1
|
Zhang Z, Ma J, Xu T, Wang T, Jia X, Lin J, Lv C, Cao L, Ying Y, Ji L, Wang S, Fu C. Transpiration-Inspired Fabric Dressing for Acceleration Healing of Wound Infected with Biofilm. Adv Healthc Mater 2024; 13:e2401005. [PMID: 38663447 DOI: 10.1002/adhm.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 05/04/2024]
Abstract
In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.
Collapse
Affiliation(s)
- Zhicheng Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junjie Ma
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xueying Jia
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiawei Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chang Lv
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liang Cao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lvlv Ji
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caiyun Fu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
2
|
Amiri Z, Hasani A, Abedini F, Malek M, Madaah Hosseini HR. Urease-Powered Black TiO 2 Micromotors for Photothermal Therapy of Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3019-3030. [PMID: 38217858 DOI: 10.1021/acsami.3c11772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Urease-powered nano/micromotors can move at physiological urea concentrations, making them useful for biomedical applications, such as treating bladder cancer. However, their movement in biological environments is still challenging. Herein, Janus micromotors based on black TiO2 with urease asymmetric catalytic coating were designed to take benefit of the optical properties of black TiO2 under near-infrared light and the movement capability in simulated bladder environments (urea). The black TiO2 microspheres were half-coated with a thin layer of Au, and l-Cysteine was utilized to attach the urease enzyme to the Au surface using its thiol group. Biocatalytic hydrolysis of urea through urease at biologically relevant concentrations provided the driving force for micromotors. A variety of parameters, such as urea fuel concentration, viscosity, and ionic character of the environment, were used to investigate how micromotors moved in different concentrations of urea in water, PBS, NaCl, and urine. The results indicate that micromotors are propelled through ionic self-diffusiophoresis caused by urea enzymatic catalysis. Due to their low toxicity and in vitro anticancer effect, micromotors are effective agents for photothermal therapy, which can help kill bladder cancer cells. These promising results suggest that biocompatible micromotors hold great potential for improving cancer treatment and facilitating diagnosis.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Atefeh Hasani
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Fatemeh Abedini
- Department of Mechanical Engineering, Faculty of Engineering, University of Hormozgan, P. C. 7916193145 Bandar Abbas, Iran
| | - Mahrooz Malek
- Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Imam Khomeini Hospital, P. C. 1416634793 Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
- Institute for Convergence Science and Technology (ICST), Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| |
Collapse
|
3
|
Shi C, Eqi M, Shi J, Huang Z, Qi H. Constructing 3D hierarchical TiO 2 microspheres with enhanced mass diffusion for efficient glucose photoreforming under modulated reaction conditions. J Colloid Interface Sci 2023; 650:1736-1748. [PMID: 37506415 DOI: 10.1016/j.jcis.2023.07.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Three-dimensional (3D) TiO2 hierarchical microspheres (THMs) were successfully prepared via a facial template-free hydrothermal approach. The possible growth mechanism of THM was also investigated by TiCl4 concentration-, time-, and temperature-dependent experiments. The results indicate that the formation of an urchin-like hierarchical structure may follow a "nucleation-dissolution and recrystallization-assembly" process. THM was employed for photoreforming under various catalyst and glucose concentrations, solvent compositions, and pH values. The H2 production rate, glucose conversion, arabinose and formic acid selectivity reached 9.44 mmol gcat.-1h-1, 86.35%, 11.32%, and 46.87%, respectively, under the modulated condition with Pt as cocatalyst; this is attributed to the enhanced mass diffusion caused by the 3D hierarchical morphology as well as the interaction between unsaturated Ti atoms (or oxygen vacancies) in THM and the hydroxyl oxygen atoms on glucose. In addition, the enhanced light absorption induced by defects also exerts a positive effect. In this work, we present an emerging sustainable strategy for the coproduction of H2 and value-added chemicals from biomass-based glucose with economic photocatalysts under mild conditions.
Collapse
Affiliation(s)
- Cai Shi
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Malin Eqi
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Junming Shi
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Houjuan Qi
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Ji Z, Liu X, Song Y, Zhong Y, Wang D, Chen B, Fang M, Nie X, Hou J, Ma J, Ma H, Xu X, Yi Z, Xu X. Space-Confined seeding and growth of ordered arrays of TiO2 hierarchical nanostructures. J Colloid Interface Sci 2023; 630:436-443. [DOI: 10.1016/j.jcis.2022.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
5
|
Ma R, Xiang L, Zhao X, Yin J. Progress in Preparation of Sea Urchin-like Micro-/Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2846. [PMID: 35454539 PMCID: PMC9029352 DOI: 10.3390/ma15082846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Urchin-like microparticles/nanoparticles assembled from radial nanorods have a good appearance and high specific surface area, providing more exposed active sites and shortening the diffusion path of photoexcited carriers from the interior to the surface. The interfacial interaction and physical and chemical properties of the materials can be improved by the interfacial porous network induced by interlacing nano-branches. In addition, multiple reflections of the layered microstructure can absorb more incident light and improve the photocatalytic performance. Therefore, the synthesis and functionalization of three-dimensional urchin-like nanostructures with controllable size, shape, and hierarchy have attracted extensive attention. This review aims to provide an overview to summarize the structures, mechanism, and application of urchin-like microparticles/nanoparticles derived from diverse synthesis methods and decoration types. Firstly, the synthesis methods of solid urchin-like micro-/nanoparticles are listed, with emphasis on the hydrothermal/solvothermal method and the reaction mechanism of several typical examples. Subsequently, the preparation method of composite urchin-like micro-/nanoparticles is described from the perspective of coating and doping. Then, the research progress of urchin-like hollow microspheres is reviewed from the perspective of the step-by-step method and synchronous method, and the formation mechanism of forming urchin-like hollow microspheres is discussed. Finally, the application progress of sea urchin-like particles in the fields of photocatalysis, electrochemistry, electromagnetic wave absorption, electrorheological, and gas sensors is summarized.
Collapse
Affiliation(s)
- Ruijing Ma
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Liqin Xiang
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
6
|
Guo R, Bao Y, Kang Q, Liu C, Zhang W, Zhu Q. Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Radial TiO2 nanorod-based mesocrystals (TiO2-NR MCs) or so-called “sea-urchin-like microspheres” possess not only attractive appearance but also excellent potential as photocatalyst and electrode materials. As a new type of TiO2-NR MCs, we have recently developed a radial heteromesocrystal photocatalyst consisting of SnO2(head) and rutile TiO2 nanorods(tail) (TiO2-NR//SnO2 HEMCs, symbol “//” denotes heteroepitaxial junction) with the SnO2 head oriented in the central direction in a series of the studies on the nanohybrid photocatalysts with atomically commensurate junctions. This review article reports the fundamentals of TiO2-NR MCs and the applications to photocatalysts and electrodes. Firstly, the synthesis and characterization of TiO2-NR//SnO2 HEMCs is described. Secondly, the photocatalytic activity of recent TiO2-NR MCs and the photocatalytic action mechanism are discussed. Thirdly, the applications of TiO2-NR MCs and the analogs to the electrodes of solar cells and lithium-ion batteries are considered. Finally, we summarize the conclusions with the possible future subjects.
Collapse
|
8
|
Wang T, Jia X, Lv C, Ji L, Wei Y, Zhang Z, Gao Y, Wang S. Multifunctional Textiles Based on Three-Dimensional Hierarchically Structured TiO 2 Nanowires. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27557-27566. [PMID: 34100290 DOI: 10.1021/acsami.1c04256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of three-dimensional (3D) micro-/nanostructures with multiscale hierarchy offers new potential for the improvement of the pristine textile properties. In this work, a polyester fabric coated with 3D hierarchically structured rutile TiO2 nanowires (THNWP) was fabricated by a facile hydrothermal strategy. The THNWP samples exhibit markedly improved photocatalytic activities and antibacterial properties owing to their 3D hierarchical architecture constructed by one-dimensional nanowire structures, good crystallinity, excellent light-harvesting capability, and fast electron-transfer rate. Furthermore, the unique 3D hierarchical nanostructures also combine with the monofilament to produce ternary-scale hierarchy, which endows the fabric surface with outstanding superamphiphobicity after further facile fluorination treatment. The supportive air-pockets trapped within the unique ternary-scale architectures are proved to be the crucial factor in the achievement of high liquid repellency, and the highest performing superamphiphobic surface is capable of repelling liquids down to a minimal surface tension of 23.4 mN m-1. We envision that our findings may possess great potential in the bottom-up design of high-performance textiles.
Collapse
Affiliation(s)
- Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xueying Jia
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chang Lv
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lvlv Ji
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhicheng Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yinhu Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
|
10
|
Akita A, Tada H. Synthesis of 1D-Anisotropic Particles Consisting of TiO 2 Nanorods and SnO 2 with Heteroepitaxial Junctions and Self-Assembled 3D-Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17096-17102. [PMID: 31790266 DOI: 10.1021/acs.langmuir.9b03015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anisotropic one-dimensional (1D)-particles with a SnO2 "head", a TiO2 "tail", and self-assembled three-dimensional (3D)-microspheres were synthesized by a hydrothermal method. At the first stage of the reaction, an amorphous TiO2 layer is deposited on the SnO2 surface. At the second stage, rutile nuclei are generated in the amorphous TiO2 layer. At the third stage, a single TiO2 nanorod grows from a SnO2 particle with a heteroepitaxial relation of TiO2(001)//SnO2(001). Finally, the resulting 1D-anisotropic hybrid particles are self-assembled to form a radial 3D-microsphere with the SnO2 head oriented in the central direction.
Collapse
Affiliation(s)
- Atsunobu Akita
- Graduate School of Science and Technology , Kindai University , 3-4-1, Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| | - Hiroaki Tada
- Graduate School of Science and Technology , Kindai University , 3-4-1, Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| |
Collapse
|
11
|
Zarepour MA, Tasviri M. Facile fabrication of Ag decorated TiO2 nanorices: Highly efficient visible-light-responsive photocatalyst in degradation of contaminants. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Xia W, Xiong J, Jiang L, Ye R, Mao Y, Hu S, Yang J. Lanthanide-doped KYb 3F 10 crystals: controllable phases, rich morphologies and Tb 3+/Eu 3+ down-conversion emission. CrystEngComm 2019. [DOI: 10.1039/c9ce00420c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
KYb3F10:Ln3+ (Ln = Er, Ho, Tb, Gd, Eu, Sm, Ce and La) micro/nanocrystals with abundant morphologies were synthesized via a one-step hydrothermal route without employing any surfactants.
Collapse
Affiliation(s)
- Wenpeng Xia
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Jie Xiong
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Li Jiang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Rui Ye
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Yini Mao
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Shanshan Hu
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Jun Yang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
13
|
Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO 2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J Colloid Interface Sci 2018; 527:202-213. [PMID: 29800869 DOI: 10.1016/j.jcis.2018.05.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
In order to achieve remarkable synergy between adsorption and photocatalysis for antibiotics elimination from water, in this study, a graphitized mesoporous carbon (GMC)-TiO2 nanocomposite was successfully synthesized by an extended resorcinol-formaldehyde (R-F) method. In the composite, the lamellar GMC nanosheets possessed large specific surface area and mesoporous structure, and could adsorb and enrich antibiotics effectively. This could not only reduce the antibiotic concentration in water shortly, but also greatly increase the chances for antibiotics to contact with and be degraded by photocatalysts and active species. Interestingly, GMC could also facilitate the transportation of photogenerated electrons to further improve the photocatalytic efficiency of TiO2, and 15 mg/L ciprofloxacin (CIP) could be totally mineralized in 1.5 h. Meanwhile, the biological inhibition of reaction solution on luminescence bacteria decreased obviously with antibiotics degradation until non-toxicity, reinforcing the thorough elimination of antibiotics. Besides, from the viewpoint of organic chemistry, several plausible CIP degradation pathways were established using HPLC-MS technique, and an interesting intermediate with five-membered ring structure was firstly proposed, which is helpful to deeply understand CIP degradation. Strong synergy between adsorption and photocatalysis, along with quick and efficient antibiotics elimination, double confirm the great potential of GMC-TiO2 nanocomposite for practical antibiotic wastewater purification.
Collapse
|
14
|
Shen D, Zhang Y, Zhang X, Wang Z, Zhang Y, Hu S, Yang J. Morphology/phase controllable synthesis of monodisperse ScVO4 microcrystals and tunable multicolor luminescence properties in Sc(La)VO4(PO4):Bi3+,Ln3+ phosphors. CrystEngComm 2018. [DOI: 10.1039/c8ce00951a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A facile one-pot hydrothermal approach was employed to prepare novel chocolate-like ScVO4 microcrystals using polyethylene glycol as an additive.
Collapse
Affiliation(s)
- Dingyi Shen
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Yufeng Zhang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Xuemei Zhang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Zhenling Wang
- The Key Laboratory of Rare Earth Functional Materials and Applications
- Zhoukou Normal University
- Zhoukou City
- China
| | | | - Shanshan Hu
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Jun Yang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
15
|
He X, Liu J, Zhu M, Guo Y, Ren Z, Li X. Preparation of hierarchical rutile TiO2 microspheres as scattering centers for efficient dye-sensitized solar cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Xu S, Sun X, Gao Y, Yue M, Yue Q, Gao B. Solvent effects on microstructures and properties of three-dimensional hierarchical TiO2 microsphere structures synthesized via solvothermal approach. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|