1
|
Wang MM, Johnsson K. Metal-free introduction of primary sulfonamide into electron-rich aromatics. Chem Sci 2024; 15:12310-12315. [PMID: 39118614 PMCID: PMC11304520 DOI: 10.1039/d4sc03075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
We report herein a direct and practical synthesis of arylsulfonamides from electron-rich aromatic compounds by using in situ generated N-sulfonylamine as the active electrophile. Substrates include derivatives of aniline, indole, pyrrole, furan, styrene and so on. The reaction proceeds under mild conditions and tolerates many sensitive functional groups such as alkyne, acetate, the trifluoromethoxy group or acetoxymethyl ester. Applications of this method for the construction of metal ion sensors and fluorogenic dye have been demonstrated, thus highlighting the potential of this method for probe development.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
2
|
Sato K, Egami H, Hamashima Y. Thiobenzoic Acid-Catalyzed Cα-H Cross Coupling of Benzyl Alcohols with α-Ketoacid Derivatives. Org Lett 2024; 26:5285-5289. [PMID: 38869244 DOI: 10.1021/acs.orglett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The C-H alkylation of benzyl alcohols with α-ketoacid derivatives was achieved in the presence of thiobenzoic acid with or without Ru or Ir photoredox catalysts. The thiobenzoic acid serves as a photoexcited single-electron reducing reagent and a hydrogen atom transfer catalyst, while addition of the metal photoredox catalyst assists the electron transfer and improves the reaction efficiency. Various functional groups were tolerant of the reaction conditions, and sterically hindered diols were produced in good to high yield.
Collapse
Affiliation(s)
- Kaichi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
Dagar A, Das T, Mallojjala SC, Hirschi JS, Vetticatt MJ. Resolving Conflicting Mechanisms for Photoredox Allylic sp 3-CH Arylation Using Deuterium-Labeling and Isotope Effects. ACS Catal 2024; 14:9469-9475. [PMID: 39157726 PMCID: PMC11328950 DOI: 10.1021/acscatal.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Two conflicting mechanisms have emerged for the direct arylation of allylic C-H bonds enabled by the combined use of thiol and photoredox catalysis. In the original report (Nature, 2015, 519, 74-77), a radical coupling step-between a radical anion of an arene and an allylic radical-is proposed to be the key C-C bond-forming step. A recent mechanistic study (J. Org. Chem. 2022, 87, 223-230) has suggested that the C-C bond formation occurs via radical anion capture by the olefin followed by an H atom transfer (HAT) event to deliver the allylic C-H arylation product. Utilizing cyclohexene-4,4,5,5-d 4 as a mechanistic probe to distinguish between otherwise indistinguishable regioisomeric allylic C-H arylation products in the reaction of cyclohexene and dicyanobenzene, we establish that the radical anion capture-HAT mechanism is not operative. Furthermore, experimental k H/k D studies and DFT calculations lend strong support to the radical coupling mechanism proceeding via irreversible HAT to form the allylic radical of cyclohexene, followed by regioselectivity-determining radical coupling (for unsymmetrical olefins) and facile decyanation.
Collapse
Affiliation(s)
- Anuradha Dagar
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | - Tamal Das
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | | | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| |
Collapse
|
4
|
Deng Y, Hu Z, Xue J, Yin J, Zhu T, Liu S. Visible-Light-Promoted α-C(sp 3)-H Amination of Ethers with Azoles and Amides. Org Lett 2024; 26:933-938. [PMID: 38241172 DOI: 10.1021/acs.orglett.3c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A visible-light-induced highly efficient C(sp3)-H amination of ethers with amides and azoles has been presented under mild conditions via a nitrogen- and carbon-centered radical coupling process. This protocol successfully utilizes 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tert-butyl nitrite (TBN) as cocatalysts to deliver the aminated products of ethers under aerobic conditions. Notably, the developed reaction features the corresponding products in good yields (up to 93%) with a wide substrate scope. The mechanistic study indicates that C-N bond formation proceeds via a direct radical cross-coupling process. Preliminary biological activity analysis indicates that the resulting products have good and selective inhibitory activity on osteosarcoma (OS) cell lines and are promising for use as hits for drug discovery.
Collapse
Affiliation(s)
- Yaqi Deng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| | - Zongjing Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| | - Jian Xue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| | - Jiabin Yin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062 China
| |
Collapse
|
5
|
Wu S, Huang J, Kang L, Zhang Y, Yuan K. Transition-Metal-Free, Reductive Csp 2-Csp 3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Org Lett 2024; 26:763-768. [PMID: 38227333 DOI: 10.1021/acs.orglett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Kang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
6
|
Huang C, Xiao P, Ye ZM, Wang CL, Kang C, Tang S, Wei Z, Cai H. Direct C(sp 3)-H Arylation of Unprotected Benzyl Anilines and Alkylarenes by Organocatalysis under Visible Light. Org Lett 2024; 26:304-309. [PMID: 38165162 DOI: 10.1021/acs.orglett.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reported herein is direct C(sp3)-H arylation of unprotected benzyl anilines and alkylarenes via consecutive photoinduced electron transfer by visible light irradiation. Reductive quenching cycles and radical-radical cross-coupling were involved, and electron paramagnetic resonance experiments provide evidence for the formation of radical intermediates formed in situ. The protocol highlights transition metal free, external oxidant free, broad substrate scope, and high efficiency (>60 examples, up to 96%).
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Peng Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhong-Ming Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Chen-Lu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Chen Kang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Sheng Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
7
|
Xiong Y, Wu X. Deoxygenative coupling of alcohols with aromatic nitriles enabled by direct visible light excitation. Org Biomol Chem 2023; 21:9316-9320. [PMID: 37982141 DOI: 10.1039/d3ob01676e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A general and practical protocol is presented for visible-light-driven deoxygenative coupling of alcohols with aromatic nitriles in the absence of external photocatalysts. Utilizing a hydroxyl activation strategy with carbon disulfide, this C(sp3)-C(sp2) constructing platform accommodates a broad scope of alcohols and aryl nitriles to deliver various alkyl-substituted arenes. Mechanism studies show that a single electron transfer event between a photoexcited aryl nitrile and a xanthate anion is key to the transformation.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
8
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Qi MY, Xu YJ. Efficient and Direct Functionalization of Allylic sp 3 C-H Bonds with Concomitant CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202311731. [PMID: 37632151 DOI: 10.1002/anie.202311731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Solar-driven CO2 reduction integrated with C-C/C-X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C-H bonds for accessing allylic C-C products, over SiO2 -supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C-C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2-5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
10
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
11
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
12
|
An Q, Xing YY, Pu R, Jia M, Chen Y, Hu A, Zhang SQ, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z. Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C-H Functionalization. J Am Chem Soc 2023; 145:359-376. [PMID: 36538367 DOI: 10.1021/jacs.2c10126] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals.
Collapse
Affiliation(s)
- Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang-Yang Xing
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310007, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuegang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anhua Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310007, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianbo Du
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310007, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Ohmatsu K, Suzuki R, Fujita H, Ooi T. Zwitterionic Diphenylphosphinyl Amidate as a Powerful Photoinduced Hydrogen-Atom-Transfer Catalyst for C-H Alkylation of Simple Alkanes. J Org Chem 2023; 88:6553-6556. [PMID: 36606526 DOI: 10.1021/acs.joc.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chemical and physical properties of amides change substantially when the electron-withdrawing groups attached to the nitrogen are varied. Herein, we report the superior performance of N-diphenylphosphinyl 1,2,3-triazolium amidate as a photoinduced hydrogen-atom transfer catalyst compared to its N-benzoyl analog. A binary catalyst system of the phosphinyl amidate and an Ir-based photocatalyst enables the alkylation of unbiased C-H bonds.
Collapse
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Ryuhei Suzuki
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroki Fujita
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
14
|
Wang XW, Li RX, Deng Y, Fu MQH, Zhao YN, Guan Z, He YH. Direct Hydroxylarylation of Benzylic Carbons (sp 3/sp 2/sp) via Radical-Radical Cross-Coupling Powered by Paired Electrolysis. J Org Chem 2023; 88:329-340. [PMID: 36563045 DOI: 10.1021/acs.joc.2c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diaryl alcohol moieties are widespread in pharmaceuticals. Existing methods for the synthesis of diaryl alcohols require the use of pre-functionalized benzylic alcohols, aromatic aldehydes, or ketones as starting materials. Herein, the first convergent paired electrochemical approach to the direct hydroxylarylation of unactivated benzylic carbons (sp3/sp2/sp) is proposed. This protocol features direct functionalization of unactivated benzylic C(sp3)-H bonds and benzylic sp2/sp-carbons, mild conditions (open air, room temperature), an environmentally friendly procedure (without any external catalyst/mediator/additive), and direct access to sterically hindered alcohols from inexpensive and readily available alkyl/alkenyl/alkynylbenzenes. Mechanistic studies, including divided-cell experiments, isotope labeling, radical trapping, electron paramagnetic resonance, reaction kinetics, and cyclic voltammetry, strongly support the proposed radical-radical cross-coupling between transient ketyl radicals and persistent radical anions. Gram-scale synthesis and diversification of drug derivatives have visualized the tremendous potential of this protocol for practical applications.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rui-Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Deng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming-Qiu-Hao Fu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Nan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Kim C, Jeong J, Vellakkaran M, Hong S. Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mari Vellakkaran
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
16
|
Wang B, Ascenzi Pettenuzzo C, Singh J, Mccabe GE, Clark L, Young R, Pu J, Deng Y. Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine N-oxide Based HAT Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Gavin E. Mccabe
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Logan Clark
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Ryan Young
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
17
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
18
|
Herron AN, Hsu CP, Yu JQ. δ-C-H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor. Org Lett 2022; 24:3652-3656. [PMID: 35549294 DOI: 10.1021/acs.orglett.2c01261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen-centered radicals are versatile synthetic intermediates with the ability to undergo diverse reactions such as hydrogen atom transfer (HAT), β-scission, and addition across unsaturated systems. A long-standing impediment to the wider adoption of these intermediates in synthesis has been the difficulty of their generation. Herein we disclose a new hydrazonyl carboxylic acid precursor to nitrogen-centered radicals and its application toward remote C-H fluorination and chlorination reactions of sulfonyl-protected alkyl amines via 1,5-HAT.
Collapse
Affiliation(s)
- Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ching-Pei Hsu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Sakai K, Oisaki K, Kanai M. A Germanium Catalyst Accelerates the Photoredox α-C(sp 3)-H Alkylation of Primary Amines. Org Lett 2022; 24:3325-3330. [PMID: 35486160 DOI: 10.1021/acs.orglett.2c00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective C(sp3)-H functionalizations using photoredox catalysis (PC) and hydrogen atom transfer (HAT) catalysis have received increasing attention. Here, we report a Ph2GeCl2 cocatalyst that greatly improves the yield of α-C(sp3)-H alkylation of primary amines catalyzed by a PC-HAT hybrid system. The α-position of the amino group selectively reacted even when weaker C-H bonds existed in the substrates. This finding may help the design of a novel site-selective hybrid catalysis.
Collapse
Affiliation(s)
- Kentaro Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Li Y, Han C, Wang Y, Huang X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Reductive Azaarylation of Olefins via Enantioselective Radical Coupling. J Am Chem Soc 2022; 144:7805-7814. [PMID: 35471031 DOI: 10.1021/jacs.2c01458] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visible-light-driven photocatalytic reductive azaarylation has been widely used to construct the important imine-containing azaarene derivatives. In addition to the direct use of various commercially available cyanoazaarenes as feedstocks, the synthetic advantages include precise regioselectivity, high efficiency, mild reaction conditions, and good functional group tolerance. However, although many efficient reductive azaarylation methods have been established, the example of an enantioselective manner is still unmet, which most likely can be ascribed to the highly reactive radical coupling as the key step of forming stereocenters. Exploring the feasibility of enantiocontrol thus constitutes an attractive but highly challenging task. Here, we demonstrate that chiral hydrogen-bonding/photosensitizer catalysis is a viable platform as it enables the realization of the first enantioselective manifold. A variety of acyclic and cyclic enones as the reaction partners are compatible with the dual catalyst system, leading to a wide array of valuable enantioenriched azaarene variants with high yields and ees. Regulating the types of chiral catalysts represents one of the important manners to success, in which several readily accessible Cinchona alkaloid-derived bifunctional catalysts are introduced in asymmetric photochemical reactions.
Collapse
Affiliation(s)
- Yajuan Li
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Cuijie Han
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yanyan Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xin Huang
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xiaowei Zhao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Baokun Qiao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
21
|
Fuse H, Irie Y, Fuki M, Kobori Y, Kato K, Yamakata A, Higashi M, Mitsunuma H, Kanai M. Identification of a Self-Photosensitizing Hydrogen Atom Transfer Organocatalyst System. J Am Chem Soc 2022; 144:6566-6574. [PMID: 35357152 DOI: 10.1021/jacs.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed organocatalyst systems to promote the cleavage of stable C-H bonds, such as formyl, α-hydroxy, and benzylic C-H bonds, through a hydrogen atom transfer (HAT) process without the use of exogenous photosensitizers. An electronically tuned thiophosphoric acid, 7,7'-OMe-TPA, was assembled with substrate or co-catalyst N-heteroaromatics through hydrogen bonding and π-π interactions to form electron donor-acceptor (EDA) complexes. Photoirradiation of the EDA complex induced stepwise, sequential single-electron transfer (SET) processes to generate a HAT-active thiyl radical. The first SET was from the electron-rich naphthyl group of 7,7'-OMe-TPA to the protonated N-heteroaromatics and the second proton-coupled SET (PCET) from the thiophosphoric acid moiety of 7,7'-OMe-TPA to the resulting naphthyl radical cation. Spectroscopic studies and theoretical calculations characterized the stepwise SET process mediated by short-lived intermediates. This organocatalytic HAT system was applied to four different carbon-hydrogen (C-H) functionalization reactions, hydroxyalkylation and alkylation of N-heteroaromatics, acceptorless dehydrogenation of alcohols, and benzylation of imines, with high functional group tolerance.
Collapse
Affiliation(s)
- Hiromu Fuse
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yu Irie
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
23
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
24
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Maia da Silva Santos B, Dos Santos Dupim M, Paula de Souza C, Messias Cardozo T, Gadini Finelli F. DABCO-promoted photocatalytic C-H functionalization of aldehydes. Beilstein J Org Chem 2022; 17:2959-2967. [PMID: 35003372 PMCID: PMC8712972 DOI: 10.3762/bjoc.17.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Herein we present a direct application of DABCO, an inexpensive and broadly accessible organic base, as a hydrogen atom transfer (HAT) abstractor in a photocatalytic strategy for aldehyde C–H activation. The acyl radicals generated in this step were arylated with aryl bromides through a well stablished nickel cross-coupling methodology, leading to a variety of interesting aryl ketones in good yields. We also performed computational calculations to shine light in the HAT step energetics and determined an optimized geometry for the transition state, showing that the hydrogen atom transfer between aldehydes and DABCO is a mildly endergonic, yet sufficiently fast step. The same calculations were performed with quinuclidine, for comparison of both catalysts and the differences are discussed.
Collapse
Affiliation(s)
- Bruno Maia da Silva Santos
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Mariana Dos Santos Dupim
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Cauê Paula de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Fernanda Gadini Finelli
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| |
Collapse
|
27
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
28
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
29
|
Mazzanti S, Schritt C, ten Brummelhuis K, Antonietti M, Savateev A. Multisite PCET with photocharged carbon nitride in dark. EXPLORATION (BEIJING, CHINA) 2021; 1:20210063. [PMID: 37323696 PMCID: PMC10190955 DOI: 10.1002/exp.20210063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 06/17/2023]
Abstract
A combination of photochemistry and proton coupled electron transfer (PCET) is a primary strategy employed by biochemical systems and synthetic chemistry to enable uphill reactions under mild conditions. Degenerate nanometer-sized n-type semiconductor nanoparticles (SCNPs) with the Fermi level above the bottom of the conduction band are strongly reducing and act more like metals than semiconductors. Application of the degenerate SCNPs is limited to few examples. Herein, we load microporous potassium poly(heptazine imide) (K-PHI) nanoparticles with electrons (e‒) and charge balancing protons (H+) in an illumination phase using sacrificial agents. e‒/H+ in the K-PHI nanoparticles are weakly bound and therefore could be used in a range of PCET reactions in dark, such as generation of aryl radicals from aryl halides, ketyl radicals from ketones, and 6e‒/6H+ reduction of nitrobenzene to aniline. The integration of several features that until now were intrinsic for plants and natural photosynthesis into a transition metal free nanomaterial composed of abundant elements (C, N, and K) offers a powerful tool for synthetic organic chemistry.
Collapse
Affiliation(s)
- Stefano Mazzanti
- Max‐Planck Institute of Colloids and Interfaces, Department of Colloid ChemistryResearch Campus GolmPotsdamGermany
| | - Clara Schritt
- Max‐Planck Institute of Colloids and Interfaces, Department of Colloid ChemistryResearch Campus GolmPotsdamGermany
- Institut für Chemie und BiochemieFreie Universität BerlinBerlinGermany
| | - Katharina ten Brummelhuis
- Max‐Planck Institute of Colloids and Interfaces, Department of Colloid ChemistryResearch Campus GolmPotsdamGermany
| | - Markus Antonietti
- Max‐Planck Institute of Colloids and Interfaces, Department of Colloid ChemistryResearch Campus GolmPotsdamGermany
| | - Aleksandr Savateev
- Max‐Planck Institute of Colloids and Interfaces, Department of Colloid ChemistryResearch Campus GolmPotsdamGermany
| |
Collapse
|
30
|
Chen R, Xu S, Shen F, Xu C, Wang K, Wang Z, Liu L. Facile Synthesis of Sulfonyl Chlorides/Bromides from Sulfonyl Hydrazides. Molecules 2021; 26:molecules26185551. [PMID: 34577023 PMCID: PMC8471771 DOI: 10.3390/molecules26185551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and rapid method for efficient synthesis of sulfonyl chlorides/bromides from sulfonyl hydrazide with NXS (X = Cl or Br) and late-stage conversion to several other functional groups was described. A variety of nucleophiles could be engaged in this transformation, thus permitting the synthesis of complex sulfonamides and sulfonates. In most cases, these reactions are highly selective, simple, and clean, affording products at excellent yields.
Collapse
Affiliation(s)
- Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
- Correspondence: (S.X.); (L.L.)
| | - Fumin Shen
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
| | - Canran Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
| | - Kaikai Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
| | - Zhanyong Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (R.C.); (F.S.); (C.X.); (K.W.); (Z.W.)
| | - Lantao Liu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Correspondence: (S.X.); (L.L.)
| |
Collapse
|
31
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
32
|
|
33
|
Lei G, Xu M, Chang R, Funes-Ardoiz I, Ye J. Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:11251-11261. [PMID: 34269582 DOI: 10.1021/jacs.1c05852] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical hydroalkylation of olefins enabled by hydrogen atom transfer (HAT) catalysis represents a straightforward means to access C(sp3)-rich molecules from abundant feedstock chemicals without the need for prefunctionalization. While Giese-type hydroalkylation of activated olefins initiated by HAT of hydridic carbon-hydrogen bonds is well-precedented, hydroalkylation of unactivated olefins in a similar fashion remains elusive, primarily owing to a lack of general methods to overcome the inherent polarity-mismatch in this scenario. Here, we report the use of visible-light-driven dual HAT catalysis to achieve this goal, where catalytic amounts of an amine-borane and an in situ generated thiol were utilized as the hydrogen atom abstractor and donor, respectively. The reaction is completely atom-economical and exhibits a broad scope. Experimental and computational studies support the proposed mechanism and suggest that hydrogen-bonding between the amine-borane and substrates is beneficial to improving the reaction efficiency.
Collapse
Affiliation(s)
- Guangyue Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Gorelik DJ, Turner JA, Virk TS, Foucher DA, Taylor MS. Site- and Stereoselective C-H Alkylations of Carbohydrates Enabled by Cooperative Photoredox, Hydrogen Atom Transfer, and Organotin Catalysis. Org Lett 2021; 23:5180-5185. [PMID: 34133881 DOI: 10.1021/acs.orglett.1c01718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diorganotin dihalides act as cocatalysts for site-selective and stereoselective couplings of diol-containing carbohydrates with electron-deficient alkenes in the presence of an Ir(III) photoredox catalyst and quinuclidine, a hydrogen atom transfer mediator. Quantum-chemical calculations support a proposed mechanism involving the formation of a cyclic stannylene acetal intermediate that shows enhanced reactivity toward hydrogen atom abstraction by the quinuclidinium radical cation. Addition of the carbon-centered radical to the alkene partner results in C-alkylation of the carbohydrate substrate.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tarunpreet S Virk
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Daniel A Foucher
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
35
|
Lu A, Li T, Wang J, Song G. A Catalyst and Base Free Approach to Polycyclic Aromatic Compounds
via
Intramolecular [2+2] and
retro
‐[2+2] Cycloadditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aoyun Lu
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Tao Li
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
36
|
Galloway JD, Sarabia C, Fettinger JC, Hratchian HP, Baxter RD. Versatile New Reagent for Nitrosation under Mild Conditions. Org Lett 2021; 23:3253-3258. [PMID: 33844555 DOI: 10.1021/acs.orglett.1c00637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report a new chemical reagent for transnitrosation under mild experimental conditions. This new reagent is stable to air and moisture across a broad range of temperatures and is effective for transnitrosation in multiple solvents. Compared with traditional nitrosation methods, our reagent shows high functional group tolerance for substrates that are susceptible to oxidation or reversible transnitrosation. Several challenging nitroso compounds are accessed here for the first time, including 15N isotopologues. X-ray data confirm that two rotational isomers of the reagent are configurationally stable at room temperature, although only one isomer is effective for transnitrosation. Computational analysis describes the energetics of rotamer interconversion, including interesting geometry-dependent hybridization effects.
Collapse
Affiliation(s)
- Jordan D Galloway
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Cristian Sarabia
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Hrant P Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Ryan D Baxter
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
37
|
Tong S, Li K, Ouyang X, Song R, Li J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Huang C, Qiao J, Ci RN, Wang XZ, Wang Y, Wang JH, Chen B, Tung CH, Wu LZ. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
White DH, Noble A, Booker-Milburn KI, Aggarwal VK. Diastereoselective Photoredox-Catalyzed [3 + 2] Cycloadditions of N-Sulfonyl Cyclopropylamines with Electron-Deficient Olefins. Org Lett 2021; 23:3038-3042. [DOI: 10.1021/acs.orglett.1c00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dawn H. White
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Kevin I. Booker-Milburn
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
40
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
41
|
Cera G, Cester Bonati F, Bazzoni M, Secchi A, Arduini A. Calix[6]arene-based Brønsted acids for molecular recognition and catalysis. Org Biomol Chem 2021; 19:1546-1554. [PMID: 33503105 DOI: 10.1039/d0ob02393k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of a versatile trifluoromethylsulfonamide calix[6]arene derivative with Brønsted acid features which can influence both molecular recognition and catalytic application. Indeed, in low polarity media, the trifluoromethyl-containing supramolecular wheel is able to respond to the complexation with charged species as a function of its selective ion-pair recognition. In parallel, the enhanced acidity is the key to promote Michael additions of indoles to nitroalkenes under pseudo-physiological reaction conditions (H2O, 37 °C).
Collapse
Affiliation(s)
- Gianpiero Cera
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Federica Cester Bonati
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Margherita Bazzoni
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Arturo Arduini
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
42
|
Treacy SM, Rovis T. Copper Catalyzed C(sp 3)-H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. J Am Chem Soc 2021; 143:2729-2735. [PMID: 33576606 DOI: 10.1021/jacs.1c00687] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Utilizing catalytic CuCl2 we report the functionalization of numerous feedstock chemicals via the coupling of unactivated C(sp3)-H bonds with electron-deficient olefins. The active cuprate catalyst undergoes Ligand-to-Metal Charge Transfer (LMCT) to enable the generation of a chlorine radical which acts as a powerful hydrogen atom transfer reagent capable of abstracting strong electron-rich C(sp3)-H bonds. Of note is that the chlorocuprate catalyst is an exceedingly mild oxidant (0.5 V vs SCE) and that a proposed protodemetalation mechanism offers a broad scope of electron-deficient olefins, offering high diastereoselectivity in the case of endocyclic alkenes. The coupling of chlorine radical generation with Cu reduction through LMCT enables the generation of a highly active HAT reagent in an operationally simple and atom economical protocol.
Collapse
Affiliation(s)
- Sean M Treacy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
43
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
44
|
Ma ZY, Li M, Guo LN, Liu L, Wang D, Duan XH. Sulfonamide as Photoinduced Hydrogen-Atom Transfer Catalyst for Regioselective Alkylation of C(sp 3)-H Bonds Adjacent to Heteroatoms. Org Lett 2020; 23:474-479. [PMID: 33373258 DOI: 10.1021/acs.orglett.0c03992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the DFT calculations, the sulfonamide was explored as an efficient hydrogen-atom transfer catalyst for the C(sp3)-H alkylation. The combination of a metal-free photoredox catalyst and a sulfonamide catalyst enables highly regioselective alkylation of the C-H bonds adjacent to heteroatoms, which features broad substrate scope and excellent functional group compatibility. Remarkably, the sulfonamide catalyst was also applicable to the C(sp3)-C(sp3) couplings through the merger of photoredox, nickel, and HAT catalysis.
Collapse
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Mengyang Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongdong Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
45
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. Dual-Role Catalysis by Thiobenzoic Acid in Cα–H Arylation under Photoirradiation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fumihisa Kobayashi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masashi Fujita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takafumi Ide
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Ito
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
47
|
Chilamari M, Immel JR, Bloom S. General Access to C-Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
48
|
Cera G, Balestri D, Bazzoni M, Marchiò L, Secchi A, Arduini A. Trisulfonamide calix[6]arene-catalysed Michael addition to nitroalkenes. Org Biomol Chem 2020; 18:6241-6246. [PMID: 32735000 DOI: 10.1039/d0ob01319f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe the application of a novel family of trisulfonamide (TSA) calix[6]arenes in general acid catalysis. Hydrogen-bonding interactions between acidic TSA and methanol boosted the reactivity of the Michael addition of indoles to nitroalkene derivatives. The transformation occurs at a low catalyst loading of 5 mol%, allowing for the synthesis of nitroalkanes with good yields and functional group tolerance.
Collapse
Affiliation(s)
- Gianpiero Cera
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Davide Balestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Margherita Bazzoni
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Luciano Marchiò
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Arturo Arduini
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
49
|
Qi J, Zhang F, Jin J, Zhao Q, Li B, Liu L, Wang Y. New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jing Qi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Feng‐Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Ji‐Kang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Qiang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Lin‐Xuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yi‐Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei 230026 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
50
|
Jia P, Li Q, Poh WC, Jiang H, Liu H, Deng H, Wu J. Light-Promoted Bromine-Radical-Mediated Selective Alkylation and Amination of Unactivated C(sp3)–H Bonds. Chem 2020. [DOI: 10.1016/j.chempr.2020.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|