1
|
Pan P, Kang X, Zhu M. Preparation Methods of Metal Nanoclusters. Chemistry 2025; 31:e202404528. [PMID: 39985476 DOI: 10.1002/chem.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoclusters, also known as ultrasmall nanoparticles, represent a promising class of nanomaterials due to their atomically precise characterizations and intriguing chemical-physical properties. The preparation is the cornerstone for advancing the nanocluster science, facilitating their structural determination, property investigation, and practical application. We have been devoted to exploring new and efficient approaches for the high-yield preparation of metal nanoclusters with customized structures and properties. We have proposed and developed four methodologies for the nanocluster preparation, including kinetic control, seeded growth, in situ two-phase ligand exchange, and metal exchange. More than 200 metal nanoclusters have been synthesized and structurally determined, laying the foundation for the elucidation of structure evolutions and structure-property correlations. In this concept, we emphasized our progress in proposing and developing the synthetic mythologies of metal nanoclusters. This Concept hopefully provides researchers attempting to study the preparation methods of metal nanoclusters with several feasible synthetic routes.
Collapse
Affiliation(s)
- Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
2
|
Muñoz-Castro A. Bonding Interaction Within Concentric Structural Layers in Gold Superatoms. The Concentric Bond. Chemphyschem 2025; 26:e202400892. [PMID: 39530692 DOI: 10.1002/cphc.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Ligand-protected gold clusters display a rich structural diversity, featuring remarkable structures such as Au25(SR)18, Au55(PPh3)12Cl6, and CuAu144(SR)60 3+, involving a central core composed of consecutive layers. The respective Au@Au12, Au@Au12@Au42, and Cu@Au12@Au42@Au60 cores with concentric structural layers enable a variable bonding/antibonding character between the electronic shells ascribed to each layer. Here, we rationalize the bonding within concentric structural layers in order to gain a further understanding of the related bonding patterns in such species. The proposed bonding concept differs from the classical situation in adjacent atoms, now being considered between concentric shells and, thus, coined as the concentric bond. From this approach, the bonding/antibonding character of each concentric shell is evaluated, and its contribution to the overall bonding is discussed. The concentric bond enables building a clear picture of the bonding acting in the overall cluster under the superatom concept. Such an approach expands the understanding of multi-layered cluster cores and is useful to further rationalize the bonding situation in metallic nanostructures.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
3
|
ul-Haq T, Tahir A, Zubair U, Rafique F, Munir A, Haik Y, Hussain I, ur Rehman H. Au/TiO2 Thin Film with Ultra-Low Content of Gold: An Efficient Self-Supported Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reaction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Anderson ID, Wang Y, Aikens CM, Ackerson CJ. An ultrastable thiolate/diglyme ligated cluster: Au 20(PET) 15(DG) 2. NANOSCALE 2022; 14:9134-9141. [PMID: 35723454 DOI: 10.1039/d2nr02426h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The synthesis and characterization of an Au20(PET)15(DG)2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au20(PET)16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol-1 for diglyme, which is comparable to the value of ∼40 kcal mol-1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au20(PET)15(DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
5
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
6
|
Klein K, Hayduk M, Kollenda S, Schmiedtchen M, Voskuhl J, Epple M. Covalent Attachment of Aggregation-Induced Emission Molecules to the Surface of Ultrasmall Gold Nanoparticles to Enhance Cell Penetration. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061788. [PMID: 35335152 PMCID: PMC8949416 DOI: 10.3390/molecules27061788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Three different alkyne-terminated aggregation-induced emission molecules based on a para-substituted di-thioether were attached to the surface of ultrasmall gold nanoparticles (2 nm) by copper-catalyzed azide–alkyne cycloaddition (click chemistry). They showed a strong fluorescence and were well water-dispersible, in contrast to the dissolved AIE molecules. The AIE-loaded nanoparticles were not cytotoxic and easily penetrated the membrane of HeLa cells, paving the way for an intracellular application of AIE molecules, e.g., for imaging.
Collapse
Affiliation(s)
- Kai Klein
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
| | - Matthias Hayduk
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
| | - Marco Schmiedtchen
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
| | - Jens Voskuhl
- Organic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (M.H.); (M.S.)
- Correspondence: (J.V.); (M.E.)
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany; (K.K.); (S.K.)
- Correspondence: (J.V.); (M.E.)
| |
Collapse
|
7
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Zhou M, Bao Y, Jin S, Wen S, Chen S, Zhu M. [Ag 71(S- tBu) 31(Dppm)](SbF 6) 2: an intermediate-sized metalloid silver nanocluster containing a building block of Ag 64. Chem Commun (Camb) 2021; 57:10383-10386. [PMID: 34542129 DOI: 10.1039/d1cc04934h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An intermediate-sized atomically precise metalloid silver nanocluster [Ag71(SR)31(Dppm)](SbF6)2 (Dppm = bis (diphenylphosphino)methane, SR = S-tBu) is reported, which comprises one building block Ag64, six SR5 pentagons, one sole SR ligand, a DppmAg2 handle, and an Ag5 lid. Structurally, a decahedron Ag23 kernel is observed in the metalloid silver nanocluster. Moreover, the Ag64 unit provides insights into the growth of large clusters such as Ag136(SR)64Cl3 and Ag141(SR)40Br12via assembly. The observed decahedron Ag23 provides a deeper understanding on Marks decahedron in larger nanoclusters, and the [Ag71(S-tBu)31(Dppm)](SbF6)2 uses Ag64 as a building block to predict the structure of larger metalloid nanoclusters.
Collapse
Affiliation(s)
- Manman Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Yizheng Bao
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shan Jin
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuaishuai Wen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuang Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Manzhou Zhu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| |
Collapse
|
9
|
Domínguez-Castro A, Frauenheim T. Impact of vibronic coupling effects on light-driven charge transfer in pyrene-functionalized middle and large-sized metalloid gold nanoclusters from Ehrenfest dynamics. Phys Chem Chem Phys 2021; 23:17129-17133. [PMID: 34355230 DOI: 10.1039/d1cp02890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical calculations are an effective strategy to complement and understand the experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach are performed to reveal for the first time the electron dynamics for the charge separation of pyrene-functionalized middle-sized Au70S20(PH3)16 and large-sized Au108S24(PR3)16 (R = H, CH3, C2H5, C6H5) clusters. The proposed mechanism uncovers an ultrafast and irreversible photoinduced charge transfer from the gold nanocluster (GNC) unit to the pyrene derivative in all cases. By a Fourier transform analysis of the dynamics, the effect of vibronic couplings is highlighted. The Au108S24(PPh3)15PPh2Pyr system exhibits the best performance for charge separation.
Collapse
|
10
|
Muñoz‐Castro A. Au
70
S
20
(PPh
3
)
12
as Superatomic Analog to 18‐electron Transition‐Metal Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alvaro Muñoz‐Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingenieria Universidad Autonoma de Chile El Llano Subercaseaux 2801 Santiago Chile
| |
Collapse
|
11
|
Zhang B, Chen J, Cao Y, Chai OJH, Xie J. Ligand Design in Ligand-Protected Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004381. [PMID: 33511773 DOI: 10.1002/smll.202004381] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The design of surface ligands is crucial for ligand-protected gold nanoclusters (Au NCs). Besides providing good protection for Au NCs, the surface ligands also play the following two important roles: i) as the outermost layer of Au NCs, the ligands will directly interact with the exterior environment (e.g., solvents, molecules and cells) influencing Au NCs in various applications; and ii) the interfacial chemistry between ligands and gold atoms can determine the structures, as well as the physical and chemical properties of Au NCs. A delicate ligand design in Au NCs (or other metal NCs) needs to consider the covalent bonds between ligands and gold atoms (e.g., gold-sulfur (Au-S) and gold-phosphorus (Au-P) bond), the physics forces between ligands (e.g., hydrophobic and van der Waals forces), and the ionic forces between the functional groups of ligands (e.g., carboxylic (COOH) and amine group (NH2 )); which form the underlying chemistry and discussion focus of this review article. Here, detailed discussions on the effects of surface ligands (e.g., thiolate, phosphine, and alkynyl ligands; or hydrophobic and hydrophilic ligands) on the synthesis, structures, and properties of Au NCs; highlighting the design principles in the surface engineering of Au NCs for diverse emerging applications, are provided.
Collapse
Affiliation(s)
- Bihan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jishi Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
12
|
Wetzel O, Hosseini S, Loza K, Heggen M, Prymak O, Bayer P, Beuck C, Schaller T, Niemeyer F, Weidenthaler C, Epple M. Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). J Phys Chem B 2021; 125:5645-5659. [PMID: 34029093 DOI: 10.1021/acs.jpcb.1c02512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Shabnam Hosseini
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
13
|
Gu W, Zhao Y, Zhuang S, Zha J, Dong J, You Q, Gan Z, Xia N, Li J, Deng H, Wu Z. Unravelling the Structure of a Medium‐Sized Metalloid Gold Nanocluster and its Filming Property. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jingwu Dong
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Qing You
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| |
Collapse
|
14
|
Gu W, Zhao Y, Zhuang S, Zha J, Dong J, You Q, Gan Z, Xia N, Li J, Deng H, Wu Z. Unravelling the Structure of a Medium-Sized Metalloid Gold Nanocluster and its Filming Property. Angew Chem Int Ed Engl 2021; 60:11184-11189. [PMID: 33635550 DOI: 10.1002/anie.202100879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/25/2023]
Abstract
Unravelling the structure of thiolated metalloid gold nanoclusters in the medium-sized range by single crystal X-ray crystallography (SCXC) is challenging. Herein, we successfully synthesized a novel Au67 (SR)35 nanocluster, and unravelled its single crystal structure by SCXC, which features a mix-structured Au48 kernel protected by one Au4 (SR)5 staple and fifteen Au(SR)2 staples. Unprecedentedly, this structure can be thermally induced to aggregate into larger nanoparticles and self-deposit to form a gold nanoparticles film onto the walls of a vial or other substrates such as quartz, mica or ceramic, which can be developed into a facile, substrate-universal and scalable filming method. The film exhibits high sensitivity, uniformity and recyclability as a surface-enhanced Raman scattering (SERS) substrate and can be applied for detecting multiple organic pollutants.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingwu Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
15
|
Kunz T, Şahin O, Schrenk C, Schnepf A. LiEC(SiMe 3) 3 (E = Se, Te) as a new donor of chalcogen atoms for the generation of binary [(R xGe y)E z] cage compounds with unique structural features. Dalton Trans 2021; 50:2663-2670. [PMID: 33529294 DOI: 10.1039/d0dt04280c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of GeCl2·dioxane with LiEC(SiMe3)3 (E = Se, Te) shows unexpected products different from those of the previously presented reaction system GeCl2·dioxane/LiSC(SiMe3)3. Here, LiEC(SiMe3)3 (E = Se, Te) acts as a chalcogen atom donor and simultaneously as a substituent to give cage compounds of the composition [(RxGey)Ez] with unique structural features of the Ge/E cores. The molecular structures are presented together with a possible formation mechanism of the selenium/germanium cage compound [{((SiMe3)3CGe)2GeSe4}2(μ2-Se)2] supported by quantum chemical calculations.
Collapse
Affiliation(s)
- Tanja Kunz
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Orhan Şahin
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| |
Collapse
|
16
|
Kenzler S, Schnepf A. Metalloid gold clusters - past, current and future aspects. Chem Sci 2021; 12:3116-3129. [PMID: 34164079 PMCID: PMC8179421 DOI: 10.1039/d0sc05797e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gold chemistry and the synthesis of colloidal gold have always caught the attention of scientists. While Faraday was investigating the physical properties of colloidal gold in 1857 without probably knowing anything about the exact structure of the molecules, 150 years later the working group of Kornberg synthesized the first structurally characterized multi-shell metalloid gold cluster with more than 100 Au atoms, Au102(SR)44. After this ground-breaking result, many smaller and bigger metalloid gold clusters have been discovered to gain a better understanding of the formation process and the physical properties. In this review, first of all, a general overview of past investigations is given, leading to metalloid gold clusters with staple motifs in the ligand shell, highlighting structural differences in the cores of these clusters. Afterwards, the influence of the synthetic procedure on the outcome of the reactions is discussed, focusing on recent results from our group. Thereby, newly found structural motifs are taken into account and compared to the existing ones. Finally, a short outlook on possible subsequent reactions of these metalloid gold clusters is given.
Collapse
Affiliation(s)
- Sebastian Kenzler
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| |
Collapse
|
17
|
Ruks T, Loza K, Heggen M, Ottmann C, Bayer P, Beuck C, Epple M. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. Chembiochem 2021; 22:1456-1463. [PMID: 33275809 PMCID: PMC8248332 DOI: 10.1002/cbic.202000761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 μM by ITC and 0.9 μM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.
Collapse
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| |
Collapse
|
18
|
van der Meer SB, Seiler T, Buchmann C, Partalidou G, Boden S, Loza K, Heggen M, Linders J, Prymak O, Oliveira CLP, Hartmann L, Epple M. Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence-Defined Macromolecules. Chemistry 2021; 27:1451-1464. [PMID: 32959929 PMCID: PMC7898849 DOI: 10.1002/chem.202003804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Christin Buchmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Georgia Partalidou
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophia Boden
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Marc Heggen
- Ernst Ruska-Center for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich GmbH52425JülichGermany
| | - Jürgen Linders
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | | | - Laura Hartmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| |
Collapse
|
19
|
Ruks T, Loza K, Heggen M, Prymak O, Sehnem AL, Oliveira CLP, Bayer P, Beuck C, Epple M. Peptide-Conjugated Ultrasmall Gold Nanoparticles (2 nm) for Selective Protein Targeting. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Andre Luiz Sehnem
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Cristiano L. P. Oliveira
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
20
|
Pillay MN, van Zyl WE, Liu CW. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. NANOSCALE 2020; 12:24331-24348. [PMID: 33300525 DOI: 10.1039/d0nr05632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis remains a major strength in chemistry and materials science and relies on the formation of new molecules and diverse forms of matter. The construction and identification of large molecules poses specific challenges and has historically lain in the realm of biological (organic)-type molecules with evolved synthesis methods to support such endeavours. But with the development of analytical tools such as X-ray crystallography, new synthesis methods toward large metal-based (inorganic) molecules and clusters have come to the fore, making it possible to accurately determine the precise distribution of hundreds of atoms in large clusters. In this review, we focus on different synthesis protocols used to form new metal clusters such as templating, alloying and size-focusing strategies. A specific focus is on group 11 metals (Cu, Ag, Au) as they currently predominate large metal cluster investigations and related Au and Ag bulk surface phenomena. This review focuses on metal clusters that have very high-nuclearity, i.e. with 50 or more metal centers within the isolated cluster. This size domain, it is believed, will become increasingly important for a variety of applications as these metal clusters are positioned at the interface between the molecular and bulk phases, whilst remaining a classic nanomaterial and retaining unique nano-sized properties.
Collapse
Affiliation(s)
- Michael N Pillay
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa.
| | | | | |
Collapse
|
21
|
Guschlbauer J, Vollgraff T, Xie X, Weigend F, Sundermeyer J. A Series of Homoleptic Linear Trimethylsilylchalcogenido Cuprates, Argentates and Aurates Cat[Me 3SiE-M-ESiMe 3] (M = Cu, Ag, Au; E = S, Se). Inorg Chem 2020; 59:17565-17572. [PMID: 33197182 DOI: 10.1021/acs.inorgchem.0c02808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The syntheses and XRD molecular structures of a complete series of silylsulfido metalates Cat[M(SSiMe3)2] (M = Cu, Ag, Au) and corresponding silylselenido metalates Cat[M(SeSiMe3)2] (M = Cu, Ag, Au) comprising lattice stabilizing organic cations (Cat = Ph4P+ or PPN+) are reported. Much to our surprise these homoleptic cuprates, argentates, and aurates are stable enough to be isolated even in the absence of any strongly binding phosphines or N-heterocyclic carbenes as coligands. Their metal atoms are coordinated by two silylchalcogenido ligands in a linear fashion. The silyl moieties of all anions show an unexpected gauche conformation of the silyl substituents with respect to the central axis Si-[E-M-E]-Si in the solid state. The energetic preference for the gauche conformation is confirmed by quantum chemical calculations and amounts to about 2-6 kJ/mol, thus revealing a rather shallow potential mainly depending on electronic effects of the metal. Furthermore, 2D HMQC methods were applied to detect the otherwise nonobservable NMR shifts of the 29Si and 77Se nuclei of the silylselenido compounds. Preliminary investigations reveal that these thermally and protolytically labile chalcogenido metalates are valuable precursors for the precipitation of binary coinage metal chalcogenide nanoparticles from organic solution and for coinage metal cluster syntheses.
Collapse
Affiliation(s)
- Jannick Guschlbauer
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Tobias Vollgraff
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
22
|
Vuong VQ, Madridejos JML, Aradi B, Sumpter BG, Metha GF, Irle S. Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters. Chem Sci 2020; 11:13113-13128. [PMID: 34094493 PMCID: PMC8163209 DOI: 10.1039/d0sc04514d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 "auorg" parameter set by connecting it to the electronic parameter of phosphorus in the "mio" parameter set. Although this connection could technically simply be accomplished by creating only the required additional Au-P repulsive potential, we found that the Au 6p and P 3d virtual atomic orbital energy levels exert a strong influence on the overall performance of the combined parameter set. Our optimized parameters are validated against density functional theory (DFT) geometries, ligand binding and cluster isomerization energies, ligand dissociation potential energy curves, and molecular orbital energies for relevant phosphine-ligated Au n clusters (n = 2-70), as well as selected experimental X-ray structures from the Cambridge Structural Database. In addition, we validate DFTB simulated far-IR spectra for several phosphine- and thiolate-ligated gold clusters against experimental and DFT spectra. The transferability of the parameter set is evaluated using DFT and DFTB potential energy surfaces resulting from the chemisorption of a PH3 molecule on the gold (111) surface. To demonstrate the potential of the DFTB method for quantum chemical simulations of metalloid gold clusters that are challenging for traditional DFT calculations, we report the predicted molecular geometry, electronic structure, ligand binding energy, and IR spectrum of Au108S24(PPh3)16.
Collapse
Affiliation(s)
- Van Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville TN USA
| | | | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen Bremen Germany
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge TN USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory Oak Ridge TN USA
| | - Gregory F Metha
- Department of Chemistry, The University of Adelaide South Australia 5005 Australia
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville TN USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory Oak Ridge TN USA
| |
Collapse
|
23
|
Berti B, Bortoluzzi M, Cesari C, Femoni C, Iapalucci MC, Mazzoni R, Vacca F, Zacchini S. Thermal Growth of Au-Fe Heterometallic Carbonyl Clusters Containing N-Heterocyclic Carbene and Phosphine Ligands. Inorg Chem 2020; 59:2228-2240. [PMID: 32003563 PMCID: PMC7997394 DOI: 10.1021/acs.inorgchem.9b02912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thermal reactions of [NEt4][Fe(CO)4(AuNHC)] [NHC = IMes ([NEt4][1]) or IPr ([NEt4][2]); IMes = C3N2H2(C6H2Me3)2; IPr = C3N2H2(C6H3iPr2)2], Fe(CO)4(AuNHC)2 [NHC = IMes (3) or IPr (4)], Fe(CO)4(AuIMes)(AuIPr) (5), and Fe(CO)4(AuNHC)(AuPPh3) [NHC = IMes (6) or IPr (7)] were investigated in different solvents [CH2Cl2, CH3CN, dimethylformamide, and dimethyl sulfoxide (dmso)] and at different temperatures (50-160 °C) in an attempt to obtain higher-nuclearity clusters. 1 and 2 completely decomposed in refluxing CH2Cl2, resulting in [Fe2(CO)8(AuNHC)]- [NHC = IMes (10) or IPr (11)]. Traces of [Fe3(CO)10(CCH3)]- (12) were obtained as a side product. Conversely, 6 decomposed in refluxing CH3CN, affording the new cluster [Au3{Fe(CO)4}2(PPh3)2]- (15). The relative stability of the two isomers found in the solid state structure of 15 was computationally investigated. 4 was very stable, and only after prolonged heating above 150 °C in dmso was limited decomposition observed, affording small amounts of [Fe3S(CO)9]2- (9), [HFe(CO)4]- (16), and [Au16S{Fe(CO)4}4(IPr)4]n+ (17). A dicationic nature for 17 was proposed on the basis of density functional theory calculations. All of the other reactions examined led to species that were previously reported. The molecular structures of the new clusters 11, 12, 15, and 17 were determined by single-crystal X-ray diffraction as their [NEt4][11]·1.5toluene, [Au(IMes)2][15]·0.67CH2Cl2, [NEt4][12], and [17][BF4]n·solvent salts, respectively.
Collapse
Affiliation(s)
- Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi , Ca' Foscari University of Venice , Via Torino , 155-30175 Mestre, Venice , Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Federico Vacca
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
24
|
Kenzler S, Schrenk C, Schnepf A. Au 54(Et 3P) 18Cl 12: a structurally related cluster to Au 32(Et 3P) 12Cl 8 gives insight into the formation process. Dalton Trans 2020; 49:10765-10771. [PMID: 32626863 DOI: 10.1039/d0dt02262d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The reaction of Et3PAuCl with NaBH4 in EtOH leads to the metalloid gold cluster Au32(Et3P)12Cl8 (Au32) or Au54(Et3P)18Cl12 (Au54) depending on the work-up procedure of the reaction mixture. The molecular structure of Au54 is determined by X-ray diffraction and can be described as a fusion of two Au32 clusters showing a similar solubility. The metalloid cluster Au54 can be either described by a shell model or as a combination of tetrahedral Au4X units (X = Cl, Et3P); edge and face sharing, whereas tetrahedral Au4 units are a central motif in gold cluster chemistry. This novel Au54 gold cluster gives another unique insight into the formation or decomposition process of metalloid clusters, indicating that Au32 and Au54 form from a single yet unknown cluster source.
Collapse
Affiliation(s)
- Sebastian Kenzler
- Institute of Inorganic Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Claudio Schrenk
- Institute of Inorganic Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| |
Collapse
|
25
|
Bai Y, Lv Y, Weng S, Yu H, Zhu M. The Structure–Property Correlations in the Isomerism of Au
21
(SR)
15
Nanoclusters by Density Functional Theory Study. Chem Asian J 2019; 14:4303-4308. [DOI: 10.1002/asia.201901245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yuyuan Bai
- Department of Chemistry and Centre for Atomic Engineering of Advanced MaterialsAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University, Ministry of Education Hefei Anhui 230601 China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced MaterialsAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University, Ministry of Education Hefei Anhui 230601 China
| | - Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of Advanced MaterialsAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University, Ministry of Education Hefei Anhui 230601 China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced MaterialsAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University, Ministry of Education Hefei Anhui 230601 China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced MaterialsAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University, Ministry of Education Hefei Anhui 230601 China
| |
Collapse
|
26
|
Tian Z, Xu Y, Cheng L. New Perspectives on the Electronic and Geometric Structure of Au 70S 20(PPh 3) 12 Cluster: Superatomic-Network Core Protected by Novel Au 12(µ 3-S) 10 Staple Motifs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1132. [PMID: 31390811 PMCID: PMC6722785 DOI: 10.3390/nano9081132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
In order to increase the understanding of the recently synthesized Au70S20(PPh3)12 cluster, we used the divide and protect concept and superatom network model (SAN) to study the electronic and geometric of the cluster. According to the experimental coordinates of the cluster, the study of Au70S20(PPh3)12 cluster was carried out using density functional theory calculations. Based on the superatom complex (SAC) model, the number of the valence electrons of the cluster is 30. It is not the number of valence electrons satisfied for a magic cluster. According to the concept of divide and protect, Au70S20(PPh3)12 cluster can be viewed as Au-core protected by various staple motifs. On the basis of SAN model, the Au-core is composed of a union of 2e-superatoms, and 2e-superatoms can be Au3, Au4, Au5, or Au6. Au70S20(PPh3)12 cluster should contain fifteen 2e-superatoms on the basis of SAN model. On analyzing the chemical bonding features of Au70S20(PPh3)12, we showed that the electronic structure of it has a network of fifteen 2e-superatoms, abbreviated as 15 × 2e SAN. On the basis of the divide and protect concept, Au70S20(PPh3)12 cluster can be viewed as Au4616+[Au12(µ3-S)108-]2[PPh3]12. The Au4616+ core is composed of one Au2212+ innermost core and ten surrounding 2e-Au4 superatoms. The Au2212+ innermost core can either be viewed as a network of five 2e-Au6 superatoms, or be considered as a 10e-superatomic molecule. This new segmentation method can properly explain the structure and stability of Au70S20(PPh3)12 cluster. A novel extended staple motif [Au12(µ3-S)10]8- was discovered, which is a half-cage with ten µ3-S units and six teeth. The six teeth staple motif enriches the family of staple motifs in ligand-protected Au clusters. Au70S20(PPh3)12 cluster derives its stability from SAN model and aurophilic interactions. Inspired by the half-cage motif, we design three core-in-cage clusters with cage staple motifs, Cu6@Au12(μ3-S)8, Ag6@Au12(μ3-S)8 and Au6@Au12(μ3-S)8, which exhibit high thermostability and may be synthesized in future.
Collapse
Affiliation(s)
- Zhimei Tian
- Department of Chemistry, Anhui University, Hefei 230601, Anhui, China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, Anhui, China
| | - Yangyang Xu
- School of Social and Public Administration, East China University of Science and Technology, Shanghai 200237, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei 230601, Anhui, China.
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
27
|
van der Meer SB, Loza K, Wey K, Heggen M, Beuck C, Bayer P, Epple M. Click Chemistry on the Surface of Ultrasmall Gold Nanoparticles (2 nm) for Covalent Ligand Attachment Followed by NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7191-7204. [PMID: 31039607 DOI: 10.1021/acs.langmuir.9b00295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasmall gold nanoparticles (core diameter 2 nm) were surface-conjugated with azide groups by attaching the azide-functionalized tripeptide lysine(N3)-cysteine-asparagine with ∼117 molecules on each nanoparticle. A covalent surface modification with alkyne-containing molecules was then possible by copper-catalyzed click chemistry. The successful clicking to the nanoparticle surface was demonstrated with 13C-labeled propargyl alcohol. All steps of the nanoparticle surface conjugation were verified by extensive NMR spectroscopy on dispersed nanoparticles. The particle diameter and the dispersion state were assessed by high-resolution transmission electron microscopy (HRTEM), differential centrifugal sedimentation (DCS), and 1H-DOSY NMR spectroscopy. The clicking of fluorescein (FAM-alkyne) gave strongly fluorescing ultrasmall nanoparticles that were traced inside eukaryotic cells. The uptake of these nanoparticles after 24 h by HeLa cells was very efficient and showed that the nanoparticles even penetrated the nuclear membrane to a very high degree (in contrast to dissolved FAM-alkyne alone that did not enter the cell). About 8 fluorescein molecules were clicked to each nanoparticle.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| | - Marc Heggen
- Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB) , University of Duisburg-Essen , 45117 Essen , Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB) , University of Duisburg-Essen , 45117 Essen , Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) , University of Duisburg-Essen , Universitätsstr. 5-7 , 45117 Essen , Germany
| |
Collapse
|
28
|
Kunz T, Schrenk C, Schnepf A. Reactions of GeCl 2 with the Thiolate LiSC(SiMe 3 ) 3 : From thf Activation to Insertion of GeCl 2 Molecules into C-S Bonds. Chemistry 2019; 25:7210-7217. [PMID: 30908770 DOI: 10.1002/chem.201900573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 11/06/2022]
Abstract
The reaction system GeCl2 ⋅dioxane/LiSTsi (Tsi=C(SiMe3 )3 ) opens a fruitful area in germanium chemistry, depending on the stoichiometry and solvent used during the reaction. For example, the reaction of GeCl2 ⋅dioxane in toluene with two equivalents of the thiolate gives the expected germylene Ge(STsi)2 in excellent yield. This germylene readily reacts with hydrogen and acetylene, however, in a non-selective way. By using an excess amount of the thiolate and toluene as the solvent, the germanide [Ge(STsi)3 ][Li(thf)] is obtained. Performing the same reaction in thf leads to a C-H activation of thf to give (H7 C4 O)Ge[STsi](μ2 -S)2 Ge[STsi]2 , in which the thf molecule is still intact. Using a sub-stoichiometric amount of the thiolate leads to the heteroleptic compound [ClGe(STsi)]2 and to the insertion product (thf)Ge[S-GeCl2 -Tsi]2 , in which additional GeCl2 molecules insert into the C-S bonds of Ge(STsi)2 . The synthesis and the experimentally determined structures of all compounds are presented together with first reactivity studies of Ge(STsi)2 .
Collapse
Affiliation(s)
- Tanja Kunz
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
29
|
Samieegohar M, Sha F, Clayborne AZ, Wei T. ReaxFF MD Simulations of Peptide-Grafted Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5029-5036. [PMID: 30869899 DOI: 10.1021/acs.langmuir.8b03951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalized gold nanoparticles have critical applications in biodetection with surface-enhanced Raman spectrum and drug delivery. In this study, reactive force field molecular dynamics simulations were performed to study gold nanoparticles, which are modified with different short-chain peptides consisting of amino acid residues of cysteine and glycine in different grafting densities in the aqueous environment. Our study showed slight facet-dependent peptide adsorption on a gold nanoparticle with the 3 nm core diameter. Peptide chains prefer to adsorb on the Au(111) facet compared to those on other facets of Au(100) and Au(110). In addition to the stable thiol interaction with gold nanoparticle surfaces, polarizable oxygen and nitrogen atoms show strong interactions with the gold surface and polarize the gold nanoparticle surfaces with an overall positive charge. Charges of gold atoms vary according to their contacts with peptide atoms and lattice positions. However, at the outmost peptide layer, the whole functionalized Au nanoparticles exhibit overall negative electrostatic potential due to the grafted peptides. Moreover, simulations show that thiol groups can be deprotonated and subsequently protons can be transferred to water molecules and carboxyl groups.
Collapse
Affiliation(s)
- Mohammadreza Samieegohar
- Chemical Engineering Department , Howard University , 2366 Sixth Street , Washington , District of Columbia 20059 , United States
| | - Feng Sha
- Network Information Center , Xiamen University of Technology , 600 Ligong Road , Jimei District, Xiamen 361024 , Fujian Province, China
| | - Andre Z Clayborne
- Chemistry Department , Howard University , 525 College Street , Washington , District of Columbia 20059 , United States
| | - Tao Wei
- Chemical Engineering Department , Howard University , 2366 Sixth Street , Washington , District of Columbia 20059 , United States
| |
Collapse
|
30
|
Kenzler S, Fetzer F, Schrenk C, Pollard N, Frojd AR, Clayborne AZ, Schnepf A. Synthesis and Characterization of Three Multi‐Shell Metalloid Gold Clusters Au
32
(R
3
P)
12
Cl
8. Angew Chem Int Ed Engl 2019; 58:5902-5905. [DOI: 10.1002/anie.201900644] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastian Kenzler
- Institute of Inorganic Chemistry Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Florian Fetzer
- Institute of Inorganic Chemistry Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Claudio Schrenk
- Institute of Inorganic Chemistry Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Nia Pollard
- Department of Chemistry Howard University 525 College Street, NW Washington, D.C. 20059 USA
| | - Andrew R. Frojd
- Department of Chemistry University of Missouri—Kansas City 5110 Rockhill Road Kansas City MO 64110-2499 USA
| | - Andre Z. Clayborne
- Department of Chemistry Howard University 525 College Street, NW Washington, D.C. 20059 USA
| | - Andreas Schnepf
- Institute of Inorganic Chemistry Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
31
|
Kenzler S, Fetzer F, Schrenk C, Pollard N, Frojd AR, Clayborne AZ, Schnepf A. Synthese und Charakterisierung von drei mehrschaligen metalloiden Goldclustern der Zusammensetzung Au
32
(R
3
P)
12
Cl
8. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Kenzler
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Florian Fetzer
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Claudio Schrenk
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Nia Pollard
- Department of Chemistry Howard University 525 College Street, NW Washington, D.C. 20059 USA
| | - Andrew R. Frojd
- Department of Chemistry University of Missouri – Kansas City 5110 Rockhill Road Kansas City MO 64110-2499 USA
| | - Andre Z. Clayborne
- Department of Chemistry Howard University 525 College Street, NW Washington, D.C. 20059 USA
| | - Andreas Schnepf
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
32
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
33
|
Ruks T, Beuck C, Schaller T, Niemeyer F, Zähres M, Loza K, Heggen M, Hagemann U, Mayer C, Bayer P, Epple M. Solution NMR Spectroscopy with Isotope-Labeled Cysteine ( 13C and 15N) Reveals the Surface Structure of l-Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8 nm). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:767-778. [PMID: 30576151 DOI: 10.1021/acs.langmuir.8b03840] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52428 Jülich , Germany
| | | | | | | | | |
Collapse
|
34
|
Synthesis and characterization of size-controlled atomically precise gold clusters. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractIn this article, synthetic strategies and characterization methodologies of atomically precise gold clusters have been summarized. The typical and effective synthetic strategies including a systematic “size-focusing” methodology has been developed for attaining atomically precise gold clusters with size control. Another universal synthetic methodology is ligand exchange-induced size/structure transformation (LEIST) based on from one stable size to another. These two methodologies have largely expanded the “universe” of atomically precise gold clusters. Elite of typical synthetic case studies of ligand protected gold clusters are presented. Important characterization techniques of these atomically precise gold clusters also are included. The identification and characterization of gold clusters have been achieved in terms of nuclearity (size), molecular formulation, and geometrical structures by the combination of these techniques. The determination of gold cluster structure based on single crystals is of paramount importance in understanding the relationship of structure–property. The criterion and selection of these typical gold clusters are all “strictly” atomically precise that all have been determined ubiquitously by single crystal diffraction. These related crystallographic data are retrieved from Cambridge Crystallographic Data Centre (CCDC) up to 30th November 2017. Meanwhile, the cutting edge and other important characterization methodologies including electron diffraction (ED), extended X-ray absorption fine structure (EXFAS), and synchrotron sources are briefly reviewed. The new techniques hold the promise of pushing the limits of crystallization of gold clusters. This article is not just an exhaustive and up to date review, generally summarized synthetic strategies, but also a practical guide regarding gold cluster synthesis. We called it a “Cookbook” of ligand protected gold clusters, including synthetic recipes and characterization details.Graphical Abstract:
Collapse
|
35
|
Kaappa S, Malola S, Häkkinen H. Point Group Symmetry Analysis of the Electronic Structure of Bare and Protected Metal Nanocrystals. J Phys Chem A 2018; 122:8576-8584. [PMID: 30351094 PMCID: PMC6221371 DOI: 10.1021/acs.jpca.8b07923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
electronic structures of a variety of experimentally identified
gold and silver nanoclusters from 20 to 246 atoms, either unprotected
or protected by several types of ligands, are characterized by using
point group specific symmetry analysis. The delocalized electron states
around the HOMO–LUMO energy gap, originating from the metal
s-electrons in the cluster core, show symmetry characteristics according
to the point group that describes best the atomic arrangement of the
core. This indicates strong effects of the lattice structure and overall
shape of the metal core to the electronic structure, which cannot
be captured by the conventional analysis based on identification of
spherical angular momentum shells in the “superatom”
model. The symmetry analysis discussed in this paper is free from
any restrictions regarding shape or structure of the metal core, and
is shown to be superior to the conventional spherical harmonics analysis
for any symmetry that is lower than Ih. As an immediate application, we also demonstrate
that it is possible to reach considerable savings in computational
time by using the symmetry information inside a conventional linear-response
calculation for the optical absorption spectrum of the Ag55 cluster anion, without any loss in accuracy of the computed spectrum.
Our work demonstrates an efficient way to analyze the electronic structure
of nonspherical, but atomically ordered nanocrystals and ligand-protected
clusters with nanocrystal metal cores, and it can be viewed as the
generalization of the superatom model demonstrated for spherical shapes
10 years ago (Walter, M.; et al. Proc. Natl. Acad. Sci. U. S. A.2008, 105, 9157−916218599443).
Collapse
|
36
|
Kysliak O, Nguyen DD, Clayborne AZ, Schnepf A. [PtZn 2Ge 18(Hyp) 8] (Hyp = Si(SiMe 3) 3): A Neutral Polynuclear Chain Compound with Ge 9(Hyp) 3 Units. Inorg Chem 2018; 57:12603-12609. [PMID: 30285428 DOI: 10.1021/acs.inorgchem.8b01757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of [ZnGe18(Hyp)6] (Hyp = Si(SiMe3)3) with Pt(PPh3)4 gives the neutral polynuclear complex of Ge9(Hyp)3 units [HypZn-Ge9(Hyp)3-Pt-Ge9(Hyp)3-ZnHyp], 1. Within 1, the central Pt atom is bound η3 to both Ge9(Hyp)3 units to which further ZnHyp units are bound again, symmetric η3, to the other side of the Ge9(Hyp)3 units, leading to the longest chain compound exhibiting Ge9(Hyp)3 units that is known to date. Dissolved crystals of 1 give a violet solution, showing an absorption maximum around 543 nm. Further UV-vis investigations on different M xGe9(Hyp)3 compounds show that the absorption maximum depends on the number of transition metal atoms bound to the Ge9(Hyp)3 unit, which is supported by TD-DFT calculations.
Collapse
Affiliation(s)
- Oleksandr Kysliak
- Institute of Inorganic Chemistry , University Tübingen , Auf der Morgenstelle 18 , D-72076 Tübingen , Germany
| | - Dung D Nguyen
- Department of Chemistry , University of Missouri-Kansas City , 5110 Rockhill Road , Kansas City , Missouri 64110-2499 , United States
| | - Andre Z Clayborne
- Department of Chemistry , Howard University , 525 College Street, NW , Washington, DC 20059 , United States
| | - Andreas Schnepf
- Institute of Inorganic Chemistry , University Tübingen , Auf der Morgenstelle 18 , D-72076 Tübingen , Germany
| |
Collapse
|
37
|
Kenzler S, Kotsch M, Schnepf A. Synthesis and Characterization of Gold Silyl Compounds with Different Phosphine or Phosphite Groups for Reduction Reactions. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Kenzler
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Matthias Kotsch
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Andreas Schnepf
- Institut für Anorganische Chemie; Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|