1
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Guo S, Sun Y, Li Z. Lysosome Imaging Based on Fluorescent Carbon Dots. Methods Mol Biol 2023; 2566:37-43. [PMID: 36152240 DOI: 10.1007/978-1-0716-2675-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lysosomes play key roles in different cellular processes such as autophagy, phagocytosis, and apoptosis. Lysosomal dysfunction is related to many diseases. Fluorescence lysosome staining strategy is valuable for the researches on the lysosome involvement in different pathological diagnosis. Here we describe fluorescence lysosome staining methods with carbon dots for the identification of lysosomes in living and fixed cells.
Collapse
Affiliation(s)
- Shuo Guo
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
4
|
Wang ZF, Nai XL, Xu Y, Pan FH, Tang FS, Qin QP, Yang L, Zhang SH. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans 2022; 51:12866-12875. [PMID: 35861361 DOI: 10.1039/d2dt01929a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel rhodium(III) complexes, [RhIII(QB1)Cl3(DMSO)] (RhN1), [RhIII(QB2)Cl3(CH3OH)]·CH3OH (RhN2), [RhIII(QB3)Cl3(CH3OH)]·CH3OH (RhS), and [RhIII(QB4)Cl3(DMSO)] (RhQ), bearing quinoline-benzopyran ligands (QB1-QB4) were synthesized and used to develop highly anticancer therapeutic and fluorescence imaging agents. Compared with the QB1-QB4 ligands (IC50 > 89.2 ± 1.7 μM for A549/DDP), RhN1, RhN2, RhS and RhQ exhibit selective cytotoxicity against lung carcinoma cisplatin-resistant A549/DDP (A549CDDP) cancer cells, with IC50 values in the range of 0.08-2.7 μM. The fluorescent imaging agent RhQ with the more extended planar QB4 ligand exhibited high anticancer activity in A549CDDP cells and was found in the cell nucleus fraction, whereas RhS had no fluorescence properties. RhQ and RhS may trigger cell apoptosis by causing DNA damage and initiating the mitochondrial dysfunction pathway. Furthermore, RhQ has a higher antitumor efficacy (ca. 55.3%) than RhS (46.4%) and cisplatin (CDDP, 33.1%), and RhQ demonstrated significantly lower toxicity in vivo than CDDP, making it a promising Rh(III)-based anticancer therapeutic and fluorescence imaging agent.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| | - Xiao-Ling Nai
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yue Xu
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Feng-Hua Pan
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Fu-Shun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China.
| | - Qi-Pin Qin
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Lin Yang
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| |
Collapse
|
5
|
Monteiro JHSK, Fetto NR, Tucker MJ, Sigoli FA, de Bettencourt-Dias A. Carbazole-Functionalized Dipicolinato Ln III Complexes Show Two-Photon Excitation and Viscosity-Sensitive Metal-Centered Emission. JOURNAL OF LUMINESCENCE 2022; 245:118768. [PMID: 35422532 PMCID: PMC9004684 DOI: 10.1016/j.jlumin.2022.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
EuIII and YbIII complexes with the carbazole-dipicolinato ligand dpaCbz2-, namely K3[Eu(dpaCbz)3] and K3[Yb(dpaCbz)3], were isolated. The EuIII complex displayed metal-centred emission upon one-photon excitation with a sensitized emission efficiency Φ L Ln of 1.8±0.3 %, corresponding to an intrinsic emission efficiency Φ Ln Ln of 46% and a sensitization efficiency of ηsens 3.9%, with an emission lifetime of the emissive state τ of 1.087±0.005 ms. The YbIII complex displayed Φ L Ln of 0.010±0.001 %, and a τ of 2.32±0.06 μs. The EuIII-centred emission was sensitized as well upon two-photon excitation and a two-photon absorption cross-section σ2PA of 63 GM at 750 nm was determined for the complex. The one- or two-photon sensitized emission intensity of the EuIII complex changes by more than two-fold when the solvent viscosity is varied in the range 0.5 - 200 cP and the emission is independent of dissolved oxygen. The YbIII complex displays a change in emission intensity as well. However, in this case, a dependence of the emission intensity on dissolved oxygen content was observed.
Collapse
Affiliation(s)
- Jorge H S K Monteiro
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
- current address: Department of Chemistry, Humboldt State University, Arcata CA, 95521 United States
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
- current address: Department of Chemistry, Biochemistry and Physics, The University of Tampa, Tampa, FL 33606 United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
| | - Fernando A Sigoli
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970 Brazil
| | | |
Collapse
|
6
|
Di X, Ge C, Liu Y, Shao C, Zhu HL, Liu HK, Qian Y. Monitoring hydrogen polysulfide during ferroptosis with a two-photon fluorescent probe. Talanta 2021; 232:122467. [PMID: 34074439 DOI: 10.1016/j.talanta.2021.122467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1), a member of reactive sulfur species (RSS), is primarily generated during the crosstalk between H2S and reactive oxygen species (ROS), which plays important role in physiological and pathological processes. Ferroptosis is a new non-classical mode of cell death, in which ROS-associated lipid peroxidation and iron-dependent accumulation are the main features. However, the biological effects of H2Sn on ferroptosis and the detailed mechanisms of action remain poorly understood. Thus, there is an urgent need to develop highly selective and sensitive chemical tools for monitoring H2Sn in living cells. Herein, we develop a two-photon fluorescent probe (PSP) for specifically imaging H2Sn in live cells and tumor spheroids. This probe exhibited a sensitive and selective response to H2Sn, which had been used for imaging exogenous and endogenous H2Sn in living cells by confocal imaging and high content imaging. PSP exhibits excellent photo-stability and two-photon imaging performance when irradiating at 880 nm in 3D HeLa multicellular tumor spheroids. Importantly, our studies revealed that H2Sn levels were significantly up-regulated during ferroptosis. These excellent properties ensure that PSP is a promising two-photon probe for exploring the biological and pathological effects of H2Sn during ferroptosis.
Collapse
Affiliation(s)
- Xiaojiao Di
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Chao Ge
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yani Liu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenwen Shao
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Ke Liu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yong Qian
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
7
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
8
|
Monteiro JHSK, Fetto NR, Tucker MJ, de Bettencourt-Dias A. Luminescent Carbazole-Based Eu III and Yb III Complexes with a High Two-Photon Absorption Cross-Section Enable Viscosity Sensing in the Visible and Near IR with One- and Two-Photon Excitation. Inorg Chem 2020; 59:3193-3199. [PMID: 32052955 DOI: 10.1021/acs.inorgchem.9b03561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The newly synthesized EuIII and YbIII complexes with the new carbazole-based ligands CPAD2- and CPAP4- display the characteristic long-lived metal-centered emission upon one- and two-photon excitation. The EuIII complexes show the expected narrow emission bands in the red region, with emission lifetimes between 0.382 and 1.464 ms and quantum yields between 2.7% and 35.8%, while the YbIII complexes show the expected emission in the NIR region, with emission lifetimes between 0.52 and 37.86 μs and quantum yields between 0.028% and 1.12%. Two-photon absorption cross sections (σ2PA) as high as 857 GM were measured for the two ligands. The complexes showed a strong dependence of the one- and two-photon sensitized emission intensity on solvent viscosity in the range of 0.5-200 cP in the visible and NIR region.
Collapse
Affiliation(s)
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | |
Collapse
|
9
|
Kumari P, Ansari SN, Kumar R, Saini AK, Mobin SM. Design and Construction of Aroyl-Hydrazone Derivatives: Synthesis, Crystal Structure, Molecular Docking and Their Biological Activities. Chem Biodivers 2019; 16:e1900315. [PMID: 31532059 DOI: 10.1002/cbdv.201900315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Here, we report the synthesis and characterization of four new aroyl-hydrazone derivatives L1 -L4 , and their structural as well as biological activities have been explored. In addition to docking with bovine serum albumin (BSA) and duplex DNA, the experimental results demonstrate the effective binding of L1 -L4 with BSA protein and calf thymus DNA (ct-DNA) which is in agreement with the docking results. Further biological activities of L1 -L4 have been examined through molecular docking with different proteins which are involved in the propagation of viral or cancer diseases. L1 shows best binding affinity with influenza A virus polymerase PB2 subunit (2VY7) with binding energy -11.42 kcal/mol and inhibition constant 4.23 nm, whereas L2 strongly bind with the hepatitis C virus NS5B polymerase (2WCX) with binding energy -10.47 kcal/mol and inhibition constant 21.06 nm. Ligand L3 binds strongly with TGF-beta receptor 1 (3FAA) and L4 with cancer-related EphA2 protein kinases (1MQB) with binding energy -10.61 kcal/mol, -10.02 kcal/mol and inhibition constant 16.67 nm and 45.41 nm, respectively. The binding energies of L1 -L4 are comparable with binding energies of their proven inhibitors. L1 , L3 and L4 can be considered as both 3FAA and 1MQB dual targeting anticancer agents, while L1 and L3 are both 2VY7 and 2WCX dual targeting antiviral agents. On the other side, L2 and L4 target only one virus related target (2WCX). Furthermore, the geometry optimizations of L1 -L4 were performed via density functional theory (DFT). Moreover, all four ligands (L1 -L4 ) were characterized by NMR, FT-IR, ESI-MS, elemental analysis and their molecular structures were validated by single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Pratibha Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Shagufi Naz Ansari
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Shaikh M Mobin
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
10
|
Tang X, Sun H, Nie J, Han X, Zhao Y, Zhang R, Ni Z. An o-hydroxyl aldehyde structure based naphthalimide derivative: Reversible photochromic properties and its application in ClO - detection in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:154-163. [PMID: 31035125 DOI: 10.1016/j.saa.2019.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
A bifunctional organic compound 2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinoline-5-carbaldehyde (BHC) with photochromic properties in solid state and probe detection for ClO- in complete water solution was synthesized and fully characterized. A 'white-yellow-white' reversible photochromic behavior could be observed when alternating UV/vis light irradiation on the solid BHC powder. Good fatigue resistance and adjustable bleaching rate were shown when heating conditions changes. In addition, BHC displayed a high selectivity and low detection limit (1.16 × 10-8 M) for ClO-. The photoluminescent fluorescence "on-off" recognition result can be easily identified and BHC has been tested for safely imaging living cells and detecting hypochlorite anion in vitro and vivo. A better water solubility of BHC effectively reduces damage caused by organic solvent in cell imaging progress.
Collapse
Affiliation(s)
- Xinxue Tang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Hao Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jing Nie
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Xiang'en Han
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yun Zhao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ran Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Zhonghai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| |
Collapse
|
11
|
Verma SK, Ansari SN, Kumari P, Mobin SM. Click Reaction Driven, Highly Fluorescent Dinuclear Organogold(I) Complex Exhibits a Dual Role: A Rare Au···H Interaction and an Antiproliferative Agent. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00291] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Gupta G, Kumari P, Ryu JY, Lee J, Mobin SM, Lee CY. Mitochondrial Localization of Highly Fluorescent and Photostable BODIPY-Based Ruthenium(II), Rhodium(III), and Iridium(III) Metal Complexes. Inorg Chem 2019; 58:8587-8595. [DOI: 10.1021/acs.inorgchem.9b00898] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Pratibha Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shaikh M. Mobin
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
13
|
Yi R, Das P, Lin F, Shen B, Yang Z, Zhao Y, Hong L, He Y, Hu R, Song J, Qu J, Liu L. Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I&II bioimaging. OPTICS EXPRESS 2019; 27:12360-12372. [PMID: 31052777 DOI: 10.1364/oe.27.012360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two-photon excited fluorescence (TPEF) plays an important role in bioimaging, the longer excitation wavelength improves its imaging depths, which gives us deeper biological information. Here, we reported the two-photon absorption of a small squaraine dye (SD), and we found that the TPEF of the small SD can be enhanced significantly using albumin, the TPEF of SD in water was enhanced 17.7 times by adding bull serum albumin (BSA) in the solution. Meanwhile, the cell imaging results indicated that the SD can enter cell effectively in less than 30 min and emit bright TPEF. Furthermore, the SD showed excellent stability against photobleaching in near-infrared II (1200 nm). The cytotoxicity experiment showed that the cytotoxicity of SD is relatively low. Our work demonstrates the excellent two-photon effect of SD in cells, potential application value of SD in two-photon bioimaging, protein detection and near infrared sensing.
Collapse
|
14
|
Kumari P, Verma SK, Mobin SM. A facile two-photon fluorescent probe: an endoplasmic reticulum tracker monitoring ER stress and vesicular transport to lysosomes. Chem Commun (Camb) 2019; 55:294-297. [DOI: 10.1039/c8cc07429a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The two-photon fluorescent organic probe ERLp selectively labels the endoplasmic reticulum in live cells and tumor spheroids. ERLp can also monitor ER dynamic changes during ER stress and vesicle transport from the ER to the lysosome in living cells.
Collapse
Affiliation(s)
- Pratibha Kumari
- Discipline for Biosciences and Bio-Medical Engineering
- Indian Institute of Technology Indore
- Simrol Indore 453552
- India
| | - Sanjay K. Verma
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Simrol Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline for Biosciences and Bio-Medical Engineering
- Indian Institute of Technology Indore
- Simrol Indore 453552
- India
- Discipline of Chemistry
| |
Collapse
|
15
|
Wang W, Ning P, Wang Q, Zhang W, Jiang J, Feng Y, Meng X. pH-Independent two-photon fluorescent lysotrackers for real-time monitoring autophagy. J Mater Chem B 2018; 6:1764-1770. [PMID: 32254248 DOI: 10.1039/c8tb00229k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two carbazole-based two-photon fluorescent lysotrackers with different electron-donating groups (a methoxyl group for Lyso-MCO and a dimethylamino group for Lyso-NCO, respectively) have been developed from simple starting materials via an only 2-step procedure. Both of them exhibit pH-independent and specific lysosome location with a rapid staining rate, high photostability and deep issue penetration along with large two-photon absorption action cross-sections. By virtue of the better two-photon absorption properties of Lyso-NCO, it was chosen to visually monitor lysosomal tracking and autophagy. Compared with the approach of GFP-LC3 for autophagy detection, lysotracker Lyso-NCO achieved efficient and real-time visualization of the membrane fusion period in the autophagy process through detecting the level of the co-localization coefficients between Lyso-NCO and Mitotracker Red FM (MTR) in live cells.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Yao H, Zhuang Z, Yao J, Zhou J, Zhao Z. Photostable and biocompatible AIE-active conjugated polyelectrolytes for efficient heparin detection and specific lysosome labelling. J Mater Chem B 2018; 6:6360-6364. [DOI: 10.1039/c8tb02053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of new conjugated polyelectrolytes (CPEs) with emissive tetraphenylethene-containing backbones and specific targeting pendants are synthesized and characterized.
Collapse
Affiliation(s)
- Yinan Wang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Hongming Yao
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Zeyan Zhuang
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Jinya Yao
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Zujin Zhao
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
17
|
Verma SK, Kumari P, Ansari SN, Ansari MO, Deori D, Mobin SM. A novel mesoionic carbene based highly fluorescent Pd(ii) complex as an endoplasmic reticulum tracker in live cells. Dalton Trans 2018; 47:15646-15650. [DOI: 10.1039/c8dt02778a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of new organometallic MIC based mononuclear Pd(ii) complex 1, specifically target ER of live cells and have fluorescence recovery after photobleaching (FRAP) property.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaikh M. Mobin
- Discipline of Chemistry
- India
- Discipline of Biosciences and Biomedical Engineering
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|