1
|
Pan X, Wang H, Zhang Z. Preparation and assembly of SiO 2@TiO 2 photoresponsive colloidal rings. Chem Commun (Camb) 2025. [PMID: 40390528 DOI: 10.1039/d5cc01902h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
We report the synthesis of SiO2 colloidal rings coated with TiO2, which enable photoresponsive self-assembly into porous ordered structures and hybrid assembly for the capture and release of non-active colloids in a hydrogen peroxide (H2O2) solution. Such assemblies originate from a concentration gradient generated by the TiO2-mediated decomposition of H2O2 under ultraviolet (UV) irradiation. The work provides a straightforward strategy to fabricate active colloids with ring-like shapes for the controlled assembly of open crystalline colloidal materials.
Collapse
Affiliation(s)
- Xiaoyu Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, and Institute for Advanced Study, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Hu L, Song Z, Wu B, Yang X, Chen F, Wang X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Au Nanorings for Dual-Responsive and Dual-Imaging Guided Targeted Synergistic Photothermal Chemotherapy Against Pancreatic Carcinoma. Int J Nanomedicine 2024; 19:13429-13442. [PMID: 39703980 PMCID: PMC11656332 DOI: 10.2147/ijn.s476936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Pancreatic carcinoma (PC) is a highly malignant digestive tumor. Nanotechnology-based minimally invasive techniques have been proposed to provide a new opportunity for PC treatment. Methods A minimally invasive nanoplatform (named HA/DOX-AuNRs) is fabricated by HA modifying and DOX loading Au nanorings (AuNR). Because of their complicated geometric structure and tunable localized surface plasmon resonance peak in the second near-infrared laser window (NIR-II window), HA/DOX-AuNRs exhibit fluorescence/photoacoustic and photothermal properties, dual-responsive DOX release, and tumor-targeting ability. HA/DOX-AuNRs are expected to improve the tumor therapeutic efficiency and reduce undesirable side effects through fluorescence/photoacoustic dual-imaging guided targeted synergetic photothermal chemotherapy under NIR-II irradiation. Results The morphological and physicochemical properties of HA/DOX-AuNRs are well-examined at first. The cytotoxicity, cellular uptake, and in vitro therapeutic effect of fluorescence/photoacoustic dual-imaging guided targeted synergetic photothermal chemotherapy are evaluated in Panc-1 cells. The in vivo biodistribution, anticancer effects, and systemic toxicity are investigated using PC xenograft models. Discussion HA/DOX-AuNRs significantly improve the therapeutic efficacy in a dual-responsive and dual-imaging guided targeted synergy.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Xiaodan Yang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| |
Collapse
|
3
|
Lin X, Ye S, Kong C, Webb K, Yi C, Zhang S, Zhang Q, Fourkas JT, Nie Z. Polymeric Ligand-Mediated Regioselective Bonding of Plasmonic Nanoplates and Nanospheres. J Am Chem Soc 2020; 142:17282-17286. [PMID: 32985879 DOI: 10.1021/jacs.0c08135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticle (NP) clusters are attractive for many applications, but controllable and regioselective assembly of clusters remains challenging. This communication reports a strategy to precisely assemble Ag nanoplates (NP-As) and Au nanospheres (NP-Bs) grafted with copolymer ligands into defined ABx clusters with controlled coordination number (x) and orientation of the NPs. The directional bonding of shaped NPs relies on the stoichiometric reaction of complementary reactive groups on copolymer ligands. The x value of NP clusters can be tuned from 1 to 4 by varying the number ratio of reactive groups on single NP-Bs to NP-As. The regioselective bonding of nanospheres to the edge or face of a central nanoplate is governed by the steric hindrance of copolymeric ligands on the nanoplate. The clusters exhibit distinctive plasmonic properties that are dependent on the bonding modes of NPs. This study paves a route to fabricating nanostructures with high precision and complexity for applications in plasmonics, catalysis, and sensing.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chuncai Kong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kyle Webb
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shaoyi Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Ye P, Xin W, De Rosa IM, Wang Y, Goorsky MS, Zheng L, Yin X, Xie YH. One-Pot Self-Templated Growth of Gold Nanoframes for Enhanced Surface-Enhanced Raman Scattering Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22050-22057. [PMID: 32266808 DOI: 10.1021/acsami.0c04777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the representative metallic hollow nanostructures, Au nanoframes have shown fascinating properties such as strong localized surface plasmon resonance associated with emerging applications such as surface-enhanced Raman scattering (SERS) sensors. In this study, for the first time, a facile one-pot synthetic approach for hollow Au nanoframes is demonstrated by directly etching Au nanoplates, that is, the so-called self-templates. A novel growth mechanism has been revealed that involves a synergistic function of Ag and Br ions. The presence of Ag+ leads to the observation of self-limiting Au film thickness, whereas Au{111} facets are preferentially attacked by the presence of Br- in the reaction ambient. More importantly, graphene is introduced to prevent/minimize aggregation during the formation of Au nanoframes. The combined simulation and experimental studies show that the hybrid platform made of graphene/Au nanoframes is capable of detecting analytes at concentration levels down to 10-9 M by using the SERS technique.
Collapse
Affiliation(s)
- Peiyi Ye
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Wenbo Xin
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Igor M De Rosa
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yekan Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Mark S Goorsky
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Li Zheng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd, Zhong Shan Gong Yuan, Changning Qu, Shanghai 200050, P. R. China
| | - Xunqian Yin
- School of Materials Science and Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd., Economic & Technological Development Zones, Qingdao, Shandong 266590 China
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Chow TH, Lai Y, Cui X, Lu W, Zhuo X, Wang J. Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902608. [PMID: 31304668 DOI: 10.1002/smll.201902608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Indexed: 05/18/2023]
Abstract
Gold nanorings are attractive as plasmonic metal nanocrystals because they have a hollow inner cavity. Their enhanced electric field inside the ring cavity is accessible, which is highly desirable for assembling with other optical components and studying their plasmon-coupling behaviors. However, the lack of robust methods for synthesizing size-controllable and uniform Au nanorings severely impedes the study of their attractive plasmonic properties and plasmon-driven applications. Herein, an improved wet-chemistry method is reported for the synthesis of monodisperse colloidal Au nanorings. Using circular Au nanodisks with different thicknesses and diameters as templates, Au nanorings are synthesized with thicknesses varied from ≈30 to ≈50 nm and cavity sizes varied from ≈90 to ≈40 nm. The produced Au nanorings are assembled with colloidal Au nanospheres to yield Au nanoring-nanosphere heterodimers in sphere-in-ring and sphere-on-ring configurations on substrates. The sphere-in-ring heterodimers exhibit the interesting feature of plasmonic Fano resonance upon the excitation of the dark quadrupolar plasmon mode of the Au nanorings. The open cavity in a nanoring holds a great promise for studying plasmon-coupled systems, which will facilitate the construction of advanced metamaterials and high-performance Fano-based devices.
Collapse
Affiliation(s)
- Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Yunhe Lai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, China
| |
Collapse
|
6
|
Steinhaus A, Chakroun R, Müllner M, Nghiem TL, Hildebrandt M, Gröschel AH. Confinement Assembly of ABC Triblock Terpolymers for the High-Yield Synthesis of Janus Nanorings. ACS NANO 2019; 13:6269-6278. [PMID: 31082201 DOI: 10.1021/acsnano.8b09546] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Block copolymers are versatile building blocks for the self-assembly of functional nanostructures in bulk and solution. While spheres, cylinders, and bilayer sheets are thermodynamically preferred shapes and frequently observed, ring-shaped nanoparticles are more challenging to realize due to energetic penalties that originate from their anisotropic curvature. Today, a handful of concepts exist that produce core-shell nanorings, while more complex ( e. g., patchy) nanorings are currently out of reach and have only been predicted theoretically. Here, we demonstrate that confinement assembly of properly designed ABC triblock terpolymers is a general route to synthesize Janus nanorings in high purity. The triblock terpolymer self-assembles in the spherical confinement of nanoemulsion droplets into prolate ellipsoidal microparticles with an axially stacked lamellar-ring ( lr)-morphology. We clarified and visualized this complex, yet well-ordered, morphology with transmission electron tomography. Blocks A and C formed stacks of lamellae with the B microdomain sandwiched in-between as nanorings. Cross-linking of the B-rings allowed disassembly of the microparticles into Janus nanorings carrying two strictly separated polymer brushes of A and C on the top and bottom. Decreasing the B volume leads to Janus spheres and rods, while an increase of B results in perforated and filled Janus disks. The confinement assembly of ABC triblock terpolymers is a general process that can be extended to other block chemistries and will allow to synthesize a large variety of complex micro- and nanoparticles that inspire studies in self-assembly, interfacial stabilization, colloidal packing, and nanomedicine.
Collapse
Affiliation(s)
- Andrea Steinhaus
- Physical Chemistry , University of Duisburg-Essen , 47057 Duisburg , Germany
| | - Ramzi Chakroun
- Physical Chemistry , University of Duisburg-Essen , 47057 Duisburg , Germany
| | - Markus Müllner
- Key Center for Polymers and Colloids, School of Chemistry and The University of Sydney Nano Institute (Sydney Nano) , The University of Sydney , Sydney 2006 , New South Wales , Australia
| | - Tai-Lam Nghiem
- Physical Chemistry , University of Duisburg-Essen , 47057 Duisburg , Germany
| | - Marcus Hildebrandt
- Physical Chemistry , University of Duisburg-Essen , 47057 Duisburg , Germany
| | - André H Gröschel
- Physical Chemistry , University of Duisburg-Essen , 47057 Duisburg , Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen , 45127 Essen , Germany
| |
Collapse
|
7
|
Jia X, Zhu M, Bian Q, Yue B, Zhuang Y, Wu B, Yu L, Ding J, Zhang J, Zhu L. Precisely Controlling Dimerization and Trimerization in Topochemical Reaction Templated by Biomacromolecules. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyong Jia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Qiao Bian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Yaping Zhuang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
8
|
Xie Y, Pan GM, Li YY, Chen K, Lin YJ, Zhou L, Wang QQ. Controlled growth and optical response of a semi-hollow plasmonic nanocavity and ultrathin sulfide nanosheets on Au/Ag platelets. NANOSCALE 2018; 10:1279-1285. [PMID: 29292820 DOI: 10.1039/c7nr07362c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we report a strategy to construct a semi-hollow plasmonic nanocavity and grow ultrathin sulfide nanosheets inside. The competition and cooperation of Au deposition with Ag etching based on flat Ag nanoplates are proposed. For the establishment of the semi-hollow nanocavity, Au shells are grown on Ag nanoplates, which serve as a stable frame, followed by partial etching of the Ag nanoplates. By controlling the thickness of the initial Ag nanoplates or the injected amount of etchant, the nanocavity size is fine-tuned. Significantly, the remaining unetched Ag layers provide a flat platform for the growth of 2D ultrathin sulfides of Ag2S and CdS inside the semi-hollow plasmonic nanocavity. Strong plasmon resonance and large local field enhancement are exhibited inside the plasmonic cavity where the ultrathin semiconductor sulfides are grown, indicating strong plasmon-exciton interactions in the hybrids. Furthermore, this synthetic approach is extended to grow other metal sulfides such as Bi2S3 and PbS. The combination of a flat plasmonic cavity with ultrathin semiconductor nanosheets in this study provides a new strategy for the development of unique plasmon-based hybrids with excellent optical properties.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|