1
|
Maeda Y, Iguchi Y, Zhao P, Suwa A, Taki Y, Kawada K, Yamada M, Ehara M, Kako M. Switching Photoluminescence Wavelength of Arylated Single-walled Carbon Nanotubes by Utilizing Steric Hindrance in Reductive Arylation. Chemistry 2025; 31:e202404529. [PMID: 39831380 PMCID: PMC11874903 DOI: 10.1002/chem.202404529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity and wavelength. The methyl or methoxy group at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm. Methyl groups at the 2,6-positions emerged two new PL peaks. These PL characteristics were prominently observed in the (6,4) SWCNT adducts, which were separated by gel chromatography. Theoretical calculations of model compounds showed that the effect of the substituent at the ortho-position on the relative stability of the isomers with different binding configurations was greater for the diarylated SWCNTs than for the hydroarylated SWCNTs. Experimental and theoretical calculation results revealed that the choice of substituents on the benzene ring was effectively used to modulate the PL wavelength, and these substituents had a considerable effect on the favorable binding configuration of the SWCNT adduct and relative stability and PL wavelength of the conformational isomers.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yui Iguchi
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Pei Zhao
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Atsushi Suwa
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yasunari Taki
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Kentaro Kawada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Michio Yamada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Masahiro Ehara
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Masahiro Kako
- Department of Engineering ScienceThe University of Electro-Communications182-8585TokyoJapan
| |
Collapse
|
2
|
Zhang Y, Jia MR, Liu XY, Fang WH, Cui G. Photoinduced Dynamics of a Single-Walled Carbon Nanotube with a sp 3 Defect: The Importance of Excitonic Effects. J Phys Chem A 2024; 128:3311-3320. [PMID: 38654690 DOI: 10.1021/acs.jpca.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Ru Jia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Oskin P, Demkina I, Dmitrieva E, Alferov S. Functionalization of Carbon Nanotubes Surface by Aryl Groups: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1630. [PMID: 37242046 PMCID: PMC10220858 DOI: 10.3390/nano13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The review is devoted to the methods of introducing aryl functional groups to the CNT surface. Arylated nanotubes are characterized by extended solubility, and are widely used in photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on arylation methods according to the radical mechanism, such as the Gomberg-Bachmann and Billups reactions, and the decomposition of peroxides. At the same time, less common approaches are also considered. For each of the described reactions, a mechanism is presented in the context of the effect on the properties of functionalized nanotubes and their application. As a result, this will allow us to choose the optimal modification method for specific practical tasks.
Collapse
Affiliation(s)
- Pavel Oskin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
| | - Iraida Demkina
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Elena Dmitrieva
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
4
|
Weight BM, Sifain AE, Gifford BJ, Htoon H, Tretiak S. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects. ACS NANO 2023; 17:6208-6219. [PMID: 36972076 DOI: 10.1021/acsnano.2c08579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations. Our excited-state dynamics modeling uses a trajectory surface hopping algorithm accounting for excitonic effects with a configuration interaction approach. We find a strong chirality and defect-composition dependence on the population relaxation (varying over 50-500 fs) between the primary nanotube band gap excitation E11 and the defect-associated, single-photon-emitting E11* state. These simulations give direct insight into the relaxation between the band-edge states and the localized excitonic state, in competition with dynamic trapping/detrapping processes observed in experiment. Engineering fast population decay into the quasi-two-level subsystem with weak coupling to higher-energy states increases the effectiveness and controllability of these quantum light emitters.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540 United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
5
|
Weight B, Zheng M, Tretiak S. Signatures of Chemical Dopants in Simulated Resonance Raman Spectroscopy of Carbon Nanotubes. J Phys Chem Lett 2023; 14:1182-1191. [PMID: 36715511 PMCID: PMC9923748 DOI: 10.1021/acs.jpclett.2c03591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with organic sp2 or sp3 hybridization defects allow the robust tunability of many optoelectronic properties in these topologically interesting quasi-one-dimensional materials. Recent resonant Raman experiments have illuminated new features in the intermediate-frequency region upon functionalization that change with the degree of functionalization as well as with interactions between defect sites. In this Letter, we report ab initio simulated near-resonant Raman spectroscopy results for pristine and chemically functionalized SWCNT models and find new features concomitant with experimental observations. We are able to assign the character of these features by varying the frequency of the external Raman laser frequency near the defect-induced E11* optical transition using a perturbative treatment of the electronic structure of the system. The obtained insights establish relationships between the nanotube atomistic structure and Raman spectra facilitating further exploration of SWCNTs with tunable optical properties tuned by chemical functionalization.
Collapse
Affiliation(s)
- Braden
M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
- Center
for Integrated Nanotechnologies, Center for Nonlinear Studies, and
Theoretical Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ming Zheng
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergei Tretiak
- Center
for Integrated Nanotechnologies, Center for Nonlinear Studies, and
Theoretical Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Yu B, Naka S, Aoki H, Kato K, Yamashita D, Fujii S, Kato YK, Fujigaya T, Shiraki T. ortho-Substituted Aryldiazonium Design for the Defect Configuration-Controlled Photoluminescent Functionalization of Chiral Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:21452-21461. [PMID: 36384293 DOI: 10.1021/acsnano.2c09897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defect functionalization of single-walled carbon nanotubes (SWCNTs) by chemical modification is a promising strategy for near-infrared photoluminescence (NIR PL) generation at >1000 nm, which has advanced telecom and bio/medical applications. The covalent attachment of molecular reagents generates sp3-carbon defects in the sp2-carbon lattice of SWCNTs with bright red-shifted PL generation. Although the positional difference between proximal sp3-carbon defects, labeled as the defect binding configuration, can dominate NIR PL properties, the defect arrangement chemistry remains unexplored. Here, aryldiazonium reagents with π-conjugated ortho-substituents (phenyl and acetylene groups) were developed to introduce molecular interactions with nanotube sidewalls into the defect-formation chemical reaction. The functionalized chiral SWCNTs selectively emitted single defect PL in the wavelength range of ∼1230-1270 nm for (6,5) tubes, indicating the formation of an atypical binding configuration, different from those exhibited by typical aryl- or alkyl-functionalized chiral tubes emitting ∼1150 nm PL. Moreover, the acetylene-based substituent design enabled PL brightening and a subsequent molecular modification of the doped sites using click chemistry.
Collapse
Affiliation(s)
- Boda Yu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Aoki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Yamashita
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Shun Fujii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Tomczyk MM, Minoshima M, Kikuchi K, Blacha-Grzechnik A, Starosolski Z, Bhavane R, Zalewski M, Kuźnik N. Hybrid, dual visible and near-infrared fluorescence emission of (6,5) single-walled carbon nanotubes modified with fluorescein through aryl diazonium salt chemistry. NANOTECHNOLOGY 2022; 34:055703. [PMID: 36278289 DOI: 10.1088/1361-6528/ac9c6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.
Collapse
Affiliation(s)
- Mateusz Michał Tomczyk
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Agata Blacha-Grzechnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Zbigniew Starosolski
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Rohan Bhavane
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Mariusz Zalewski
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Nikodem Kuźnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| |
Collapse
|
9
|
Hayashi K, Niidome Y, Shiga T, Yu B, Nakagawa Y, Janas D, Fujigaya T, Shiraki T. Azide modification forming luminescent sp 2 defects on single-walled carbon nanotubes for near-infrared defect photoluminescence. Chem Commun (Camb) 2022; 58:11422-11425. [PMID: 36134499 DOI: 10.1039/d2cc04492g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azide functionalization produced luminescent sp2-type defects on single-walled carbon nanotubes, by which defect photoluminescence appeared in near infrared regions (1116 nm). Changes in exciton properties were induced by localization effects at the defect sites, creating exciton-engineered nanomaterials based on the defect structure design.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tamehito Shiga
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Boda Yu
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yasuto Nakagawa
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
10
|
Kozawa D, Wu X, Ishii A, Fortner J, Otsuka K, Xiang R, Inoue T, Maruyama S, Wang Y, Kato YK. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nat Commun 2022; 13:2814. [PMID: 35595760 PMCID: PMC9123200 DOI: 10.1038/s41467-022-30508-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. Organic color centers in single-walled carbon nanotubes can act as single-photon sources in the telecom range. Here the authors report the functionalization of air-suspended nanotubes through a vapor-phase photochemical reaction, demonstrating a further tailoring of quantum emitter materials.
Collapse
Affiliation(s)
- Daichi Kozawa
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Akihiro Ishii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan. .,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
12
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
13
|
Shiraki T. Molecular Functionalization of Carbon Nanotubes towards Near Infrared Photoluminescent Nanomaterials. CHEM LETT 2021. [DOI: 10.1246/cl.200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Rhodamine-Based Arylpropenone Azo Dyes as Dual Chemosensor for Cu2+/Fe3+ Detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Przypis L, Krzywiecki M, Niidome Y, Aoki H, Shiraki T, Janas D. Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide. Sci Rep 2020; 10:19877. [PMID: 33199740 PMCID: PMC7669876 DOI: 10.1038/s41598-020-76716-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.
Collapse
Affiliation(s)
- Lukasz Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Maciej Krzywiecki
- Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Haruka Aoki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
16
|
Gifford BJ, Kilina S, Htoon H, Doorn SK, Tretiak S. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Acc Chem Res 2020; 53:1791-1801. [PMID: 32805109 DOI: 10.1021/acs.accounts.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusSingle-walled carbon nanotubes (SWCNTs) show promise as light sources for modern fiber optical communications due to their emission wavelengths tunable via chirality and diameter dependency. However, the emission quantum yields are relatively low owing to the existence of low-lying dark electronic states and fast excitonic diffusion leading to carrier quenching at defects. Covalent functionalization of SWCNTs addresses this problem by brightening their infrared emission. Namely, introduction of sp3-hybridized defects makes the lowest energy transitions optically active for some defect geometries and enables further control of their optical properties. Such functionalized SWCNTs are currently the only material exhibiting room-temperature single photon emission at telecom relevant infrared wavelengths. While this fluorescence is strong and has the right wavelength, functionalization introduces a variety of emission peaks resulting in spectrally broad inhomogeneous photoluminescence that prohibits the use of SWCNTs in practical applications. Consequently, there is a strong need to control the emission diversity in order to render these materials useful for applications. Recent experimental and computational work has attributed the emissive diversity to the presence of multiple localized defect geometries each resulting in distinct emission energy. This Account outlines methods by which the morphology of the defect in functionalized SWCNTs can be controlled to reduce emissive diversity and to tune the fluorescence wavelengths. The chirality-dependent trends of emission energies with respect to individual defect morphologies are explored. It is demonstrated that defect geometries originating from functionalization of SWCNT carbon atoms along bonds with strong π-orbital mismatch are favorable. Furthermore, the effect of controlling the defect itself through use of different chemical groups is also discussed. Such tunability is enabled due to the formation of specific defect geometries in close proximity to other existing defects. This takes advantage of the changes in π-orbital mismatch enforced by existing defects and the resulting changes in reactivities toward formation of specific defect morphologies. Furthermore, the trends in emissive energies are highly dependent on the value of mod(n-m,3) for an (n,m) tube chirality. These powerful concepts allow for a targeted formation of defects that emit at desired energies based on SWCNT single chirality enriched samples. Finally, the impact of functionalization with specific types of defects that enforce certain defect geometries due to steric constraints in bond lengths and angles to the SWCNT are discussed. We further relate to a similar effect that is present in systems where high density of surface defects is formed due to high reactant concentration. The outlined strategies suggested by simulations are instrumental in guiding experimental efforts toward the generation of functionalized SWCNTs with tunable emission energies.
Collapse
Affiliation(s)
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | | | | | | |
Collapse
|
17
|
Shiraki T, Miyauchi Y, Matsuda K, Nakashima N. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization. Acc Chem Res 2020; 53:1846-1859. [PMID: 32791829 DOI: 10.1021/acs.accounts.0c00294] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ConspectusCarbon nanotubes (CNTs) have been central materials in nanoscience and nanotechnologies. Single-walled CNTs (SWCNTs) consisting of a cylindrical graphene show a metallic (met) or semiconducting (sc) property depending on their rolling up manner (chirality). The sc-SWCNTs show characteristic chirality-dependent optical properties of their absorption and photoluminescence (PL) in the near-infrared (NIR) region. These are derived from their highly π-conjugated structures having semiconducting crystalline sp2 carbon networks with defined nanoarchitectures that afford a strong quantum confinement and weak dielectric screening. Consequently, photoirradiation of the SWCNTs produces a stable and mobile exciton (excited electron-hole pair) even at room temperature, and the exciton properties dominate such optical phenomena in the SWCNTs. However, the mobile excitons decrease the PL efficiency due to nonradiative relaxation including collision with tube edges and relaxation to lower-lying dark states. A breakthrough regarding the efficient use of the mobile exciton for PL has recently been achieved by local chemical functionalization of the SWCNTs, in which the chemical reactions introduce local defects of oxygen and sp3 carbon atoms in the tube structures. The defect doping creates new emissive doped sites that have narrower band gaps and trap the mobile excitons, which provides locally functionalized SWCNTs (lf-SWCNTs). As a result, the localized exciton produces E11* PL with red-shifted wavelengths and enhanced PL quantum yields compared to the original E11 PL of the nonmodified SWCNTs.In this Account, we describe recently revealed fundamental properties of the lf-SWCNTs based on the analyses by photophysics, theoretical calculations, and electrochemistry combined with in situ PL spectroscopy. The new insight allows us to expand the wavelength regions of the NIR E11* PL derived from the localized exciton, in which upconversion generates a higher energy PL through thermal activation and proximal doped site formation using bis-aryldiazonium modifiers provides a much lower energy PL than typical E11* PL. Moreover, owing to the chemical reaction-dominant doping process, the molecular structure design of modifiers succeeds in producing functionalized lf-SWCNTs; namely, molecular functions are incorporated into the doped sites for their PL modulation. The wavelength changes/switching in the E11* PL selectively occurs by a supramolecular approach using molecular recognition and imine chemistry. Therefore, the local chemical functionalization of the SWCNTs is a key to designing the properties and creating their new functions of the lf-SWCNTs. Fundamental understanding of the doped site properties of the lf-SWCNTs and molecularly driven approaches for exciton and defect engineering would unveil the intrinsic natures of these materials, which is crucial for elevating the SWCNT-based nanotechnologies to the next stage. The resulting materials are of interest in the fields of high performance NIR-II imaging and sensing for bio/medical analyses and single-photon emitters in quantum information technology.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuhei Miyauchi
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Gifford BJ, Saha A, Weight BM, He X, Ao G, Zheng M, Htoon H, Kilina S, Doorn SK, Tretiak S. Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. NANO LETTERS 2019; 19:8503-8509. [PMID: 31682455 DOI: 10.1021/acs.nanolett.9b02926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecularly functionalized single-walled carbon nanotubes (SWCNTs) are potentially useful for fiber optical applications due to their room temperature single-photon emission capacity at telecommunication wavelengths. Several distinct defect geometries are generated upon covalent functionalization. While it has been shown that the defect geometry controls electron localization around the defect site, thereby changing the electronic structure and generating new optically bright red-shifted emission bands, the reasons for such localization remain unexplained. Our joint experimental and computational studies of functionalized SWCNTs with various chiralities show that the value of mod(n-m,3) in an (n,m) chiral nanotube plays a key role in the relative ordering of defect-dependent emission energies. This dependence is linked to the complex nodal characteristics of electronic wave function extending along specific bonds in the tube, which justifies the defect-geometry dependent exciton localization. This insight helps to uncover the essential structural motifs allowing tuning the redshifts of emission energies in functionalized SWCNTs.
Collapse
Affiliation(s)
| | - Avishek Saha
- CSIR-Central Scientific Instruments Organization , Chandigarh 160030 , India
| | | | | | - Geyou Ao
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | - Ming Zheng
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | | | | | | | | |
Collapse
|
19
|
Shiraki T, Yu B, Shiraishi T, Shiga T, Fujigaya T. Meta-linkage Design of Bis-aryldiazonium Modifiers for Wavelength Tuning of Near Infrared Photoluminescence from Locally Functionalized Single-walled Carbon Nanotubes. CHEM LETT 2019. [DOI: 10.1246/cl.190203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Boda Yu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomonari Shiraishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tamehito Shiga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Luo HB, Wang P, Wu X, Qu H, Ren X, Wang Y. One-Pot, Large-Scale Synthesis of Organic Color Center-Tailored Semiconducting Carbon Nanotubes. ACS NANO 2019; 13:8417-8424. [PMID: 31268668 DOI: 10.1021/acsnano.9b04087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Organic color center-tailored semiconducting single-walled carbon nanotubes are a rising family of synthetic quantum emitters that display bright defect photoluminescence molecularly tunable for imaging, sensing, and quantum information processing. A major advance in this area would be the development of a high-yield synthetic route that is capable of producing these materials well exceeding the current μg/mL scale. Here, we demonstrate that adding a chlorosulfonic acid solution of raw carbon nanotubes, sodium nitrite, and an aniline derivative into water readily leads to the synthesis of organic color center-tailored nanotubes. This unexpectedly simple one-pot reaction is highly scalable (yielding hundreds of milligrams of materials in a single run), efficient (reaction completes in seconds), and versatile (achieved the synthesis of organic color centers previously unattainable). The implanted organic color centers can be easily tailored by choosing from the more than 40 aniline derivatives that are commercially available, including many fluoroaniline and aminobenzoic acid derivatives, and that are difficult to convert into diazonium salts. We found this chemistry works for all the nanotube chiralities investigated. The synthesized materials are neat solids that can be directly dispersed in either water or an organic solvent by a surfactant or polymer depending on the specific application. The nanotube products can also be further sorted into single chirality-enriched fractions with defect-specific photoluminescence that is tunable over ∼1100 to ∼1550 nm. This one-pot chemistry thus provides a highly scalable synthesis of organic color centers for many potential applications that require large quantities of materials.
Collapse
Affiliation(s)
- Hong-Bin Luo
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Peng Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaoming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
- Maryland NanoCenter , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
21
|
Nißler R, Mann FA, Preiß H, Selvaggio G, Herrmann N, Kruss S. Chirality enriched carbon nanotubes with tunable wrapping via corona phase exchange purification (CPEP). NANOSCALE 2019; 11:11159-11166. [PMID: 31149692 DOI: 10.1039/c9nr03258d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have unique photophysical properties and serve as building blocks for biosensors, functional materials and devices. For many applications it is crucial to use chirality-pure SWCNTs, which requires sophisticated processes. Purification procedures such as wrapping by certain polymers, phase separation, density gradient centrifugation or gel chromatography have been developed and yield distinct SWCNT species wrapped by a specific polymer or surfactant. However, many applications require a different organic functionalization (corona) around the SWCNTs instead of the one used for the purification process. Here, we present a novel efficient and straightforward process to gain chirality pure SWCNTs with tunable functionalization. Our approach uses polyfluorene (PFO) polymers to enrich certain chiralities but the polymer is removed again and finally exchanged to any desired organic phase. We demonstrate this concept by dispersing SWCNTs in poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-{2,2'-bipyridine})] (PFO-BPy), which is known to preferentially solubilize (6,5)-SWCNTs. Then PFO-BPy is removed and recycled, while letting the SWCNTs adsorb/agglomerate on sodium chloride (NaCl) crystals, which act as a toluene-stable but water-soluble filler material. In the last step these purified SWCNTs are redispersed in different polymers, surfactants and ssDNA. This corona phase exchange purification (CPEP) approach was also extended to other PFO variants to enrich and functionalize (7,5)-SWCNTs. CPEP purified and functionalized SWCNTs display monodisperse nIR spectra, which are important for fundamental studies and applications that rely on spectral changes. We show this advantage for SWCNT-based nIR fluorescent sensors for the neurotransmitter dopamine and red-shifted sp3 defect peaks . In summary, CPEP makes use of PFO polymers for chirality enrichment but provides access to chirality enriched SWCNTs functionalized in any desired polymer, surfactant or biopolymer.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Florian A Mann
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Helen Preiß
- Institute of Physical Chemistry, Göttingen University, Germany.
| | | | - Niklas Herrmann
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Germany.
| |
Collapse
|
22
|
Brozena AH, Kim M, Powell LR, Wang Y. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat Rev Chem 2019; 3:375-392. [PMID: 32789186 PMCID: PMC7418925 DOI: 10.1038/s41570-019-0103-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previously unwelcome, defects are emerging as a new frontier of research, providing a molecular focal point to study the coupling of electrons, excitons, phonons and spin in low-dimensional materials. This opportunity is particularly intriguing in semiconducting single-walled carbon nanotubes, in which covalently bonding organic functional groups to the sp 2 carbon lattice can produce tunable sp 3 quantum defects that fluoresce brightly in the shortwave IR, emitting pure single photons at room temperature. These novel physical properties have made such synthetic defects, or 'organic colour centres', exciting new systems for chemistry, physics, materials science, engineering and quantum technologies. This Review examines progress in this emerging field and presents a unified description of this new family of quantum emitters, as well as providing an outlook of the rapidly expanding research and applications of synthetic defects.
Collapse
Affiliation(s)
- Alexandra H. Brozena
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Lyndsey R. Powell
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park,
MD, USA
| |
Collapse
|
23
|
Shiraki T, Niidome Y, Toshimitsu F, Shiraishi T, Shiga T, Yu B, Fujigaya T. Solvatochromism of near infrared photoluminescence from doped sites of locally functionalized single-walled carbon nanotubes. Chem Commun (Camb) 2019; 55:3662-3665. [PMID: 30855053 DOI: 10.1039/c9cc00829b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The doped sites of locally functionalized single-walled carbon nanotubes emit red-shifted and bright near-infrared photoluminescence compared to non-doped nanotubes. Here, we observe unique photoluminescent solvatochromism. Organic solvent environments induce photoluminescent energy shifts that linearly correlate with a solvent polarity function. A high responsiveness at the doped sites is found.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Turek E, Shiraki T, Shiraishi T, Shiga T, Fujigaya T, Janas D. Single-step isolation of carbon nanotubes with narrow-band light emission characteristics. Sci Rep 2019; 9:535. [PMID: 30679809 PMCID: PMC6345979 DOI: 10.1038/s41598-018-37675-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Lack of necessary degree of control over carbon nanotube (CNT) structure has remained a major impediment factor for making significant advances using this material since it was discovered. Recently, a wide range of promising sorting methods emerged as an antidote to this problem, all of which unfortunately have a multistep nature. Here we report that desired type of CNTs can be targeted and isolated in a single step using modified aqueous two-phase extraction. We achieve this by introducing hydration modulating agents, which are able to tune the arrangement of surfactants on their surface, and hence make selected CNTs highly hydrophobic or hydrophilic. This allows for separation of minor chiral species from the CNT mixture with up to 99.7 ± 0.02% selectivity without the need to carry out any unnecessary iterations. Interestingly, our strategy is also able to enrich the optical emission from CNTs under selected conditions.
Collapse
Affiliation(s)
- Edyta Turek
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomonari Shiraishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tamehito Shiga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
25
|
Shiraki T, Shiga T, Shiraishi T, Onitsuka H, Nakashima N, Fujigaya T. Multistep Wavelength Switching of Near-Infrared Photoluminescence Driven by Chemical Reactions at Local Doped Sites of Single-Walled Carbon Nanotubes. Chemistry 2018; 24:19162-19165. [PMID: 30370950 DOI: 10.1002/chem.201805342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 11/07/2022]
Abstract
Local chemical functionalization is used for defect doping of single-walled carbon nanotubes (SWNTs), to develop near-infrared photoluminescence (NIR PL) properties. We report the multistep wavelength shifting of the NIR PL of SWNTs through chemical reactions at local doped sites tethered to an arylaldehyde group. The PL wavelength of the doped SWNTs is modulated based on imine chemistry. This involves the imine formation of aldehyde groups with added arylamines, imine dissociation reaction, exchange reaction of bound arylamines in the imine, and the Kabachnik-Fields reaction of imine groups using diisopropyl phosphite. Using doped sites as a localized chemical reaction platform can exploit the versatile molecularly driven functionality of carbon nanotubes and related nanomaterials.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tamehito Shiga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomonari Shiraishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisashi Onitsuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
26
|
Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat Chem 2018; 10:1089-1095. [DOI: 10.1038/s41557-018-0126-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
|
27
|
Onitsuka H, Fujigaya T, Nakashima N, Shiraki T. Control of the Near Infrared Photoluminescence of Locally Functionalized Single-Walled Carbon Nanotubes via Doping by Azacrown-Ether Modification. Chemistry 2018; 24:9393-9398. [PMID: 29741218 DOI: 10.1002/chem.201800904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Indexed: 11/05/2022]
Abstract
Doped semiconducting single-walled carbon nanotubes (SWNTs) through local chemical functionalization (lf-SWNTs) show fascinating photoluminescence (PL) that appears with a longer wavelength and enhanced quantum yield compared to the original PL of non-modified SWNTs. In this study, we introduce an azacrown ether moiety at the doped sites of lf-SWNTs (CR-lf-SWNTs), and observe selective PL wavelength shifts depending on different interaction modes of silver ion inclusion and protonation of the amino group in the ring. Interestingly, their different values of the wavelength shifts show a clear correlation with calculated electron density of the nitrogen atom in the azacrown moiety in case of the inclusion form and the protonated form. This newly-observed responsiveness based on molecular interactions is expected to create doped sites that can versatilely control the PL functions based on molecular systems.
Collapse
Affiliation(s)
- Hisashi Onitsuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
28
|
Wu X, Kim M, Kwon H, Wang Y. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts. Angew Chem Int Ed Engl 2017; 57:648-653. [PMID: 29215774 DOI: 10.1002/anie.201709626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/06/2022]
Abstract
Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision.
Collapse
Affiliation(s)
- Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Hyejin Kwon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Wu X, Kim M, Kwon H, Wang Y. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaojian Wu
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Hyejin Kwon
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|