the contrary, the wild-type target (WT) could not effectively trigger the DNAzyme motor. Moreover, for different SNV types, the corresponding probe could be designed by simply changing the sequence hybridized with the target and retaining the DNAzyme sequence. Thus, the fluorescence signal generation system does not need to change for different SNV targets. Five clinical-related SNVs were determined with the limit of detection (LOD) ranging from 0.01 to 0.05%, which exhibited competitive sensitivity over existing SNV detection methods. This strategy provided another insight into the properties of Endo IV and DNAzyme, expanded the applications of DNAzyme motor, and has great potential to be used for precision medicine.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuqiang Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenqian Yuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Deng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Zhang Z, Li L, Liu Q, Hu Y, Yuan W, Xiao X, Wu T. Sensitive
DNA
Mutation Detection at Physiological Temperature with Endonuclease
IV
by Inhibiting Its Side Activity. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Longjie Li
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
| | - Qingxu Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuqiang Hu
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Wenqian Yuan
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Xianjin Xiao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
10
|
Ming Z, Zhang W, Lin M, Tang X, Chen N, Liu N, Xin X, Wang H, Xiang W, Xiao X. Guiding-Strand-Controlled DNA Nucleases with Enhanced Specificity and Tunable Kinetics for DNA Mutation Detection. Anal Chem 2021; 93:7054-7062. [PMID: 33900739 DOI: 10.1021/acs.analchem.1c00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleases are powerful tools in various biomedical applications, such as genetic engineering, biosensing, and molecular diagnosis. However, the commonly used nucleases (endonuclease IV, apurinic/apyrimidinic endonuclease-1, and λ exonuclease) are prone to the nonspecific cleavage of single-stranded DNA, making the desired reactions extremely low-yield and unpredictable. Herein, we have developed guiding-strand-controlled nuclease systems and constructed theoretical kinetic models to explain their mechanisms of action. The models displayed excellent agreement with the experimental results, making the kinetics highly predictable and tunable. Our method inhibited the nonspecific cleavage of single-stranded probes while maintaining highly efficient cleavage of double-stranded DNA. We also demonstrated the clinical practicability of the method by detecting a low-frequency mutation in a genomic DNA sample extracted from the blood of a patient with cancer. The limit of detection could be 0.01% for PTEN rs121909219. We believe that our findings provide a powerful tool for the field and the established model provides us a deeper understanding of the enzymatic activities of DNA nucleases.
Collapse
Affiliation(s)
- Zhihao Ming
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Lin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofeng Tang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Xin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Feng Z, Zhang W, Li L, Tu B, Ye W, Tang X, Wang H, Xiao X, Wu T. A cost-effective detection of low-abundance mutation with DNA three-way junction structure and lambda exonuclease. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Tang X, Chen N, Liu R, Hu Q, Liu N, Xiao X. Determination of low-abundance single-base point mutations based on endonuclease IV and branch migration system. Anal Chim Acta 2020; 1134:28-33. [DOI: 10.1016/j.aca.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
13
|
Chen X, Liu N, Liu L, Chen W, Chen N, Lin M, Xu J, Zhou X, Wang H, Zhao M, Xiao X. Thermodynamics and kinetics guided probe design for uniformly sensitive and specific DNA hybridization without optimization. Nat Commun 2019; 10:4675. [PMID: 31611572 PMCID: PMC6791858 DOI: 10.1038/s41467-019-12593-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Sensitive and specific DNA hybridization is essential for nucleic acid chemistry. Competitive composition of probe and blocker has been the most adopted probe design for its relatively high sensitivity and specificity. However, the sensitivity and specificity were inversely correlated over the length and concentration of the blocker strand, making the optimization process cumbersome. Herein, we construct a theoretical model for competitive DNA hybridization, which disclose that both the thermodynamics and kinetics contribute to the inverse correlation. Guided by this, we invent the 4-way Strand Exchange LEd Competitive DNA Testing (SELECT) system, which breaks up the inverse correlation. Using SELECT, we identified 16 hot-pot mutations in human genome under uniform conditions, without optimization at all. The specificities were all above 140. As a demonstration of the clinical practicability, we develop probe systems that detect mutations in human genomic DNA extracted from ovarian cancer patients with a detection limit of 0.1%. Optimisation of nucleic acid probes and blocker strands can be laborious. Here the authors construct a theoretical model of competitive DNA hybridisation to design DNA probes for optimisation-free mutation detection.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Liquan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Na Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meng Lin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiaju Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xing Zhou
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China. .,Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
14
|
Ming Z, Chen Q, Chen N, Lin M, Liu N, Hu J, Xiao X. Eliminating the secondary structure of targeting strands for enhancement of DNA probe based low-abundance point mutation detection. Anal Chim Acta 2019; 1075:137-143. [PMID: 31196419 DOI: 10.1016/j.aca.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Nucleic acid probes are very useful tools in biological and medical science. However, the essential sensing mechanism of nucleic acid probes was prone to the interference of surrounding sequences. Especially when the target sequences formed secondary structures such as hairpin or quadruplex, the nucleic acid probes were hindered from hybridizing with target strands, greatly disabled the function of probes. Herein, we have established an Open strand based strategy for eliminating the influence of secondary structures on the performance of nucleic acid probes. The strategy was general toward different lengths, secondary structures and sequences of the targeting strand, and we found that the improvement was higher when the secondary structure of the targeting strand was more complicated. Experiments on synthetic single stranded DNA and real clinical genomic DNA samples were conducted for low abundance mutation detection, and the limit of detection for TERT-C228T and BRCA2 rs80359065 mutations could be 0.02% and 0.05% respectively, demonstrating the clinical practicability of our proposed strategy in low abundance mutation detection.
Collapse
Affiliation(s)
- Zhihao Ming
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qianzhi Chen
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Chen
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meng Lin
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Liu
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Junbo Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xianjin Xiao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
15
|
Liu G, He W, Liu C. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta 2019; 195:320-326. [DOI: 10.1016/j.talanta.2018.11.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
16
|
Xu J, Fu Y, Xiao Y. Endonuclease IV recognizes single base mismatch on the eighth base 3' to the abasic site in DNA strands for ultra-selective and sensitive mutant-type DNA detection. RSC Adv 2018; 8:27016-27020. [PMID: 35540020 PMCID: PMC9083296 DOI: 10.1039/c8ra04552f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/25/2023] Open
Abstract
Since single nucleotide polymorphism (SNP) is related with many diseases and drug metabolic polymorphous and SNP genotyping is rising rapidly in many biological and medical areas, various methods of discriminating SNPs have been developed, one of which is an enzyme-based method. We uncovered a unique property of endonuclease IV due to which it can discriminate single base mismatches in different positions of DNA strands containing an abasic site, and we also discovered a new property: a mismatch in the +8 position could inhibit the cleavage of endonuclease IV. Then, we coupled +8 mismatch with other mismatches along with the discrimination effect of melting temperature to develop a new ultra-selective and sensitive genotyping system, which showed high discrimination factors. The detection limit was as low as 0.05-0.01%. Our new discovery improves the understanding of endonuclease IV. Also, the method could be applied to clinical real samples; thus, it merits further investigation and improvement for application in clinical utilization for early screening of specific diseases.
Collapse
Affiliation(s)
- Jiaju Xu
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| | - Yanqiao Fu
- Department of Otorhinolaryngology, Taihe Hospital, Hubei University of Medicine Shiyan 442000 P. R. China
| | - Yan Xiao
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| |
Collapse
|
17
|
Hu S, Li N, Liu F. Combining cooperativity with sequestration: a novel strategy for discrimination of single nucleotide variants. Chem Commun (Camb) 2018. [PMID: 29528359 DOI: 10.1039/c8cc00838h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a novel strategy for the discrimination of single nucleotide variants (SNVs) by combining cooperativity with sequestration, which displays remarkably high specificity (discrimination factors ranging from 67 to 618 with a median of 194) against 12 model SNVs and can be easily integrated with PCR amplification to detect KRAS G12D mutation.
Collapse
Affiliation(s)
- Shichao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
18
|
Pei X, Lai T, Tao G, Hong H, Liu F, Li N. Ultraspecific Multiplexed Detection of Low-Abundance Single-Nucleotide Variants by Combining a Masking Tactic with Fluorescent Nanoparticle Counting. Anal Chem 2018; 90:4226-4233. [PMID: 29504392 DOI: 10.1021/acs.analchem.8b00685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To be able to detect simultaneously multiple single-nucleotide variants (SNVs) with both ultrahigh specificity and low-abundance sensitivity is of pivotal importance for molecular diagnostics and biological research. In this contribution, we for the first time developed a multiplex SNV detection method that combines the masking tactic with fluorescent nanoparticle (FNP) counting based on the sandwich design. The method presents a rivaling performance due to its advantageous features: the masking reagent was designed to hybridize with an extremely large amount of the wild-type sequence to render the assay with high specificity; FNP counting provides a sensitive multiplexed SNV detection; the sandwich design facilitates an easy separation to make the detection free of interferences from the matrix. For single SNV target discrimination, including the 6 most frequently occurring DNA KRAS gene mutations and 2 possible RNA KRAS gene mutations as well as 11 artificial mutations, the discrimination factor ranged from 204 to 1177 with the median being 545. Among the tested 19 SNVs, abundances as low as 0.05% were successfully identified in 14 cases, and an abundance as low as 0.1% was identified for the remaining 5 cases. For multiplexed detection of SNVs in the KRAS gene, abundances as low as 0.05-0.1% were achieved for multiple SNVs occurring at the same and different codons. As low as 0.05% low-abundance detection sensitivity was also achieved for PCR amplicons of human genomic DNA extracted from cell samples. This proposed method presents the potential for ultrahigh specific multiplexed detection of SNVs with low-abundance detection capability, which may be applied to practical applications.
Collapse
Affiliation(s)
- Xiaojing Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Hu Hong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
19
|
Detection of low-abundance point mutations by competitive strand assisted endonuclease IV signal amplification system. Curr Med Sci 2017; 37:803-806. [PMID: 29058299 DOI: 10.1007/s11596-017-1808-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15-38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.
Collapse
|