1
|
Armstrong L, Chang SL, Clements N, Hirani Z, Kimberly LB, Odoi-Adams K, Suating P, Taylor HF, Trauth SA, Urbach AR. Molecular recognition of peptides and proteins by cucurbit[ n]urils: systems and applications. Chem Soc Rev 2024; 53:11519-11556. [PMID: 39415690 PMCID: PMC11484504 DOI: 10.1039/d4cs00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 10/19/2024]
Abstract
The development of methodology for attaching ligand binding sites to proteins of interest has accelerated biomedical science. Such protein tags have widespread applications as well as properties that significantly limit their utility. This review describes the mechanisms and applications of supramolecular systems comprising the synthetic receptors cucurbit[7]uril (Q7) or cucurbit[8]uril (Q8) and their polypeptide ligands. Molecular recognition of peptides and proteins occurs at sites of 1-3 amino acids with high selectivity and affinity via several distinct mechanisms, which are supported by extensive thermodynamic and structural studies in aqueous media. The commercial availability, low cost, high stability, and biocompatibility of these synthetic receptors has led to the development of myriad applications. This comprehensive review compiles the molecular recognition studies and the resulting applications with the goals of providing a valuable resource to the community and inspiring the next generation of innovation.
Collapse
Affiliation(s)
- Lilyanna Armstrong
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sarah L Chang
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Nia Clements
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Zoheb Hirani
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Keturah Odoi-Adams
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, 73096, USA
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Hailey F Taylor
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sara A Trauth
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
2
|
Suating P, Kimberly LB, Ewe MB, Chang SL, Fontenot JM, Sultane PR, Bielawski CW, Decato DA, Berryman OB, Taylor AB, Urbach AR. Cucurbit[8]uril Binds Nonterminal Dipeptide Sites with High Affinity and Induces a Type II β-Turn. J Am Chem Soc 2024; 146:7649-7657. [PMID: 38348472 DOI: 10.1021/jacs.3c14045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In an effort to target polypeptides at nonterminal sites, we screened the binding of the synthetic receptor cucurbit[8]uril (Q8) to a small library of tetrapeptides, each containing a nonterminal dipeptide binding site. The resulting leads were characterized in detail using a combination of isothermal titration calorimetry, 1H NMR spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and X-ray crystallography. The equilibrium dissociation constant values determined for the binding of Q8 to nonterminal dipeptide sites Lys-Phe (KF) and Phe-Lys (FK) were 60 and 86 nm, respectively. These are to the best of our knowledge the highest affinities reported to date for any synthetic receptor targeting a nonterminal site on an unmodified peptide. A 0.79 Å resolution crystal structure was obtained for the complex of Q8 with the peptide Gly-Gly-Leu-Tyr-Gly-Gly-Gly (GGLYGGG) and reveals structural details of the pair-inclusion motif. The molecular basis for recognition is established to be the inclusion of the side chains of Leu and Tyr residues, as well as an extensive network of hydrogen bonds between the peptide backbone, the carbonyl oxygens of Q8, and proximal water molecules. In addition, the crystal structure reveals that Q8 induces a type II β-turn. The sequence-selectivity, high affinity, reversibility, and detailed structural characterization of this system should facilitate the development of applications involving ligand-induced polypeptide folding.
Collapse
Affiliation(s)
- Paolo Suating
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Marc B Ewe
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Sarah L Chang
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - John M Fontenot
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8300 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
3
|
Son S, Song WJ. Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand. Chem Sci 2024; 15:2975-2983. [PMID: 38404387 PMCID: PMC10882485 DOI: 10.1039/d3sc05448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Protein design for self-assembly allows us to explore the emergence of protein-protein interfaces through various chemical interactions. Heterooligomers, unlike homooligomers, inherently offer a comprehensive range of structural and functional variations. Besides, the macromolecular repertoire and their applications would significantly expand if protein components could be easily interchangeable. This study demonstrates that a rationally designed bifunctional linker containing an enzyme inhibitor and maleimide can guide the formation of diverse protein heterooligomers in an easily applicable and exchangeable manner without extensive sequence optimizations. As proof of concept, we selected four structurally and functionally unrelated proteins, carbonic anhydrase, aldolase, acetyltransferase, and encapsulin, as building block proteins. The combinations of two proteins with the bifunctional linker yielded four two-component heterooligomers with discrete sizes, shapes, and enzyme activities. Besides, the overall size and formation kinetics of the heterooligomers alter upon adding metal chelators, acidic buffer components, and reducing agents, showing the reversibility and tunability in the protein self-assembly. Given that the functional groups of both the linker and protein components are readily interchangeable, our work broadens the scope of protein-assembled architectures and their potential applications as functional biomaterials.
Collapse
Affiliation(s)
- Soyeun Son
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
4
|
Oohora K. Supramolecular assembling systems of hemoproteins using chemical modifications. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
5
|
Anderson HR, Reeves WL, Bockus AT, Suating P, Grice AG, Gallagher M, Urbach AR. Semisynthesis of Aminomethyl-Insulin: An Atom-Economic Strategy to Increase the Affinity and Selectivity of a Protein for Recognition by a Synthetic Receptor. Bioconjug Chem 2023; 34:212-217. [PMID: 36534758 DOI: 10.1021/acs.bioconjchem.2c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.
Collapse
Affiliation(s)
- Hayden R Anderson
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Wei L Reeves
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Andrew T Bockus
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Amy G Grice
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Madeleine Gallagher
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
6
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
7
|
Li Y, Zhao L, Chen H, Tian R, Li F, Luo Q, Xu J, Hou C, Liu J. Hierarchical protein self-assembly into dynamically controlled 2D nanoarrays via host-guest chemistry. Chem Commun (Camb) 2021; 57:10620-10623. [PMID: 34570127 DOI: 10.1039/d1cc03654h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A dynamically reversible two-dimensional (2D) protein assembly system was designed based on host-guest interactions and was triggered to disassemble via a competition mechanism. The artificially tunable and reversible protein assembly architectures hold great potential for on/off switches in bio-systems.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Linlu Zhao
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Hongwei Chen
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Barbero H, Masson E. Design and recognition of cucurbituril-secured platinum-bound oligopeptides. Chem Sci 2021; 12:9962-9968. [PMID: 34349966 PMCID: PMC8317623 DOI: 10.1039/d1sc02637b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly)3-Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide)2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ. A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units. A platinum terpyridyl complex, pentapeptide Phe-(Gly)3-Cys and cucurbit[8]uril assemble into a “pendant necklace” with hybrid head-to-head and head-to-tail arrangements in aqueous medium.![]()
Collapse
Affiliation(s)
- Héctor Barbero
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| |
Collapse
|
9
|
Ramberg KO, Engilberge S, Guagnini F, Crowley PB. Protein recognition by cucurbit[6]uril: high affinity N-terminal complexation. Org Biomol Chem 2021; 19:837-844. [PMID: 33406171 DOI: 10.1039/d0ob02356f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The donut-shaped cucurbit[n]urils (Qn, n = 6-8) are rigid macrocyclic receptors with widespread use in protein recognition. To date, most applications have centred on the encapsulation of N-terminal aromatic residues by Q7 or Q8. Less attention has been placed on Q6, which can recognize lysine side chains due to its high affinity for alkylamines. In this work, we investigated protein-Q6 complexation by using NMR spectroscopy. Attempts to crystallize protein-Q6 complexes were thwarted by the crystallization of Q6. We studied four proteins that vary in size, net charge, and lysine content. In addition to Q6 interactions with specific Lys or dimethylated Lys residues, we report striking evidence for N-terminal recognition. High affinity (micromolar) binding occurred with the N-terminal Met-Lys motif present in one of the four model proteins. Engineering this feature into another model protein yielded a similar high affinity site. We also present evidence for Q8 binding at this N-terminal feature. These data expand the cucurbituril toolkit for protein sensing.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Francesca Guagnini
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
10
|
Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules 2020; 26:molecules26010106. [PMID: 33379401 PMCID: PMC7796322 DOI: 10.3390/molecules26010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.
Collapse
|
11
|
Oohora K, Hirayama S, Uchihashi T, Hayashi T. Construction of a Hexameric Hemoprotein Sheet and Direct Observation of Dynamic Processes of Its Formation. CHEM LETT 2020. [DOI: 10.1246/cl.190855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Yan M, Liu XB, Gao ZZ, Wu YP, Hou JL, Wang H, Zhang DW, Liu Y, Li ZT. A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production. Org Chem Front 2019. [DOI: 10.1039/c9qo00382g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A 3.6 nm-pore SOF is constructed, which adsorbs both photosensitizers and polyoxometallates for visible light-induced proton reduction to produce H2.
Collapse
Affiliation(s)
- Meng Yan
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Xu-Bo Liu
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Zhong-Zheng Gao
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Yi-Peng Wu
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Jun-Li Hou
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Hui Wang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Dan-Wei Zhang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Yi Liu
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Zhan-Ting Li
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| |
Collapse
|
13
|
Taylor LLK, Riddell IA, Smulders MMJ. Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren L. K. Taylor
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen Niederlande
| |
Collapse
|
14
|
Taylor LLK, Riddell IA, Smulders MMJ. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Angew Chem Int Ed Engl 2018; 58:1280-1307. [DOI: 10.1002/anie.201806297] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL UK
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen The Netherlands
| |
Collapse
|
15
|
Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT. A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9234-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Okesola BO, Mata A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev 2018; 47:3721-3736. [DOI: 10.1039/c8cs00121a] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nature is enriched with a wide variety of complex, synergistic and highly functional protein-based multicomponent assemblies.
Collapse
Affiliation(s)
- Babatunde O. Okesola
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| | - Alvaro Mata
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| |
Collapse
|
17
|
Hou C, Zeng X, Gao Y, Qiao S, Zhang X, Xu J, Liu J. Cucurbituril As A Versatile Tool to Tune the Functions of Proteins. Isr J Chem 2017. [DOI: 10.1002/ijch.201700105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials; College of Chemistry, and
| | - Xiangzhi Zeng
- College of Life Science; Jilin University; 2699 Qianjin Road Changchun 130012 China
| | - Yuzhou Gao
- Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; No.88, Keling Road Suzhou New District, Suzhou 215163 China
| | - Shanpeng Qiao
- State Key laboratory of Supramolecular Structure and Materials; College of Chemistry, and
| | - Xin Zhang
- State Key laboratory of Supramolecular Structure and Materials; College of Chemistry, and
| | - Jiayun Xu
- State Key laboratory of Supramolecular Structure and Materials; College of Chemistry, and
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials; College of Chemistry, and
| |
Collapse
|