1
|
Chen XY, Liu QY, Yu WD, Yan J, Liu C. Advancements in calixarene-protected titanium-oxo clusters: from structural assembly to catalytic functionality. Chem Commun (Camb) 2024; 60:11890-11898. [PMID: 39323237 DOI: 10.1039/d4cc04161e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This review explores calixarenes, a prominent family of third-generation supramolecules celebrated for their distinct hollow, cavity-shaped structures. These macrocycles are intricately assembled by linking multiple phenolic units orthogonally through methylene (-CH2-), sulfur (-S-), or sulfonyl (-SO2-) bridges. This structural framework plays a pivotal role in the intricate assembly of nanoclusters, significantly advancing the field of cluster chemistry. A key focus of current research is the remarkable ability of calixarenes to stabilize titanium-oxo clusters. Our review details the application of calixarenes in constructing titanium-oxo cluster structures, emphasizing how these clusters, when encapsulated within calixarenes, exploit flexible coordination sites for structural modifications and serve as foundational units for more complex assemblies. Additionally, we investigate how these calixarene-stabilized metal-oxo clusters function as versatile scaffolds for catalytically active metal ions, facilitating the creation of bimetallic nanoclusters. These clusters not only exhibit unique structural diversity but also demonstrate exceptional catalytic efficiency. This review aims to inspire ongoing exploration and innovation in the use of calixarenes for the synthesis and application of advanced cluster materials.
Collapse
Affiliation(s)
- Xin-Yu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Qing-Yi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Wei-Dong Yu
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410000, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
2
|
Schubert U, Stöger B. Structural Chemistry of Titanium (IV) Oxo Clusters, Part 2: Clusters without Carboxylate or Phosphonate Ligands. Chemistry 2024; 30:e202400744. [PMID: 38629948 DOI: 10.1002/chem.202400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/04/2024]
Abstract
Homometallic titanium oxo clusters (TOC) are one of the most important groups of metal oxo clusters. In a previous article, TOC structures with carboxylato and phosphonato ligands were reviewed and categorized. This work is now extended to clusters with other ligands. Comparison of the different cluster types shows how the interplay between condensation of the titanium polyhedra by means of bridging oxygen atoms and the coordination characteristics of the ligands influences the cluster structures and allows working out basic construction principles of the cluster core.
Collapse
Affiliation(s)
- Ulrich Schubert
- Institute of Materials Chemistry, Technische Universiät Wien, Getreidemarkt 9, 1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Technische Universiät Wien, Getreidemarkt 9, 1060, Wien, Austria
| |
Collapse
|
3
|
Hou J, Huang C, Liu Y, Fei P, Zhang D, Qu K, Zi W, Huang X. Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters. Molecules 2024; 29:2566. [PMID: 38893442 PMCID: PMC11173645 DOI: 10.3390/molecules29112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Incorporating two organic ligands with different functionalities into a titanium-oxo cluster entity simultaneously can endow the material with their respective properties and provide synergistic performance enhancement, which is of great significance for enriching the structure and properties of titanium-oxo clusters (TOCs). However, the synthesis of such TOCs is highly challenging. In this work, we successfully synthesized a TBC4A-functionalized TOC, [Ti2(TBC4A)2(MeO)2] (Ti2; MeOH = methanol, TBC4A = tert-butylcalix[4]arene). By adjusting the solvent system, we successfully introduced 1,10-phenanthroline (Phen) and prepared TBC4A and Phen co-protected [Ti2(TBC4A)2(Phen)2] (Ti2-Phen). Moreover, when Phen was replaced with bulky 4,7-diphenyl-1,10-phenanthroline (Bphen), [Ti2(TBC4A)2(Bphen)2] (Ti2-Bphen), which is isostructural with Ti2-Phen, was obtained, demonstrating the generality of the synthetic method. Remarkably, Ti2-Phen demonstrates good stability and stronger light absorption, as well as superior photoelectric performance compared to Ti2. Density functional theory (DFT) calculations reveal that there exists ligand-to-core charge transfer (LCCT) in Ti2, while an unusual ligand-to-ligand charge transfer (LLCT) is present in Ti2-Phen, accompanied by partial LCCT. Therefore, the superior light absorption and photoelectric properties of Ti2-Phen are attributed to the existence of the unusual LLCT phenomenon. This study not only deeply explores the influence of Phen on the performance of the material but also provides a reference for the preparation of materials with excellent photoelectric performance.
Collapse
Affiliation(s)
- Jinle Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (C.H.); (Y.L.); (P.F.); (D.Z.); (K.Q.); (W.Z.)
| | | | | | | | | | | | | | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (C.H.); (Y.L.); (P.F.); (D.Z.); (K.Q.); (W.Z.)
| |
Collapse
|
4
|
Lin X, Yu YH, Chen GH, Li QH, Zhang L, Zhang J. Ligand-dependent structural diversity and optimizable CO 2 chemical fixation activities of Cu-doped polyoxo-titanium clusters. Dalton Trans 2023; 52:11451-11457. [PMID: 37547997 DOI: 10.1039/d3dt01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heterometallic oxo clusters have been attracting intensive interest due to their unique properties originating from the synergistic interactions between different components. Herein, we report the construction and catalytic applications of a family of copper-doped polyoxo-titanium clusters (Cu-PTCs) coordinated with different acetate derivative ligands. The solvothermal reactions of metal salts and trimethylacetic acid or 1,2-phenylenediacetic acid in ethanol produced Ti6Cu3(μ3-O)4(μ2-O)(OEt)16(L1)4 (L1 = trimethyl acetate, PTC-367) and H2Ti8Cu2Br2(μ4-O)2(μ2-O)4(OEt)20(L2)2 (L2 = 1,2-phenylenediacetate, PTC-368), respectively. When smaller acetic acid was introduced as a stabilizing ligand, higher nuclei H2Ti16Cu3(μ4-O)5(μ3-O)15(μ2-O)3(OiPr)18(Ac)8 (Ac = acetate, PTC-369) and H3Ti29Cu3(μ4-O)6(μ3-O)30(μ2-O)8(OiPr)17(Ac)20 (PTC-370) were prepared. The number of metal ions exposed on the surface of the four clusters changes due to variations in the steric hindrance of functionalizing ligands, and theoretically, so does their catalytic activity as Lewis acids. In light of this, we conducted a carbon dioxide cycloaddition reaction in an atmospheric environment and the four obtained compounds displayed increasing catalytic activities from PTC-367 to PTC-370. These results provide a feasible synthetic method for modulating the structures of Cu-doped titanium oxide materials and improving their catalytic activities.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Hua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
5
|
Mu WL, Wu L, Yu WD, Yi XY, Yan J, Liu C. Atomically accurate structural tailoring of thiacalix[4]arene-protected copper(II)-based metallamacrocycles. Dalton Trans 2023; 52:5438-5442. [PMID: 37083046 DOI: 10.1039/d3dt00455d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Accurate manipulation of ligands at specific sites in robust clusters is attractive but difficult, especially for those ligands that coordinate in intricate binding patterns. By linking the shuttlecock-like {Cu4(μ4-Cl)TC4A} motif and the phenylphosphate (PhPO32-) ligand, we elaborately design and synthesize two Cu(II)-thiacalix[4]arene metallamacrocycles (MMCs), namely Cu12L3 and Cu16L4, which have regular triangular and quadrilateral topologies, respectively. While keeping the core intact, the Cl- and PhPO32- in those two MMCs, which coordinated in a μ4-bridging fashion, can be accurately substituted with salicylate ligands. Theoretical calculations have been carried out to reveal the effect of ligand tailoring on the electronic structure of clusters. Structural regulation can affect the catalytic activity of these clusters, which has been verified by using the clusters as catalysts for selective sulfide oxidation.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Linlin Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
6
|
Special Issue of Covalent Organic Frameworks(COFs): Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1454-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang C, Wang S, Kong F, Chen N. Ferrocene-Sensitized Titanium-Oxo Clusters with Effective Visible Light Absorption and Excellent Photoelectrochemical Activity. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01410b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitized Ti-oxo clusters have attracted growing attention as analogous molecular mode compounds of dye-sensitized titanium dioxide solar cells. However, reports on the introduction of metal complexes as photosensitizers into Ti-oxo...
Collapse
|
8
|
Wang C, Chen N, Kong F, Wang S. A family of oxime-based titanium-oxo clusters: synthesis, structures, and photoelectric responses. CrystEngComm 2022. [DOI: 10.1039/d2ce00195k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of oxime-based titanium-oxo clusters was successfully synthesized, and their photoelectrochemical performances were observed.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ning Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
9
|
Han EM, Yu WD, Yan J, Yi XY, Liu C. Metal-Directed Self-Assembly of {Ti 8L 2} Cluster-Based Coordination Polymers with Enhanced Photocatalytic Alcohol Oxidation Activity. Inorg Chem 2021; 61:923-930. [PMID: 34968030 DOI: 10.1021/acs.inorgchem.1c02842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cooperative assembly of the neutral cluster {Ti8O5(OEt)18L2} (L = pyrazine-2,3-dicarboxylic acid) with different metal units of Mn(NO3)2, CuCl2, Zn(OEt)2, Cd(NO3)2, Ce(NO3)3, Lu(NO3)3, and Lu(NO3)2(OEt), or the [Cu2I2] cluster, generates a family of titanium-oxygen cluster (TOC)-based coordination polymers. These one-dimensional (1D) linear structures contain the same {Ti8L2} cluster but with variable bridging metal units. The regulation of the heterometal not only affects the chain geometries of the {MTi8} but also affects the way the 1D chains are stacked in the crystal lattice. Investigation of the catalytic activities toward alcohol oxidation demonstrated the synergetic effect of combining the metal site and the photosensitive {Ti8L2} cluster in the tailored structure. Under light illumination, the {MTi8} with dual catalytic sites shows greatly enhanced catalytic activity in the selective oxidation of alcohols to aldehydes. Because the compositions and structures of {MTi8} are highly tunable, this work spotlights the potential of utilizing such metal-bridged multidimensional Ti-oxo materials for cooperative photoredox catalysis for organic transformation.
Collapse
Affiliation(s)
- Er-Meng Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Wei-Dong Yu
- College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
10
|
Synthesis of lanthanide-doped titanium-oxo clusters for efficient photocurrent responses. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mkhadder H, Denis M, Giménez-Marqués M, Cañón-Mancisidor W, Humbert B, Deunf E, Poizot P, Devic T. A tris-oxovanadium pyrogallate complex: synthesis, structure, and magnetic and electronic properties. Dalton Trans 2021; 50:13399-13406. [PMID: 34473151 DOI: 10.1039/d1dt01990b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim of identifying new cation-phenolate complexes, we herein investigated the reactivity of pyrogallol (H3pgal) with vanadium salts. A trimetallic anionic complex was identified, and found to be formed under a broad set of reaction conditions. This complex, with the formula V3O3(pgal)33-, consists of three oxovanadium(IV) units connected together by three pyrogallate ligands to afford a bowl-shaped species presenting a pseudo 3-fold symmetry axis. Its crystal structure is reported, as well as its characterisation by a broad set of techniques, including powder X-ray diffraction, thermogravimetric analysis, infrared and Raman spectroscopy, and solid state UV-visible diffuse reflectance. Its redox activity both in solution and in the solid state is described, together with its magnetic behavior. Finally, the relevance of this trimetallic unit in the field of phenolic-based biocoatings and Metal Organic Framework (MOF) synthesis is briefly discussed.
Collapse
Affiliation(s)
- Hassan Mkhadder
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Morgane Denis
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Walter Cañón-Mancisidor
- Facultad de Ingeniería, Ciencia y Tecnología, Depto. Matemáticas y Ciencias de la Ingeniería, Universidad Bernardo O'Higgins, Chile.,Centro de Nanociencia y Nanotecnología CEDENNA, Chile
| | - Bernard Humbert
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Elise Deunf
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Philippe Poizot
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Thomas Devic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| |
Collapse
|
12
|
Shao L, Hu X, Sikligar K, Baker GA, Atwood JL. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. Acc Chem Res 2021; 54:3191-3203. [PMID: 34329553 DOI: 10.1021/acs.accounts.1c00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coordination polymers, commonly known as infinite crystalline lattices, are versatile networks and have diverse potential applications in the fields of gas storage, molecular separation, catalysis, optics, and drug delivery, among other areas. Secondary building blocks, mainly incorporating rigid polydentate organic linkers and metal ions or clusters, are commonly employed to construct coordination polymers. Recently, novel building blocks such as coordination polyhedra have been utilized as metal nodes to fabricate coordination polymers. Benefiting from the rigid porous structure of the coordination polyhedron, prefabricated designer "pores" can be incorporated in this type of coordinate polymer. In this Account, coordination polymers built by pyrogallol[4]arene-assembled metal-organic nanocapsules are summarized. This class of metal-organic nanocapsule possesses the following advantages that make them excellent candidates in the construction of coordination polymers: (i) Various geometrical shapes with different volumes of the inner cavities can be obtained from these capsules. Among them, the two main categories illustrated are dimeric and hexameric capsules, which comprise two and six pyrogallol[4]arenes units, respectively. (ii) A wide range of possible metal ions ranging from main group metals to transition metals and even lanthanides have been demonstrated to seam the capsules. Therefore, these coordination polymers can be endowed with fascinating functionalities such as magnetism, semiconductivity, luminescence, and radioactivity. (iii) Up to 24 metal ions have been successfully embedded on the surface of the nanocapsule, each a potential reaction site in the construction of coordination polymers, opening up pathways for the formation of multidimensional frameworks.In this Account, we focus primarily on the synthesis and the structural information on pyrogallol[4]arene-derived coordination polymers. Coordination polymers can be formed by introducing linkers with two coordination sites, using pyrogallol[4]arenes with coordination sites on the tail, or even via metal ions cross-linking with each other. Machine learning was recently developed to help us predict and screen the structures of the coordination polymers. With single crystal analysis in hand, detailed structural information provides a molecular-level perspective. Significantly, following the formation of coordination polymers, the overall shape and structure of the discrete metal-organic nanocapsules remains essentially unchanged, with full retention of the prefabricated pores. If a rigid linker is used to connect capsules, more than one lattice void with different volumes can be found within the framework. Thus, molecules with different sizes could potentially be encapsulated within these coordination polymers. In addition, flexible ligands can also be employed as linkers. For example, polymers have been employed as large linkers that transform the crystalline coordination polymers into polymer matrices, paving the way toward the synthesis of advanced functional materials. Overall, coordination polymers constructed with pyrogallol[4]arene-assembled metal-organic nanocapsules show wide diversity and tunability in structure and fascinating properties, as well as the promise of built-in functionality in the future.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiangquan Hu
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kanishka Sikligar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jerry L. Atwood
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Li N, Zhao SQ, Ding XR, Hu XY, Zhang QK, Zou GD, Fan Y. 8-Hydroxyquinoline functionalized titanium-oxo clusters for visible-light-driven photocatalytic oxidative desulfurization. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
The Composites of PCL and Tetranuclear Titanium(IV)-oxo Complexes as Materials Exhibiting the Photocatalytic and the Antimicrobial Activity. Int J Mol Sci 2021; 22:ijms22137021. [PMID: 34209889 PMCID: PMC8268633 DOI: 10.3390/ijms22137021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 01/09/2023] Open
Abstract
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR’)2] (R’ = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV–Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.
Collapse
|
15
|
Wang C, Wang SJ, Kong FG. Calixarene-Protected Titanium-Oxo Clusters and Their Photocurrent Responses and Photocatalytic Performances. Inorg Chem 2021; 60:5034-5041. [PMID: 33677968 DOI: 10.1021/acs.inorgchem.1c00063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three photosensitive tert-butylcalix[n]arene (TBC[n], n = 4, 6, 8)-protected titanium-oxo clusters (TOCs), formulated as [Ti4(μ3-O)2(TBC[4])2(OiPr)4(DEF)2]·DEF (1, TBC[4]-Ti4, DEF = N,N-diethylformamide), [Ti4(μ4-O)TBC[6](OCH3)9]·H2O (2, TBC[6]-Ti4), and [Ti4(μ3-O)2(OiPr)4TBC[8](DEF)2]·DEF (3, TBC[8]-Ti4), were successfully synthesized and characterized. Because of the generation of charge transfer from TBC[n] to the TiO core, the three TBC[n]-decorated TOCs show a broadened visible-light absorption and narrowed optical band gap based on the UV-visible spectra and density functional theory calculations. The corresponding photosensitive electrodes prepared using these three TOCs exhibit stable photocurrent responses. Furthermore, their photocatalytic performances for hydrogen evolution and methylene blue degradation were evaluated, and all of the materials display excellent photocatalytic activity and stability. The calixarene-Ti coordination is therefore an effective strategy to enlarge the visible-light absorption band of Ti-O materials and improve their photoelectric/photocatalytic performances.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| | - Shou-Juan Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| | - Fan-Gong Kong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| |
Collapse
|
16
|
Liu JJ, Li N, Sun JW, Liu J, Dong LZ, Yao SJ, Zhang L, Xin ZF, Shi JW, Wang JX, Li SL, Lan YQ. Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO 2 Photoreduction. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing-Jing Liu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jia-Wei Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Liu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Su-Juan Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lei Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhi-Feng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Jing-Wen Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical, Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jing-Xuan Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shun-Li Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Syntheses, crystal structures and photocatalytic properties of homometallic and heterometallic titanium-oxo clusters. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Oxo-Titanium(IV) Complex/Polymer Composites-Synthesis, Spectroscopic Characterization and Antimicrobial Activity Test. Int J Mol Sci 2020; 21:ijms21249663. [PMID: 33352922 PMCID: PMC7766362 DOI: 10.3390/ijms21249663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR' (R' = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives.
Collapse
|
19
|
Mosleh N, Mohammadikish M, Masteri-Farahani M. Designing a New Efficient Photocatalyst Based on Functionalization of Zn-Infinite Coordination Polymer with Ru(acac) 3 Complex for Dye Degradation in Aqueous Solutions: Charge Separation Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14224-14233. [PMID: 33203212 DOI: 10.1021/acs.langmuir.0c02331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new Zn-containing infinite coordination polymer, Zn-ICP, functionalized with Ru(acac)3 complex was designed and utilized as an efficient visible light photocatalyst for dye degradation in aqueous solutions. Incorporation of Ru(acac)3 not only extended the light absorption of the Zn-ICP to the visible region but also led to electron-hole separation. Upon visible light illumination, photoinduced electron transfer from excited state of Zn-ICP to Ru(acac)3 occurred, resulting in electron-hole separation as indicated by photoluminescence and electrochemical impedance spectroscopy. The obtained Ru-Zn-ICP revealed enhanced visible light photocatalytic activity in degradation of organic pollutants compared to pristine Zn-ICP owing to photoinduced electron transfer in the Ru-Zn-ICP system and efficient separation of photogenerated electron-hole pairs. The prepared Ru-Zn-ICP photocatalyst was readily recycled without major loss of activity in the successive cycles.
Collapse
Affiliation(s)
- Nazanin Mosleh
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Maryam Mohammadikish
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
20
|
Yang XX, Yu WD, Yi XY, Li LJ, Liu C. Monocarboxylate-driven structural growth in Calix[n]arene-polyoxotitanate hybrid systems: utility in hydrogen production from water. Chem Commun (Camb) 2020; 56:14035-14038. [PMID: 33103687 DOI: 10.1039/d0cc05336h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A carboxylate-driven assembly strategy has been developed for the first time to build calix[n]arene-based polyoxotitanate clusters with tuneable nuclearity and structures. Photocatalytic studies revealed that these clusters exhibit structural-dependent H2 evolution ability with a maximum rate up to 415.11 μmol h-1 g-1, which is almost the highest recorded in polyoxotitanate clusters.
Collapse
Affiliation(s)
- Xin-Xue Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Two Novel Titanium(IV)-Based Compounds Supported by Thiacalix[4]arene: Syntheses, Structures and Photocatalytic Properties. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zhu BC, Hong QL, Yi X, Zhang J, Zhang L. Supramolecular Co-assembly of the Ti 8L 12 Cube with [Ti(DMF) 6] Species and Ti 12-Oxo Cluster. Inorg Chem 2020; 59:8291-8297. [PMID: 32463661 DOI: 10.1021/acs.inorgchem.0c00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Titanium-based coordination cages are fascinating in the field of supramolecular and photophysical chemistry. Herein, we address the unprecedented supramolecular co-assembly arrangement of a cubic Ti8L12 cage with [Ti(DMF)6] species and Ti12-oxo cluster, contributing to the cocrystals of {Ti8L12 + Ti(DMF)6} (PTC-116) and {Ti8L12 + Ti12-oxo} (PTC-117). The ESI-MS and 1H NMR measurements reveal their stability in solution. The photophysical properties of these supramolecular complexes in solution, including light absorption and photoluminescent behaviors, were further investigated.
Collapse
Affiliation(s)
- Bang-Chang Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
23
|
Yang XX, Yu WD, Yi XY, Liu C. Accurate Regulating of Visible-Light Absorption in Polyoxotitanate-Calix[8]arene Systems by Ligand Modification. Inorg Chem 2020; 59:7512-7519. [PMID: 32394703 DOI: 10.1021/acs.inorgchem.0c00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With use of a macrocyclic polyphenol, tert-butylcalix[8]arene (TBC[8]), as ligands, a series of TBC[8]-stabilized {Ti4O2}clusters, containing penta- and hexacoordinated Ti centers, were synthesized. Such complexes are "core-shell" shaped containing a {Ti4O2} core arranged in a zigzag fashion. While outer walls of the clusters are decorated by deprotonated TBC[8], their upper and lower surfaces can be modified by various O- or N-donor ligands, and the ratio of the penta- and hexacoordinated Ti(IV) centers in the {Ti4O2} core can be precisely regulated from 4:0, to 3:1, to 2:2, to 1:3, and finally to 0:4. The combined coordination of different ligands in the axial direction shows significant influence on the adsorption of the TBC[8]-Ti4 system in the visible-light region, and their absorption edge can be precisely regulated from 600 to 700 nm. The above structural functionalization in the TBC[8]-Ti4 system also tunes their photocatalytic H2 production activities and oxidative desulfurization ability. Thus, for the first time, by confining the polyoxotitanium cluster in macrocyclic molecules, we provide an example of understanding the structure-property relationship of titanium-oxygen materials by ligand modification.
Collapse
Affiliation(s)
- Xin-Xue Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan People's Republic of China
| | - Wei-Dong Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan People's Republic of China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan People's Republic of China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan People's Republic of China
| |
Collapse
|
24
|
Svensson FG, Daniel G, Tai CW, Seisenbaeva GA, Kessler VG. Titanium phosphonate oxo-alkoxide “clusters”: solution stability and facile hydrolytic transformation into nano titania. RSC Adv 2020; 10:6873-6883. [PMID: 35493899 PMCID: PMC9049727 DOI: 10.1039/c9ra10691j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/09/2020] [Indexed: 01/14/2023] Open
Abstract
Oligonuclear Ti(iv) oxo-alkoxide-phosphonate complexes, produced by reaction of tBuPO(OH)2 with Ti(OR)4, are easily topotactically hydrolyzed forming intricate nanostructures.
Collapse
Affiliation(s)
- Fredric G. Svensson
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science
- Swedish University of Agricultural Sciences
- 75007 Uppsala
- Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry
- Stockholm University
- 106 91 Stockholm
- Sweden
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | - Vadim G. Kessler
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| |
Collapse
|
25
|
Gao M, Zhang L, Zhang J. Acid‐Controlled Synthesis of Carboxylate‐Stabilized Ti
44
‐Oxo Clusters: Scaling up Preparation, Exchangeable Protecting Ligands, and Photophysical Properties. Chemistry 2019; 25:10450-10455. [DOI: 10.1002/chem.201901671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mei‐Yan Gao
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Lei Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| |
Collapse
|
26
|
Structures, Photoelectrochemical and Photocatalytic Properties of Phosphite-Stabilized Titanium-Oxo Clusters Functionalized with Ferrocenecarboxylate Ligands. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01595-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Wang C, Liu C, Li LJ, Sun ZM. Synthesis, Crystal Structures, and Photochemical Properties of a Family of Heterometallic Titanium Oxo Clusters. Inorg Chem 2019; 58:6312-6319. [DOI: 10.1021/acs.inorgchem.9b00508] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lei- Jiao Li
- Jilin Provincial Science and Technology Innovation Canter of Optical Materials and Chemistry, School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Zhong-Ming Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- School of Materials Science and Engineering, Research Center of Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Cui Y, Zou GD, Li HM, Huang Y, Fan Y. 4-Chlorosalicylate-stabilized titanium-oxo clusters with structures mediated by tetrazole and their photophysical properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lv HT, Cui Y, Zou GD, Li N, Yang P, Fan Y. Synthesis of titanium-oxo macrocyles and their catalytic properties for oxidative desulfurization. Dalton Trans 2019; 48:14044-14048. [DOI: 10.1039/c9dt03057c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Titanium-oxo macrocycles with an inner cavity of about 1.2 × 1.2 nm were synthesized and structurally characterized. The structure-dependent catalytic properties towards oxidative desulfurization were studied.
Collapse
Affiliation(s)
- Hai-Ting Lv
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying Cui
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Na Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Pei Yang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yang Fan
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
30
|
Cui Y, Zou GD, Li HM, Fan Y. Syntheses, structures and photoelectrochemical properties of phosphite-stabilized titanium-oxo clusters containing 2,2′-biphenolato ligands. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Modulating the band gap and photoelectrochemical activity of dicarboxylate-stabilized titanium-oxo clusters. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Gao MY, Fan X, Zhang L, Zhang J. Dicarboxylate Ligands Oriented Assembly of {Ti3(μ3-O)} Units: From Dimer to Coordination Triangles and Rectangles. Inorg Chem 2018; 57:5642-5647. [DOI: 10.1021/acs.inorgchem.8b00586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xi Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
33
|
Fang WH, Zhang L, Zhang J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem Soc Rev 2018; 47:404-421. [DOI: 10.1039/c7cs00511c] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A review of polyoxo-titanium clusters (PTCs), with an emphasis on synthetic methodologies, diverse structures, tuneable optical properties and potential applications.
Collapse
Affiliation(s)
- Wei-Hui Fang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
34
|
Huang Y, Zou GD, Li HM, Cui Y, Fan Y. A photoactive {Ti16} metal–organic capsule: structural, photoelectrochemical and photocatalytic properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj02992j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoactive and highly porous {Ti16} metal–organic coordination capsule with a cavity length of ∼1.4 nm was synthesized, in which photosensitizers and Ti-oxo cluster units can work cooperatively to promote the photoelectrochemical and photocatalytic performance.
Collapse
Affiliation(s)
- Yang Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Hua-Min Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying Cui
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yang Fan
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|