1
|
Li J, Shao Y, Li X, Wang X, Wang K, Zhang X, Pan Q, Gao F, Li Y, Su Z. Cadmium MOF-Based Varied {Cd 2} Clusters as Multifunctional Fluorescence Sensors to Detect Fe 3+, Cr 2O 72-, TNP, and NFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8270-8278. [PMID: 40105361 DOI: 10.1021/acs.langmuir.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Metal-organic frameworks (MOFs) have been widely used in the field of fluorescence sensing due to their highly ordered spatial structures, large porosity, and uniform pore sizes. Here, two new Cd- MOFs (JLJU-2 and JLJU-3), based on the ligand 4-(1H-1,2,4-triazol-1-yl)phenyl-4,2':6',4"-terpyridine (L) and two carboxylate ligands, were synthesized by the solvothermal method. JLJU-2 and JLJU-3 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, UV-visible spectroscopy, and thermogravimetric analysis. Respectively, JLJU-2 and JLJU-3 exhibit 2D and 3D structures using the L ligand and 2-aminoterephthalic acid (2-ATA)/nitroterephthalic acid (NTPA), adopted with different coordination modes. Furthermore, the porous crystal structures of JLJU-2 and JLJU-3 enable them to be well-suited for applications in the field of fluorescence sensing, in which JLJU-3 can detect Fe3+, Cr2O72-, TNP, and NFT with high selectivity and sensitivity. This work provides useful information for a versatile fluorescence sensing platform for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Yan Shao
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xiankuo Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Kuishan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Xuejian Zhang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Qingqing Pan
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Fengwei Gao
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yongtao Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
2
|
Wei J, Gu Q, Er X, Sun J, Zhao L, Qin R, Jin H. Dual-emission rare-earth fluorescent nanomaterials for ratiometric and visual detection of N-acetylneuraminic acid and applications in information encryption and anti-counterfeiting. Anal Chim Acta 2024; 1329:343263. [PMID: 39396320 DOI: 10.1016/j.aca.2024.343263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
N-acetylneuraminic acid (NANA) can be used as a biomarker for many types of cancers. Currently, there are various methods for detecting NANA but showing some shortcomings that limit the real-time diagnosis of cancer. In contrast, fluorescence analysis has obvious advantages such as low cost, fast response time, and easy operation, and it also enables visual detection for real-time cancer monitoring. Therefore, the establishment of an efficient and rapid detection method is essential for the early prevention and treatment of the disease. Based on the properties of layered rare-earth hydroxide (LRH), we synthesized a dual-emission fluorescent material (NDC/SDS-LEuH), and further fabricated a fluorescent nanoprobe (ANP) for the detection of NANA. The probe has the advantages of high sensitivity (LOD = 32.9 μM) and high selectivity with fast response. During the sensing process, the dual emission of the probe shows opposite changes due to the photoinduced electron transfer (PET) effect and the interaction between NANA and the probe. The color changes of the system can be observed under UV irradiation. Therefore, a visual platform was developed to detect NANA with a LOD of 0.09 mM. In addition, a probe hydrogel was prepared, which can be applied in the anti-counterfeiting to improve the difficulty of counterfeiting and the security of anti-counterfeiting. The probe achieves ratiometric fluorescence detection of NANA, which reduces background interference and improves the accuracy of detection. A visual detection platform was fabricated to realize the real-time detection. In addition, the prepared probe hydrogel showed the potential applications in anti-counterfeiting, which provided new ideas for the design and application of anti-counterfeiting materials.
Collapse
Affiliation(s)
- Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China.
| | - Xinyu Er
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| | - Jia Sun
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| | - Lixia Zhao
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| | - Rui Qin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, 102617, China
| |
Collapse
|
3
|
Rajeevan G, Ramesh A, Madanan AS, Varghese S, Abraham MK, Ibrahim Shkhair A, Indongo G, Arathy BK, George S. Efficient nanostructured Cs 2CuBr 2Cl 2 perovskite as a fluorescent sensor for the selective "Switch Off" detection of nitrobenzene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124481. [PMID: 38776668 DOI: 10.1016/j.saa.2024.124481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Lead halide nanostructured perovskites are well known for their excellent photoluminescence and optoelectronic properties. However, lead toxicity and instability in moisture impedes its suitability for material use. Here we synthesized a highly efficient, lead free, economical, stable Cs2CuBr2Cl2 perovskite nanocrystals (PNCs) via Ligand Assisted Re-Precipitation (LARP) method which is less explored. The sensing application of the synthesized PNCs towards nitro explosives and other small organic compounds were studied. The probe exhibited high selectivity towards nitrobenzene with a lowest detection limit of 57.64 nM. The fluorescent emission intensity was drastically quenched upon the addition of 32 µM nitrobenzene. A Stern-Volmer plot was utilized for the quantification of fluorescence quenching. Further to investigate the quenching mechanism, time correlated single photon counting spectroscopy and other photoluminescence studies were performed pointing out the possibility of fluorescence resonance energy transfer. The work has been further extended to test the capability of the probe to detect nitrobenzene in real water samples and a good recovery percentage ranging from 93-98 % was obtained. Further, a paper strip assay was designed which successfully detected nitrobenzene and can be clearly noticed even with our naked eye making the probe an excellent sensor for nitrobenzene detection.
Collapse
Affiliation(s)
- Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anagha Ramesh
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
4
|
Liu L, Chen D, Dou AN, Xu QQ, Liu FY, Zhu AX, Zhu RR. Selective Adsorption of Dyes and Fe 3+ Sensing via Tb 3+ Incorporation in an Anionic Cadmium-Organic Framework. Chempluschem 2024; 89:e202400192. [PMID: 38979961 DOI: 10.1002/cplu.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Indexed: 07/10/2024]
Abstract
A three-dimensional (3D) anionic cadmium-organic framework, namely [(CH3)2NH2][Cd1.5(DMTDC)2] ⋅ 2DMA ⋅ 0.5H2O (Cd-MOF; DMA=N,N-dimethylacetamide), was successfully synthesized under solvothermal conditions by using a linear thienothiophene-containing dicarboxylate ligand, 3,4-dimethylthieno [2,3-b]-thiophene-2,5-dicar-boxylic acid (H2DMTDC). Single-crystal X-ray diffraction analysis reveals that Cd-MOF exhibits a 3D anionic framework with pcu α-Po topology, featuring rectangle and rhombus-shaped channels along b- and c- axis direction. Cd-MOF demonstrates selective adsorption of cationic dyes over anionic and neutral dyes. Additionally, Tb3+-loaded Cd-MOF serves as a fast-response fluorescence sensor for the sensitive detection of Fe3+ ions with a low limit of detection (8.90×10-7 M) through fluorescence quenching.
Collapse
Affiliation(s)
- Liu Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Duan Chen
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Ai-Na Dou
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Quan-Qing Xu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Feng-Yi Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Rong-Rong Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
5
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Attallah AG, Bon V, Maity K, Zaleski R, Hirschmann E, Kaskel S, Wagner A. Revisiting Metal-Organic Frameworks Porosimetry by Positron Annihilation: Metal Ion States and Positronium Parameters. J Phys Chem Lett 2024; 15:4560-4567. [PMID: 38638089 PMCID: PMC11071070 DOI: 10.1021/acs.jpclett.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic frameworks (MOFs) stand as pivotal porous materials with exceptional surface areas, adaptability, and versatility. Positron Annihilation Lifetime Spectroscopy (PALS) is an indispensable tool for characterizing MOF porosity, especially micro- and mesopores in both open and closed phases. Notably, PALS offers porosity insights independent of probe molecules, which is vital for detailed characterization without structural transformations. This study explores how metal ion states in MOFs affect PALS results. We find significant differences in measured porosity due to paramagnetic or oxidized metal ions compared to simulated values. By analyzing CPO-27(M) (M = Mg, Co, Ni), with identical pore dimensions, we observe distinct PALS data alterations based on metal ions. Paramagnetic Co and Ni ions hinder and quench positronium (Ps) formation, resulting in smaller measured pore volumes and sizes. Mg only quenches Ps, leading to underestimated pore sizes without volume distortion. This underscores the metal ions' pivotal role in PALS outcomes, urging caution in interpreting MOF porosity.
Collapse
Affiliation(s)
- Ahmed G. Attallah
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
- Physics
Department, Faculty of Science, Minia University, P.O. 61519, Minia, Egypt
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Kartik Maity
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Radosław Zaleski
- Institute
of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Eric Hirschmann
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Andreas Wagner
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
7
|
Sekine T, Sakai J, Horita Y, Mabuchi H, Irie T, Hossain S, Kawawaki T, Das S, Takahashi S, Das S, Negishi Y. Five Novel Silver-Based Coordination Polymers as Photoluminescent Sensing Platforms for the Detection of Nitrobenzene. Chemistry 2023; 29:e202300706. [PMID: 37293845 DOI: 10.1002/chem.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.
Collapse
Affiliation(s)
- Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Subhabrata Das
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Shuntaro Takahashi
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
8
|
Karbalaee Hosseini A, Pourshirzad Y, Tadjarodi A. A water-stable luminescent cadmium-thiazole metal-organic framework for detection of some anionic and aromatic pollutants. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Two coordination polymers assembled with resorcin[4]arenes ligand: luminescent sensing Fe3+ ion and Cr2O72- anion. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Chen Y, Liu G, Lu X, Wang X. A water-stable new luminescent Cd(Ⅱ) coordination polymer for rapid and luminescent/visible sensing of vanillin in infant formula. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Shao J, Ni J, Chen W, Liu P, Liang Y, Li G, Wen L, Wang F. A Novel Co‐based MOF as an Efficient Multifunctional Fluorescent Chemosensor for the Determination of Fe
3+
and Cr
2
O
7
2−
in Aqueous Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Shao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jianling Ni
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Weimin Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Penglai Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guangjun Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Lili Wen
- College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Fangming Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
12
|
Jornet-Mollá V, Martín-Mezquita C, Giménez-Saiz C, Romero FM. Zinc(II) picolinate-based coordination polymers as luminescent sensors of Fe3+ ions and nitroaromatic compounds. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Zheng LN, Xu LY, Yan YT, Ding T, Feng CC. Two Cu(II) coordination polymers based on isomeric N-heterocyclic multicarboxylate ligands: Construction and magnetic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhu CY, Wang CL, Chen L, Gao W, Li P, Zhang XM. A water-stable Zn(II) coordination polymer for a high sensitivity detection of Fe3+ and 2,4,6-trinitrophenol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
AIEE active new fluorescent and colorimetric probes for solution and vapor phase detection of Nitrobenzene: A reversible mechanochromism and application of logic gate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Meng XY, Wang WJ, Ding ZY, Luo SX, Zhang WY, Yan YT, Yang GP, Wang YY. Two novel luminescent metal-organic frameworks based on the thioether bond modification: The selective sensing and effective CO2 fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Feng C, Hua FZ, Guo JJ, Lv CP, Zhao H. Structural Elucidation and Electrochemiluminescence on a 3D Cadmium(II) MOF with 5-c Topology. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Construction of two new Co(II)-organic frameworks based on diverse metal clusters: Highly selective C2H2 and CO2 capture and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Syntheses, crystal structures, luminescent sensing and photocatalytic properties of two 2D cadmium(II) coordination polymers constructed from mixed ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Geng Y, Zhang W, Song JF, Zhou RS, Jiao WZ. Four new CuI/AgI-based coordination compounds containing 2-mercapto-5-methyl-1,3,4-thiadiazole: Synthesis, crystal structures and fluorescence properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Bai YT, Zheng H, Tong KW, Feng SS, Zhu ML. Construction of a one-dimensional cadmium coordination polymer based on a triangle flexible multicarboxylate linker. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1815774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yu-ting Bai
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, P. R. China
| | - Huan Zheng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, P. R. China
| | - Ke-wei Tong
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, P. R. China
| | - Si-si Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, P. R. China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi, P. R. China
| | - Miao-li Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, P. R. China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
22
|
Co(II) and Zn(II) coordination polymers: selective detection of Fe(III) ion and treatment activity on renal calculus. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Fan C, Xu C, Zhu B, Wang L, Zong Z, Wu R, Zhang X, Fan Y. New topological Zn metal organic frameworks as multi-responsive fluorescent sensing materials for detecting Fe3+, Cr2O72−, CrO42− and tetracycline in aqueous system. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Daga P, Manna P, Majee P, Singha DK, Hui S, Ghosh AK, Mahata P, Mondal SK. Response of a Zn(II)-based metal-organic coordination polymer towards trivalent metal ions (Al 3+, Fe 3+ and Cr 3+) probed by spectroscopic methods. Dalton Trans 2021; 50:7388-7399. [PMID: 33969864 DOI: 10.1039/d1dt00729g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new zinc-based two-dimensional coordination polymer, [Zn(5-AIP)(Ald-4)]·H2O (5-AIP = 5-amino isophthalate, Ald-4 = aldrithiol-4), 1, has been synthesized at room temperature by the layer diffusion technique. Single-crystal X-ray diffraction analysis of 1 showed a two-dimensional bilayer structure. An aqueous suspension of 1 upon excitation at 300 nm displayed an intense blue emission at 403 nm. The luminescence spectra were interestingly responsive and selective to Al3+, Cr3+ and Fe3+ ions even in the presence of other interfering ions. The calculated detection limits for Al3+, Cr3+ and Fe3+ were 0.35 μM ([triple bond, length as m-dash]8.43 ppb), 0.46 μM ([triple bond, length as m-dash]22.6 ppb) and 0.30 μM ([triple bond, length as m-dash]15.85 ppb), respectively. Notably, with the cumulative addition of Al3+ ions, the luminescence intensity at 403 nm decreased steadily with a gradual red shift up to 427 nm. Afterward, this red shifted peak showed a turn-on effect upon further addition of Al3+ ions. On the other hand, for Cr3+ and Fe3+ ions, there was only drastic luminescence quenching and a large red shift up to 434 nm. This indicated the formation of a complex between 1 and these metal ions, which was also supported by the UV-Visible absorption spectra of 1 that showed the appearance of a new band at 280 nm in the presence of these three metal ions. The FTIR spectra revealed that these ions interacted with the carboxylate oxygen atom of 5-AIP and the nitrogen atom of the Ald-4 ligand in the structure. The luminescence lifetime decay analysis manifested that a charge-transfer type complex was formed between 1 and Cr3+ and Fe3+ ions that resulted in huge luminescence quenching due to the efficient charge transfer involving the vacant d-orbitals, whereas for Al3+ ions having no vacant d-orbital, turn-on of luminescence occurred because of the increased rigidity of 1 upon complexation.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Priyanka Manna
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Debal Kanti Singha
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sayani Hui
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Ananta Kumar Ghosh
- Department of Chemistry, Burdwan Raj College, Burdwan, Burdwan-713104, West Bengal, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| |
Collapse
|
25
|
Ni JL, Liang Y, Shao JJ, Li JF, Zhou ZY, Wang FM, Chen LZ. Selective fluorescent sensing of LMOFs constructed from tri(4-pyridylphenyl)amine ligand. RSC Adv 2021; 11:16989-16995. [PMID: 35479688 PMCID: PMC9031330 DOI: 10.1039/d1ra00726b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
Three new luminescent metal-organic frameworks (LMOFs), [Zn(tppa)(ndc)] n (1), [Cd(tppa)(oba)] n (2), [Zn2(tppa)(bpdc)2] n (3) (tppa = tri(4-pyridylphenyl)amine, ndc = 1,4-naphthalenedicarboxylic acid, oba = 4,4'-oxydibenzoic acid, bpdc = 4,4'-biphenyldicarboxylic acid) have been synthesized by solvothermal method. Complexes 1 and 2 are 2-D two-fold interpenetrating structures, aligning into a 3-D structure through C-H⋯π stacking interactions, while 3 is a 5-fold interpenetrating three-dimensional structure. The internal quantum yields (IQYs) of complexes 1-3 are 32.7%, 45.7% and 24.0% (λ ex = 365 nm), separately. Furthermore, all the complexes show different luminescence signal changes towards aromatic volatile organic compounds (AVOCs). Complex 1 exhibits a high sensitivity in the detection of both Fe3+ and Cr3+ with large quenching coefficients of K sv 2.57 × 104 M-1 and 2.96 × 104 M-1, respectively. All these results demonstrated potential applications in chemical sensing.
Collapse
Affiliation(s)
- Jian-Ling Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Juan-Juan Shao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jun-Feng Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Ze-Yu Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Li-Zhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
26
|
Chen J, Chen T, Xiang S, Zhang J, Zhang Z. Triazine Based MOFs with Abundant N Sites for Selective Nitrobenzene Detection. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jingan Chen
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou 350007 China
| | - Ting Chen
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou 350007 China
| | - Shengchang Xiang
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 PR China
| | - Jindan Zhang
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou 350007 China
| | - Zhangjing Zhang
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 PR China
| |
Collapse
|
27
|
Hua FZ, Feng C, Xie WN, Luo YN, Zhang LM, Zhao H. High Efficiency Electrochemiluminescence for Copper(II) and Cadmium(II) Pyrazolate Polymers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01983-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Chen CC, Cai Y, Wang LF, Wu YD, Yin HJ, Zhou JR, Ni CL, Liu W. Three Silver(I) Coordination Polymers Based on Pyridyl Ligands and Auxiliary Carboxylic Ligands: Luminescence and Efficient Sensing Properties. Inorg Chem 2021; 60:5463-5473. [PMID: 33793227 DOI: 10.1021/acs.inorgchem.0c02853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Easily producible sensors for harmful industrial waste compounds are of significant interest for both human health and the environment. Three novel coordination polymers, [Ag(μ-aca)(μ4-bztpy)1/2] (1), [Ag(μ-bza)(μ-bpa)] (2), and [Ag2(μ-aca)2(μ-bpa)2]·EtOH·2H2O (3), were assembled in this study by reactions using Ag+ as a node with the pyridyl ligand 1,2,4,5-tetrakis(4-pyridyl)benzene (bztpy) or 9,10-bis(4-pyridyl)anthracene (bpa) and an auxiliary chelating carboxylic ligand. Single-crystal X-ray structural analyses revealed that compound 1 has a 3D framework consisting of 1D [Ag(aca)]∞ chains and bztpy linkers, while 2 and 3 have 2D layered structures consisting of binuclear Ag-carboxylate units and bpa linkers, respectively. Topological studies revealed that 1 has a bbf topology, while 2 and 3 are 2D [4,4] rhombic grids. The compounds were further characterized by powder X-ray diffraction, IR, elemental analysis, thermogravimetric analysis, and a luminescence study. The solids of 1-3 exhibited intense photoluminescent emission with λemmax at ca. 493, 472, and 500 nm, respectively. Remarkably, due to their excellent framework stability, 1 and 2 can act as multiresponsive luminescent sensors for nitrobenzene, Fe3+, and Cr2O72- with a high selectivity and sensitivity ascribed to their quenching effect.
Collapse
Affiliation(s)
- Cong-Cong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Yue Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Long-Fei Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yun-Dang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Hao-Jun Yin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Jia-Rong Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Chun-Lin Ni
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Wei Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| |
Collapse
|
29
|
Su CH, Tsai MJ, Wang WK, Li YY, Wu JY. Engineered Bifunctional Luminescent Pillared-Layer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry 2021; 27:6529-6537. [PMID: 33521989 DOI: 10.1002/chem.202005373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Indexed: 11/06/2022]
Abstract
Through a dual-ligand synthetic approach, five isoreticular primitive cubic (pcu)-type pillared-layer metal-organic frameworks (MOFs), [Zn2 (dicarboxylate)2 (NI-bpy-44)]⋅x DMF⋅y H2 O, in which dicarboxylate=1,4-bdc (1), Br-1,4-bdc (2), NH2 -1,4-bdc (3), 2,6-ndc (4), and bpdc (5), have been engineered. MOFs 1-5 feature twofold degrees of interpenetration and have open pores of 27.0, 33.6, 36.8, 52.5, and 62.1 %, respectively. Nitrogen adsorption isotherms of activated MOFs 1'-5' at 77 K all displayed type I adsorption behavior, suggesting their microporous nature. Although 1' and 3'-5' exhibited type I adsorption isotherms of CO2 at 195 K, MOF 2' showed a two-step gate-opening sorption isotherm of CO2 . Furthermore, MOF 3' also had a significant influence of amine functions on CO2 uptake at high temperature due to the CO2 -framework interactions. MOFs 1-5 revealed solvent-dependent fluorescence properties; their strong blue-light emissions in aqueous suspensions were efficiently quenched by trace amounts of nitrobenzene (NB), with limits of detection of 4.54, 5.73, 1.88, 2.30, and 2.26 μm, respectively, and Stern-Volmer quenching constants (Ksv ) of 2.93×103 , 1.79×103 , 3.78×103 , 4.04×103 , and 3.21×103 m-1 , respectively. Of particular note, the NB-included framework, NB@3, provided direct evidence of the binding sites, which showed strong host-guest π-π and hydrogen-bonding interactions beneficial for donor-acceptor electron transfer and resulting in fluorescence quenching.
Collapse
Affiliation(s)
- Chun-Hao Su
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Wei-Kai Wang
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Yi-Yun Li
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| |
Collapse
|
30
|
Chen SS, Zhang ZY, Liao RB, Zhao Y, Wang C, Qiao R, Liu ZD. A Photoluminescent Cd(II) Coordination Polymer with Potential Active Sites Exhibiting Multiresponsive Fluorescence Sensing for Trace Amounts of NACs and Fe 3+ and Al 3+ Ions. Inorg Chem 2021; 60:4945-4956. [PMID: 33689336 DOI: 10.1021/acs.inorgchem.1c00022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The elaborately designed π-electron-rich fluorescent ligand 1,4-bis(1-carboxymethylene-4-imidazolyl)benzene (H2L), possessing bifunctional groups including the carboxylate groups (building units) and 4-imidazoyl groups (N-donor potential active sites) has been employed to construct fluorescent coordination polymers. A luminescent sensor, namely [Cd(L)(phen)2]·5H2O (1), was obtained, which has a one-dimensional structure. The fluorescent material shows a blue emission maximum at 457 nm with a luminescence lifetime of 488 ns and a quantum yield (QY) of 4.56%. Significantly, 1 serves as a promising multiresponsive luminescent sensor to detect trace nitroaromatic compounds (NACs) with the limits of detection (LOD) of 7.21 × 10-8, 1.85 × 10-5, and 1.15 × 10-5 mol/L for 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), and 4-nitrophenol (4-NP), respectively. Furthermore, CP 1 exhibits fluorescent turn-off and turn-on sensing behavior for Fe3+ and Al3+ metal ions with trace amounts of 1.05 × 10-7 and 1.13 × 10-7 mol/L, respectively. Experimental methods and theoretical calculations were employed to elucidate the sensing mechanism in detail.
Collapse
Affiliation(s)
- Shui-Sheng Chen
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zi-You Zhang
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China
| | - Rong-Bao Liao
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chuang Wang
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China
| | - Rui Qiao
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China
| | - Zhao-Di Liu
- School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, People's Republic of China
| |
Collapse
|
31
|
González-Galán C, Balestra SRG, Luna-Triguero A, Madero-Castro RM, Zaderenko AP, Calero S. Effect of diol isomer/water mixtures on the stability of Zn-MOF-74. Dalton Trans 2021; 50:1808-1815. [PMID: 33464245 DOI: 10.1039/d0dt03787g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stability of metal-organic frameworks is a key factor in many applications in some fields that require working under harsh conditions. It is known that a large number of MOFs are vulnerable to humid air. It means that when they are exposed to water, a structural collapse of the crystal happens. In this work, Molecular Dynamics simulations using a reactive force field have been performed to study the stability of MOF-74 against the adsorption of catechol, resorcinol and hydroquinone in the presence of water. We reproduced the water instability of Zn-MOF-74 and we studied the resistance of the structure. Our simulations showed that the three isomers generate a volume change in the framework but the structural collapse does not happen. In contrast, for water-isomer mixtures, there is structural collapse. Not only do catechol, resorcinol and hydroquinone not behave as stabilizing agents but they do enhance the hydration effect on the structure.
Collapse
Affiliation(s)
- Carmen González-Galán
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Salvador R G Balestra
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28039 Madrid, Spain.
| | - Azahara Luna-Triguero
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rafael Maria Madero-Castro
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Ana Paula Zaderenko
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Sofia Calero
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
32
|
A luminescent zinc-organic framework as bifunctional chemosensors for detection of nitrobenzene and Fe3+. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Ma LL, Yang GP, Li GP, Zhang PF, Jin J, Wang Y, Wang JM, Wang YY. Luminescence modulation, near white light emission, selective luminescence sensing, and anticounterfeiting via a series of Ln-MOFs with a π-conjugated and uncoordinated lewis basic triazolyl ligand. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01100b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of Ln-MOFs with π-conjugated and uncoordinated lewis basic triazolyl ligand have luminescence modulation, near white light emission, selective luminescence sensing, and anticounterfeiting.
Collapse
Affiliation(s)
- Lu-Lu Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Gao-Peng Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jiao-Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
34
|
Deng L, Zhao H, Liu K, Ma D. Efficient luminescence sensing in two lanthanide metal–organic frameworks with rich uncoordinated Lewis basic sites. CrystEngComm 2021. [DOI: 10.1039/d1ce00923k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two novel Ln-MOFs containing uncoordinated Lewis basic sites for sensitive detection of Fe3+ ions and nitrobenzene through fluorescence quenching.
Collapse
Affiliation(s)
- Liming Deng
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
| | - Huihui Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dingxuan Ma
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
35
|
Yan YT, Wang CY, Zheng LN, Wu YL, Liu J, Wu WP, Zhang WY, Wang YY. A new multi-functional Cu( ii)-organic framework as a platform for selective carbon dioxide chemical fixation and separation of organic dyes. CrystEngComm 2021. [DOI: 10.1039/d1ce01274f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional metal–organic framework {[Cu2(HL)(H2O)2]·NMP·2H2O}n was synthesized. It shows efficient catalytic performance for the chemical fixation of CO2 and exhibits selective sorption towards the rhodamine B dye.
Collapse
Affiliation(s)
- Yang-Tian Yan
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chen-Yang Wang
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Li-Na Zheng
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Yun-long Wu
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Wei-Ping Wu
- College of Chemistry and Environmental Engineering and Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
36
|
Xiao CQ, Yi WH, Hu JJ, Liu SJ, Wen HR. Stable hydrogen-bonded organic frameworks for selective fluorescence detection of Al 3+ and Fe 3+ ions. CrystEngComm 2021. [DOI: 10.1039/d1ce01182k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pairs of HOFs were prepared with H4TCPE ligand under different conditions, and 3 and 4 have high stability and exhibit fluorescence quenching and enhancement toward Fe3+ and Al3+ ions, respectively.
Collapse
Affiliation(s)
- Cheng-Quan Xiao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Wen-Hai Yi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
37
|
Wang M, Liu J, Jin J, Wu D, Yang G, Zhang WY, Wang YY. A new 3D luminescent Ba-organic framework with high open metal sites: CO 2 fixation, luminescence sensing, and dye sorption. CrystEngComm 2021. [DOI: 10.1039/d0ce01604g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new synthesized 3D luminescent Ba-organic framework (1) may be used as a recyclable heterogeneous catalyst for fixation of CO2 and has excellent response and sensitivity for pollutant ions. Moreover, 1 exhibits the particular selective sorption towards Congo red (CR) dye.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Dan Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
38
|
Wang XQ, Tang J, Ma X, Wu D, Yang J. A water-stable zinc(ii)–organic framework as an “on–off–on” fluorescent sensor for detection of Fe3+ and reduced glutathione. CrystEngComm 2021. [DOI: 10.1039/d0ce01741h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A zinc(ii) metal–organic framework exhibits fluorescence on–off–on behaviour for Fe3+ and reduced glutathione in PBS solution and in real samples.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jing Tang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xuehui Ma
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Dan Wu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- and School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252000
- PR China
| |
Collapse
|
39
|
Wu LH, Yao SL, Li J, Xu H, Zheng TF, Liu SJ, Chen JL, Wen HR. A novel CdII-based metal–organic framework as a multi-responsive luminescent sensor for Fe3+, MnO4−, Cr2O72−, salicylaldehyde and ethylenediamine detection with high selectivity and sensitivity. CrystEngComm 2021. [DOI: 10.1039/d0ce01575j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A luminescent CdII-based MOF has been synthesized.
Collapse
Affiliation(s)
- Lin-Hui Wu
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Shu-Li Yao
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| |
Collapse
|
40
|
Synthesis and characterization of four 2D-3D Zn/Cd/Pb coordination polymers assembled by diverse SBUs and based on isomeric N-heterocyclic multicarboxylate ligands. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Two Cd(II)-organic frameworks for the highly luminescence sensitive detection of CrVI ions in an aqueous medium. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Sun Y, Yin M, Chen S, Zhao J. Synthesis, crystal structures and magnetic properties of three porous coordination polymers based on a semirigid tripodal carboxylate ligand. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Isomorphic Cd(II)/Zn(II)-MOFs as bifunctional chemosensors for anion (Cr2O72−) and cation (Fe3+) detection in aqueous solution. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Rath BB, Vittal JJ. Water Stable Zn(II) Metal-Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(III) and Chromate Ions. Inorg Chem 2020; 59:8818-8826. [PMID: 32501007 DOI: 10.1021/acs.inorgchem.0c00545] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensing and monitoring toxic contaminants like Fe3+, CrO42-, and Cr2O72- ions in water is very important due to their harmful effects on biological and environmental systems. Enhanced hydrolytic stability, sensitivity, and selectivity, in addition to their excellent luminescence properties, are important attributes of metal-organic framework (MOF)-based sensors for sensing applications. In this work, the water stable Zn-MOF [Zn2(tpeb)(bpdc)2] (where tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and bpdc = biphenyl-4,4'-dicarboxylic acid) was synthesized and characterized. The framework retains its crystallinity and structural integrity in harsh acidic and basic conditions (pH 4-11). Most interestingly, the Zn-MOF demonstrates a strong blue luminescence in water that can be quenched selectively only by contaminants like Fe3+, CrO42-, and Cr2O72- ions. Higher Ksv values and low detection limits in selective luminescence quenching confirm the superior sensing performance, which is comparable to those of contemporary materials. Furthermore, in all cases, quenching efficiency remains unaltered in the presence of interfering ions, even after the compound is used in multiple cycles, which makes this MOF an attractive, reliable, and recyclable luminescent sensor material. The luminescence quenching mechanism is based on the competitive absorption and weak interactions. It is worth noting that most of the reported MOF-based sensors used for the separate sensing of Fe(III) and chromate ions are used in organic media due to their poor hydrolytic stabilities. Reports on the dual sensing of Fe(III) and chromate ions, which are also in aqueous media, are rare. Based on these results, Zn-MOF can be considered as a suitable candidate for advanced practical applications for the efficient sensing of Fe(III) and chromate ions in water.
Collapse
Affiliation(s)
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
46
|
Zhao X, Zhang F, Liu Y, Zhao T, Zhao H, Xiang S, Li Y. A series of luminescent Lnlll-based coordination polymers: Syntheses, structures and luminescent properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Guo TT, Liu YY, Yang J, Ma JF. Resorcin[4]arene-based cadmium(II) coordination polymers for efficient luminescent detection of Fe3+ and Cr2O72− ions. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Jiang D, Fang H, Li G, Zheng G. A responsive supramolecular-organic framework: Functionalization with organic laser dye and lanthanide ions for sensing of nitrobenzene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Fan WW, Cheng Y, Zheng LY, Cao QE. Reversible Phase Transition of Porous Coordination Polymers. Chemistry 2020; 26:2766-2779. [PMID: 31697441 DOI: 10.1002/chem.201903985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Porous coordination polymers or metal-organic frameworks with reversible phase-transition behavior possess some attractive properties, and can respond to external stimuli, including physical and chemical stimuli, in a dynamic fashion. Their phase transitions can be triggered by adsorption/desorption of guest molecules, temperature changes, high pressure, light irradiation, and electric fields; these mainly include two types of transitions: crystal-amorphous and crystal-crystal transitions. These types of porous coordination polymers have received much attention because of their interesting properties and potential applications. Herein, reversible phase transition porous coordination polymers are summarized and classified based on different stimuli sources. Corresponding typical examples are then introduced. Finally, examples of their applications in gas separation, chemical sensors, guest molecule encapsulation, and energy storage are also presented.
Collapse
Affiliation(s)
- Wen-Wen Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Yi Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Li-Yan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| |
Collapse
|
50
|
Huo J, Li H, Yu D, Arulsamy N. Three New Metal Complexes with Imidazole-Containing Tripodal Ligands as Fluorophores for Nitroaromatics- and Ion-Selective Sensing. Inorganica Chim Acta 2020; 502:119310. [PMID: 32863422 PMCID: PMC7453589 DOI: 10.1016/j.ica.2019.119310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three new metal-organic complexes [Cd(TIPA)(suc)0.5(NO3)·1/2H2O]n (1), [Ni(TIPA)(tda)0.5(H2O)·1/4H2O]n (2) and [Cd(TIPA)(tda)0.5·11/2H2O] (3) were synthesized via rigid tripodal ligand tris(4-(1H-imidazol-1-yl)phenyl)amine (TIPA) and three dicarboxylic acids; either succinic acid (H2suc) or 2,5-thiophenedicarboxylic acid (H2tda). Crystallographic data for 1 - 3 reveal three-dimensional (3D) networks and channels in the structures. The structure of 2 is unique featuring an interpenetrating 2D network, 2D + 2D → 3D, with the two associated 2D networks existing in two opposite spiral channels. TGA plots exhibit a loss of mass corresponding to the loss of the solvated water molecules in the 100 - 200 °C temperature region and begin to lose additional fragments only at T > 300 °C revealing the robust nature of the 3D framework in the complexes. The metal-organic frameworks (MOFs) are screened for their potential application in the detection and removal of environmentally hazardous industrial pollutants. Fluorescence emission spectra for 1 and 2 show that the two MOFs are capable of sensing nitrobenzene (NB), with the nickel complex 2 exhibiting significantly higher sensing ability. Powder XRD data measured for 1 and 2 and those of NB-treated 1 and 2 show significant differences in their patterns, providing further support for the strong interaction between the MOF complexes and NB. The fluorescence emission observed for 1 is more effectively quenched by the presence of Fe3+ than the series of 17 other metal ions investigated. Complex 3 possesses some ability to adsorb inorganic pollutants.
Collapse
Affiliation(s)
- Jianqiang Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiqiang Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Donghui Yu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Navamoney Arulsamy
- Department of Chemistry, 1000 E. University AVE, University of Wyoming, Laramie, WY 82071-2000, USA
| |
Collapse
|