1
|
Jia H, Wang Y, Zhao S, Wang H, Ju N, Zhang X, Li H, Sun Z, Sun HB. Fe, Ni-modified ZIF-8 as a tensive precursor to derive N-doped carbon as Na and Li-ion batteries anodes. NANOTECHNOLOGY 2022; 34:085401. [PMID: 36541541 DOI: 10.1088/1361-6528/aca4d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Carbon materials derived from metal-organic frameworks have attracted increasing attention as anodes for energy storage. In this study, Fe, Ni-doped ZIF-8 is carbonized at high temperature to obtain bimetallic Fe and Ni modified tension -relaxed carbon (FeNi@trC). Fe and Ni have opposite structural modification effects when the metal ions are doped into the ZIF-8 dodecahedron. The obtained carbon material maintains the regular dodecahedron morphology, which means the relaxation of tension and strong thermal stability during annealing. Moreover, the presence of nickel enhances the carbonization degree and electrochemical stability of FeNi@trC, while the calcination of the tensive ZIF-8 precursor offers more defect sites. The discharge capacities of FeNi@trC materials are stable at 182.9 mAh·g-1and 567.9 mAh·g-1for sodium-ion batterie (SIB) and lithium-ion batterie (LIB) at 0.05 A·g-1. Compared with the current density of 0.05 A·g-1, the discharge capacity of SIB and LIB attenuates by 29.4% and 55.9% at 1 A·g-1, respectively, and the FeNi@trC shows good performance stability in the following cycles.
Collapse
Affiliation(s)
- Hongna Jia
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
- Tianjin Lishen Battery Joint-stock Co., Ltd, People's Republic of China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Shuya Zhao
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Haipeng Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Na Ju
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Wang L, Dong Y, Zhang J, Tao F, Xu J. Construction of NiO/g-C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Yang QL, Xiong DQ, Fu PK, Li YY, Zhang XY, Jia MM, Dong XY. Syntheses, structures, surface analysis, DFT and fluorescence properties of three new Cd(II)-MOFs assembled with semi-rigid polycarboxylate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Raza MA, Wahab A, Bhatti AHU, Ahmad A, Ahmad R, Iqbal N, Ali G. CoS2/MnS2 co-doped ZIF-derived nitrogen doped high surface area carbon-based electrode for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Li S, Kuang R, Zheng Kong X, Zhu X, Jiang X. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Dey G, Shadab, Aijaz A. Metal‐Organic Framework Derived Nanostructured Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem 2021. [DOI: 10.1002/celc.202100687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| | - Shadab
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| | - Arshad Aijaz
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| |
Collapse
|
7
|
Li X, Huang K, Peng M, Han D, Qiu Q, Jing L, Qin D. Metal-organic frameworks based on flexible bis(imidazole) and dicarboxylic ligands and their applications as selective sensors for magnesium nitrate. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Saha J, Kumar A, PM A, Jakhad V. Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution. Chem Commun (Camb) 2020; 56:8770-8773. [DOI: 10.1039/d0cc02880k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NiFeLDH/oxidised charcoal showed excellent activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm−2, which is ∼115 mV less than that of NiFeLDH.
Collapse
Affiliation(s)
- Jony Saha
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Ashok Kumar
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Anjana PM
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| | - Vikash Jakhad
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- Rajasthan 305817
- India
| |
Collapse
|
9
|
Wang H, Wang X, Zheng B, Yang D, Zhang W, Chen Y. Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Mahmoodi NM, Abdi J, Taghizadeh M, Taghizadeh A, Hayati B, Shekarchi AA, Vossoughi M. Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:660-672. [PMID: 30611099 DOI: 10.1016/j.jenvman.2018.12.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 05/14/2023]
Abstract
Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV-Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%). The decolorization kinetic was matched well with the second-order model. Moreover, the data were modeled using least squares support vector machine which optimized with Cuckoo optimization algorithm. The optimal parameters were found 0.837 and 3.49e+02 based on σ2 and γ values, respectively. The mean square error (MSE) and correlation coefficient (R2) values were obtained 3.97 and 0.948. Therefore, the attained data, materials characterization and prediction of modeling validate the composite form of MIL-88B(Fe) with new AC, had better photocatalytic activity in comparison with the individual form.
Collapse
Affiliation(s)
- Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Jafar Abdi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohsen Taghizadeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Taghizadeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology and Anatomy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Yang W, Li X, Li Y, Zhu R, Pang H. Applications of Metal-Organic-Framework-Derived Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804740. [PMID: 30548705 DOI: 10.1002/adma.201804740] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Indexed: 05/18/2023]
Abstract
Carbon materials derived from metal-organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal-organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF-derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.
Collapse
Affiliation(s)
- Wenping Yang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaxia Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
12
|
Molecular-Based Design of Microporous Carbon Nanosheets. Chemistry 2019; 25:3209-3218. [DOI: 10.1002/chem.201804747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Indexed: 01/03/2023]
|
13
|
Liu L, Zhang Y, Yu X. Fine Co nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction. NEW J CHEM 2019. [DOI: 10.1039/c9nj00050j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the acid pickling of Co@NPC, which was obtained by one-step calcination of ZIF-67 in N2 and condition optimization of Co nanoparticle sizes, a catalyst of fine Co nanoparticles encapsulated in N-doped porous carbon with excellent ORR performance was prepared.
Collapse
Affiliation(s)
- Lei Liu
- National Laboratory of Mineral Materials
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Yihe Zhang
- National Laboratory of Mineral Materials
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Xuelian Yu
- National Laboratory of Mineral Materials
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| |
Collapse
|
14
|
Farid S, Ren S, Hao C. MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|